Temporal focussing of ultrafast pulses through an opaque scattering medium

David McCabe, Ayhan Tajalli, Béatrice Chatel
Laboratoire Collisions Agrégats Réactivité, IRSAMC, Toulouse, France

Pierre Bondareff, Sylvain Gigan
Institut Langevin, ESPCI ParisTech, CNRS, Paris, France

Dane Austin, Ian Walmsley
Clarendon Laboratory, University of Oxford, UK
Outline

• Introduction

• Technique: Spatially and spectrally resolved interferometry (SSI)

• Temporal focusing of scattered pulses behind opaque media

• Conclusion
• Introduction

• Technique: Spatially and spectrally resolved interferometry (SSI)

• Temporal focussing of scattered pulses behind opaque media

• Conclusion
Introduction

• Random scattering of coherent light
 – Wavefront distorted by multiple scattering
 – No large-scale correlations remain
 – Multiple interferences → spatial ‘speckle pattern’
What about broadband scattered pulses in time domain?

- Scattering process dispersive
 - different speckle pattern for each independent spectral mode (overall image contrast reduced)
 - Spatio-spectral resolution required to study individual speckle fields

- Temporally stretched with characteristic Thouless time
 - Formation of ‘temporal speckle field’

- Active compensation with pulse shaper?
 - Form temporally recompressed pulse?
• **Spatial phase-shaping** of incident c.w. wavefront
 – Inverts scattering process to form spatial focus:

• **Temporal control** of scattered femtosecond pulse
 – Exploit space-time coupling in sample with *spatial shaping*:
 – Spatially localized temporal focussing with *spectral shaping*:
• Introduction

• Technique: Spatially and spectrally resolved interferometry (SSI)

• Temporal focussing of scattered pulses behind opaque media

• Conclusion
Spectral interferometry (SI)

- Femtosecond pulses too short for direct measurement of complex E-field $E(\omega) = A(\omega) \exp [i\phi(\omega)]$
 - Detectors measure intensity $\sim |E(\omega)|^2$
 - Reveals no information about spectral phase $\phi(\omega)$

- SI allows interferometric measurement of phase relative to reference pulse [$\phi_r(\omega)$ known/assumed]

\[
S(\omega) = |A_s(\omega)e^{i\phi_s(\omega)} + A_r(\omega)e^{i[\phi_r(\omega) + \omega \tau]}|^2
= |A_s(\omega)|^2 + |A_r(\omega)|^2 + 2 |A_s(\omega)||A_r(\omega)| \cos[\phi_s(\omega) - \phi_r(\omega) - \omega \tau]
\]
A wasted dimension?

- Cameras are 2D detectors
- ‘Spare’ camera axis for spatial resolution of frequency
Spatially and spectrally resolved interferometry (SSI) - method

- Multiply scattering sample (microscope slides spin-coated in 60µm ZnO powder) at focus of oscillator (1nJ, 30fs @ 800nm)

- Output surface imaged onto 2D spectrometer and interfered with reference beam

- Retrieve (relative) speckle electric field $E(x, \omega), E(x,t)$

Spatially and spectrally resolved interferometry (SSI) - extraction

\[
S(x, \omega) = \left| A_s(x, \omega) e^{i\varphi_s(x, \omega)} + A_r(x, \omega) e^{i[\varphi_r(x, \omega) + \omega \tau + k_x x]} \right|^2 \\
= |A_s(x, \omega)|^2 + |A_r(x, \omega)|^2 + 2 |A_s(x, \omega)| |A_r(x, \omega)| \cos[\varphi_s(x, \omega) - \varphi_r(x, \omega) - \omega \tau - k_x x]
\]
Spectral measurements

- **Reconstruct spatio-spectral intensity and phase**
 - No large-scale spatial or spectral correlations
 - Autocorrelation function retrieves speckle grain size (50µm) and medium bandwidth (2.55 mrad/fs)
Outline

• Introduction

• Technique: Spatially and spectrally resolved interferometry (SSI)

• Temporal focussing of scattered pulses behind opaque media

• Conclusion
Spatial resolution of spectral phase

- Phase correlations over extent of speckle grain only

- In contrast to many control experiments, spatial resolution essential (spatially averaged phase meaningless!)

- EXPERIMENT: Active control of speckle temporal field
Experiment: speckle phase compensation & temporal focussing

1. Add pulse shaper before sample
2. Measure $E(x, \omega)$ of sample via SSI
3. Choose spatial ‘slice’ x_0 + programme $\varphi(x_0, \omega)$ into shaper
4. Measure $E(x, \omega)$ again + look for temporal focussing at x_0
1. Add pulse shaper before sample
2. Measure $E(x, \omega)$ of sample via SSI
3. Choose spatial ‘slice’ x_0 + programme $\varphi(x_0, \omega)$ into shaper
4. Measure $E(x, \omega)$ again + look for temporal focussing at x_0

Folded 4f line
640 pixels over 30nm
0.06nm resolution
23ps shaping window
Experiment: speckle phase compensation & temporal focussing

1. Add pulse shaper before sample
2. Measure $E(x,\omega)$ of sample via SSI
3. Choose spatial ‘slice’ x_0 + programme $\varphi(x_0,\omega)$ into shaper
4. Measure $E(x,\omega)$ again + look for temporal focussing at x_0
Experiment: speckle phase compensation & temporal focusing

1. Add pulse shaper before sample
2. Measure $E(x, \omega)$ of sample via SSI
3. Choose spatial ‘slice’ x_0 + programme $\varphi(x_0, \omega)$ into shaper
4. Measure $E(x, \omega)$ again + look for temporal focusing at x_0
Experiment: speckle phase compensation & temporal focussing

1. Add pulse shaper before sample
2. Measure $E(x, \omega)$ of sample via SSI
3. Choose spatial ‘slice’ x_0 + programme $\phi(x_0, \omega)$ into shaper
4. Measure $E(x, \omega)$ again + look for temporal focussing at x_0
Temporal focussing - results

- Measure unshaped spatio-temporal speckle field $E(y,t)$
Temporal focussing - results

- Phase compensation → emergence of intense peak
 - Spatially localized to 30 µm
 - Temporally focussed to 59 fs
 - Contrast ratio of 15 relative to unshaped background
 - Temporal background halved
• Introduction

• Technique: Spatially and spectrally resolved interferometry (SSI)

• Temporal focussing of scattered pulses behind opaque media

• Conclusion
Conclusion

• Fully characterize spatio-temporal speckle electric field

• Form temporal focus by pre-compensating for sample dispersion with spectral phase pulse-shaper
 – Compression to Fourier-limit duration
 – Spatial localization and control due to speckle correlations
 – Bridge gap with time-reversal experiments in acoustics/GHz-electromagnetic realms

• Future directions:
 – Fundamental studies of complex media
 – Apply ultrafast diagnostic techniques (nonlinear microscopy, time-resolved microscopy...) deep within/beyond biological tissue
Thank you!
Spatio-temporal field reconstruction

- Fourier transform of $E(\omega, y)$ yields time domain $E(t, y)$
 - Complex spatio-temporal structure revealed
 - Repeat for several sample positions (ensemble averaging)
 - Average temporal behaviour reveals exponential decay
 - Thouless times measured for range of samples: 840fs to 2.5ps