Radioactive Beam Capabilities at ATLAS and Plans for the Future

Jerry Nolen
Physics Division
Argonne National Laboratory

Nuclear Structure and Astrophysics with Radioactive Beams

Weizmann Institute of Science
Rehovot, Israel

June 4-6, 2006
Greetings from Chicago!
ATLAS: The Argonne Tandem-Linac Accelerator System

A superconducting linac with beams from protons to uranium above the Coulomb barrier. About 20% of the research is with radioactive beams.
ATLAS Features

ATLAS components:

- Two injectors, a 9-MV tandem injector and the positive-ion injector, commissioned in 1993.
- 2 ECR ion sources and a negative-ion source.
- A total of 63 SC resonators (6 types) covering the $\beta = 0.008 - 0.2$

Special features:

- The first superconducting ion accelerator
- Intense, CW beams of any mass, protons to uranium
- Excellent time structure and energy resolution
- High transmission from source to target
- Data-base of stored and repeatable beam tunes
- Highly modular and reliable
A superconducting linac cryomodule currently in use at ATLAS. This was developed ~1990 for the uranium beam upgrade.
Research with radioactive beams at ATLAS

- Reaction rates relevant to nucleo-synthesis with radioactive beams created via the “two-accelerator” and “in-flight reactions” methods
- Mass measurements relevant to nucleo-synthesis – isotopes created via heavy ion fusion and gas catcher technology
 - Waiting points in the R_p process – 68Se
 - Masses of isotopes leading to the r-process nuclei
- Nuclear structure at the proton drip line – studies of proton emitters
- Nuclear structure effects in sub-barrier fusion reactions with radioactive beams
- Radioactive isotopes in atom traps
 - Testing ab-initio structure calculations of light nuclei – measurement of the charge radius of 6He in an atom trap
 - Search for electric dipole moments in nuclei
- Masses and decays in ion traps to test fundamental interactions
 - Masses for superallowed beta decay
 - Beta-neutrino correlations: beta decay in an “open trap”
ATLAS Beams – FY2004

- **28 Beam Species**
- **5559 Beam Hours** (data taking & beam development) – **96.4% availability**
- **~1040 Hours of Rare (Radioactive) Beams** – “In-flight”
ATLAS: Exotic Beam Production - Yields

<table>
<thead>
<tr>
<th>Ion</th>
<th>Reaction</th>
<th>Intens. #/s/pnA</th>
<th>Open Angle</th>
<th>Prod. Energy</th>
<th>Max. Rate/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>6He</td>
<td>$d(^7$Li,6He)3He</td>
<td>150</td>
<td>19$^\circ$</td>
<td>75 (MeV)</td>
<td>1 x 10^4</td>
</tr>
<tr>
<td>8Li</td>
<td>$d(^7$Li,8Li)p</td>
<td>2000</td>
<td>11$^\circ$</td>
<td>71</td>
<td>1.5 x 10^5</td>
</tr>
<tr>
<td>8B</td>
<td>3He(6Li,8B)n</td>
<td>10</td>
<td>13$^\circ$</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>11C</td>
<td>p(11B,11C)n</td>
<td>2300</td>
<td>4.5$^\circ$</td>
<td>105</td>
<td>2 x 10^5</td>
</tr>
<tr>
<td>14O</td>
<td>p(14N,14O)n</td>
<td>1200</td>
<td>2.9$^\circ$</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>16N</td>
<td>$d(^{15}$N,16N)p</td>
<td>30000</td>
<td>5.4$^\circ$</td>
<td>70</td>
<td>3 x 10^6</td>
</tr>
<tr>
<td>17F</td>
<td>$d(^{16}$O,17F)n</td>
<td>20000</td>
<td>4.5$^\circ$</td>
<td>~90</td>
<td>2 x 10^6</td>
</tr>
<tr>
<td></td>
<td>p(17O,17F)n</td>
<td>20000</td>
<td>1.7$^\circ$</td>
<td>2 x 10^6</td>
<td></td>
</tr>
<tr>
<td>20Na</td>
<td>3He(19F,20Na)2n</td>
<td>~1</td>
<td></td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>21Na</td>
<td>$d(^{20}$Ne,21Na)n</td>
<td>4000</td>
<td>4.0$^\circ$</td>
<td>113</td>
<td>2 x 10^6</td>
</tr>
<tr>
<td></td>
<td>p(21Ne,21Na)n</td>
<td>8000</td>
<td>2.6$^\circ$</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>25Al</td>
<td>$d(^{24}$Mg,25Al)n</td>
<td>1000</td>
<td>3.7$^\circ$</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p(25Mg,25Al)n</td>
<td>2000</td>
<td>2.2$^\circ$</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>37K</td>
<td>$d(^{36}$Ar,37K)n</td>
<td>1200</td>
<td>2.2$^\circ$</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>18F</td>
<td>Two-accel.</td>
<td></td>
<td></td>
<td>6 x 10^6</td>
<td></td>
</tr>
<tr>
<td>44Ti</td>
<td>Two-accel.</td>
<td></td>
<td></td>
<td>5 x 10^5</td>
<td></td>
</tr>
<tr>
<td>56Ni</td>
<td>Two-accel.</td>
<td></td>
<td></td>
<td>5 x 10^4</td>
<td></td>
</tr>
<tr>
<td>56Co</td>
<td>Two-accel.</td>
<td></td>
<td></td>
<td>2 x 10^5</td>
<td></td>
</tr>
</tbody>
</table>
Radioactive beam production via in-flight reactions

\[^{15}\text{N} \]

\(~ 100 \text{ pnA}\)

\[d(^{15}\text{N}, ^{16}\text{N})p \]

Particle identification

\[^{16}\text{N}, I \sim 5 \times 10^6/s \]

\[^{20}\text{Ne}^{8+} \]

\[^{16}\text{O}^{7+} \]

\[^{16}\text{N}^{7+} \]
Supermassive stars

$^{11}\text{C}(p,\alpha)^{8}\text{B}$

$^{8}\text{B}(\beta^+,\nu) \rightarrow 2\alpha$

$^{21}\text{Na}(p,\alpha)^{18}\text{Ne}$

$^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}$

$^{17}\text{F}(p,\alpha)^{14}\text{O}$

$^{56}\text{Ni}(p,\gamma)^{57}\text{Cu}$

PRL 82, 3964(1999)
PRC 65, 035803(2002)

NPA 734, 615(2004)

PRL 80, 676(1998)

PRL 82, 3964(1999)

Nuclear Astrophysics with Radioactive Beams

$^{44}\text{Ti}(\alpha,p)^{47}\text{V}$

PRL 84, 1651(2000)

E. Rehm, et al.
Overview of the CPT apparatus at ATLAS

G. Savard, et al.
Mass measurements for nuclear astrophysics in the Canadian Penning Trap

Example: ^{68}Se as a waiting point nucleus

ATLAS upgrades in progress: Energy Upgrade Project + CARIBU + Solenoid Spectrometer

- Important physics planned using beams from CARIBU need the new energy regime opened by Energy Upgrade Project.
- Solenoid Spectrometer will greatly expand the effectiveness of both the fission fragment beams at these higher energies.
- The three projects will combine to form a truly unique facility which complements the capabilities of other world facilities in the era leading to RIA.

CARIBU: Californium Radioactive Beam Upgrade
ATLAS Energy Upgrade: ~25% higher beam energies

ATLAS Energy Upgrade will replace the last ATLAS cryostat with:

- New RIA-style cryostat containing
- New RIA-class resonators:
 - $\beta=0.14$ quarter-wave resonator
 - $\beta=0.26$ half-wave resonator
ATLAS Energy Upgrade: ~10 MeV/u 132Sn

Complete upgrade project will consist of:

- 7 $\beta=0.14$ Quarter-wave resonators
- 1 $\beta=0.26$ Half-wave resonator

Expected performance improvement from Energy Upgrade

<table>
<thead>
<tr>
<th>A</th>
<th>Current ATLAS</th>
<th>ATLAS Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Strip</td>
<td>Strip</td>
</tr>
<tr>
<td>16</td>
<td>13.0</td>
<td>15.7</td>
</tr>
<tr>
<td>40</td>
<td>12.4</td>
<td>13.4</td>
</tr>
<tr>
<td>58</td>
<td>9.9</td>
<td>11.8</td>
</tr>
<tr>
<td>78</td>
<td>9.5</td>
<td>11.2</td>
</tr>
<tr>
<td>132</td>
<td>8.0</td>
<td>9.3</td>
</tr>
<tr>
<td>197</td>
<td>6.6</td>
<td>7.9</td>
</tr>
<tr>
<td>238</td>
<td>6.4</td>
<td>7.4</td>
</tr>
</tbody>
</table>
ATLAS Energy Upgrade: resonator test results

Prototype resonators successfully demonstrated design to be used for ATLAS and RIA

109 MHz
QWR Cavity
\(\beta_s = 0.144 \)
Length = 25cm

170 MHz
HWR Cavity
\(\beta_s = 0.26 \)
Length = 30cm
CARIBU: Californium Radioactive Beam Upgrade

- 252Cf fission & shortened version of RIA gas catcher + charge breeding in ECR source
- high efficiency for refractory elements \Rightarrow large improvement over existing ISOL facilities
- fission isotopes complementary to ones from 235U and 238U fission
- 10 MeV/u radioactive beams with the energy upgrade
- first exploration of new regions of n-rich nuclei
ATLAS & DOE Milestones: Nuclear Astrophysics

2012 Milestone:

Measure masses, lifetimes, spectroscopic strengths, and decay properties of selected n-rich nuclei in the supernova r-process, and reactions to predicts radionuclide production in supernovae

Examples from 2004:

masses from Cf fission fragments at the CPT, proposal for solenoid construction, Cf upgrade of ATLAS
CARIBU layout: fission source, gas catcher, isobar separator, and ECR charge breeder
CARIBU shielding and remote handling

- **Shielding Design Goals**
 - Less than 1 mrem/hr on contact
 - Fully shielded even during source installation
 - Remote operation of shielding and source movement during installation

- **Shield requirements:**
 - ~0.75 m polyethylene for neutrons
 - Additional 5 cm. lead shielding for γ-rays

![Shielding mid-plane view](image)
Solenoid Spectrometer for Transfer Reactions with RIBs

- 4π solid angle
- Particle I.D. from TOF
- Simple detector and electronics - few channels
- Excellent center-of-mass energy and angle resolution
- Suppression of backgrounds

Ideal tool for physics with RIB’s, prototype for RIA
Research program with n-rich beams from CARIBU

- \((d,p)\), \((^3\text{He}, \alpha)\), \((\alpha,t)\) reactions for single particle states
- \((t,p)\) reaction on n-rich nuclei to study neutron pairing in weakly bound systems
- \((d,p)\) for neutron capture studies

To get sensible spectroscopic factors, momentum matching is important (usually achieved around 2-5 MeV/u above the Coulomb barrier)
For heavy neutron-rich beams, in the essential region where DWBA approximations are valid and angular distributions understandable, the ejectiles have low energies and can be spread over a large solid angle.
The US ISOL Task Force Defined the Key Elements of a Next-Generation Radioactive Beam Facility (RIA)

- Combine advantages of fragmentation and stopped beams: ISOL, fragmentation and gas catcher to cover 4 energy regimes
- Superconducting driver linac and post-accelerator for all ions from hydrogen to uranium. 400 MeV/u uranium to take advantage of in-flight fission mechanism
- Acceleration of ions in multiple charge states to increase performance-important for expensive enriched isotopes and when ion source performance is a limiting factor
- Realizable designs for high power (>100 kW) targets.
- Efficient reacceleration starting with 1+ charge states
Rare Isotope Production Schemes

Physics drives the need for a variety of production mechanisms and rare isotope beams in 4 energy regimes.

- Fast Extraction Times (~msec)
- Chemical independence
- Isobar separation
The RIA facility schematic layout

[Each of four beam energy ranges is required for important physics at advanced radioactive beam facilities]
Current status of planning in the US for an advanced exotic beam facility

- RIA was given very high priority in the US Nuclear Physics Long Range Plan and in the DOE Office of Science 20-year Plan for Scientific Facilities in the US
- The DOE has charged the National Academy to assess the importance of rare isotope science in a global perspective: RISAC – the Rare Isotope Science Assessment Committee
- The DOE and OMB are tentatively considering initiating preliminary engineering design of an advanced exotic beam facility in 2011
 - Emphasis is now on being complementary to other world-class facilities, i.e. a more specialized facility
- The DOE Office of Nuclear Physics plans to continue funding R&D for exotic beam technologies in the coming years
If you need to stage RIA

- For reaccelerated beams, the issue is production rate, impacted by:
 - cross section vs energy,
 - separator acceptance vs energy,
 - charge state purity vs energy,
 - for many isotopes, beam power is more important than energy.
- No other facility proposes reaccelerated beams produced by fragmentation and in-flight fission of heavy ions followed by gas stopping.
- There are only limited plans at other facilities for reaccelerated beams above 9 MeV/u.
- For in-flight experiments, changing the primary beam energy leads to some physics issues – beam purity gets worse for heavy nuclei that are not fully stripped; optimum energy for some types of experiments.
- RIKEN (2008, 350 MeV/u) and GSI (2011, 2000 MeV/u) will have fast in-flight beams.
Staged RIA concept – the Advanced Exotic Beam Laboratory (AEBL)

- Superconducting linac that accelerates several charge states simultaneously:
 550 MeV protons to 200 MeV/u uranium- 400 kW
 - Same beam power as RIA
 - 1 in-flight target and separator for gas cell
 - 2 ISOL targets
 - TPC $525M-570M ($FY06)
 - 30% contingency
 - includes $30M for new experimental equipment
 - existing ATLAS, and experimental equipment: CPT, FMA, Gammasphere; under construction: reaction solenoid, Gretina.

- Relative to full RIA
 - small in-flight area for identification and collection of implanted ions, i.e. half-lives for r-process.
 - for most isotopes, reaccelerated beam intensities comparable to RIA.
 - in worst cases intensities 10-20% of RIA.
Cost reductions for first stage of AEBL

- 200 MeV/u
 - 216 superconducting cavities vs 300.
 - scales cryo plant, tunnels, beam transport systems
- Remove higher resolution in-flight separator, large in-flight experimental area and most of in-flight experimental equipment
- Number of ISOL target stations reduced to 2
- Smaller astrophysics and reaccelerated beam experimental areas
- Smaller support space for labs and offices
- Limited multi-user capability (for ISOL beams only)
 - important for simultaneous ISOL source development and isotope harvesting
Layout for first stage of AEBL: 200 MeV/u, 400-kW uranium beam driver for intense reaccelerated beams via gas catcher technology
Upgrade path: extension to 400 MeV/u uranium beam driver for in-flight beams plus expanded production and experimental areas
Summary

- ATLAS at Argonne has an on-going research program with radioactive beams with research in nuclear astrophysics, nuclear structure and reactions, and fundamental interactions.
- ATLAS upgrades are in progress to expand the present capabilities especially with neutron-rich radioactive beams.
- RIA is the facility that addresses all the physics issues. It is what the community wants, and what Argonne is committed to.
- A 400 kW 200 MeV/u reaccelerated rare isotope facility focusing on stopped and reaccelerated beams offers unique physics reach in isotopes and reaccelerated beam energy.
- It complements the world-wide efforts in rare isotope physics, in particular the fast beam projects at GSI and RIKEN.
- It is better than any ISOL facility for the many isotopes that do not diffuse easily from a thick target.
- It can be built for about half the cost of RIA.
- It offers natural upgrade paths as we explore the physics of this new regime of unknown nuclei.