Sparsity-based sub-wavelength imaging and super-resolution in time and frequency

Yoav Shechtman
Physics Department, Technion, Haifa 32000, Israel

Alex Szameit, Snir Gazit, Pavel Sidorenko, Elad Bullkich, Eli Osherovic, Michael Zibulevsky, Irad Yavneh, Yonina Eldar, Oren Cohen, Moti Segev

FRISNO 2011
Sub-wavelength images in the microscope
Optical cut-off for high spatial frequencies

\[
\Psi(x, y, z) = \mathcal{F}^{-1}\left\{ \mathcal{F}\{\Psi(x, y, z = 0)\} e^{i\sqrt{\left(\frac{2\pi}{\lambda}\right)^2 - (k_x^2 + k_y^2)}} \right\}
\]

\[
\sqrt{k_x^2 + k_y^2} < \frac{2\pi}{\lambda} \quad \text{propagating waves}
\]

\[
\sqrt{k_x^2 + k_y^2} > \frac{2\pi}{\lambda} \quad \text{evanescent waves}
\]
Hardware solutions for sub-wavelength imaging

- Scanning near-field optical microscope
- Methods using fluorescent particles
- Structured Illumination
- Negative-index / metamaterials structures: superlens, hyperlens
- Hot-spot methods: nano-hole array, super-oscillations

Require scanning, averaging over multiple experiments

Is it possible to have real-time, single exposure sub-wavelength imaging using a ‘regular’ microscope?
Analytic Continuation

• The 2D Fourier transform of a spatially bounded function is an analytic function.

\[ \tilde{\Psi}(k_x, k_y) = FT \left\{ \Psi(x, y, z = 0) \right\} e^{i k_z z} \]

If \( \tilde{\Psi}(k_x, k_y) \) is known at a small region \( k_x, k_y \) in space with infinite accuracy, then \( \tilde{\Psi}(k_x, k_y) \) is known at every point in space.

• **Problem:** Existing analytic continuation methods are not very robust:
  - sampling theorem based extrapolations yield a highly ill posed matrix.
  - Iterative methods (Gerchberg - Papoulis) are sensitive to noise
Common wisdom

“All methods for extrapolating bandwidth beyond the diffraction limit are known to be extremely sensitive to both

• noise in the measured data and

• the accuracy of the assumed a priori knowledge.”

“It is generally agreed that the Rayleigh diffraction limit represents a practical frontier that cannot be overcome with a conventional imaging system.”

Bandwidth extrapolation problem: infinite number of possible solutions!

How to choose the right one?
Problem: non-invertible filter

\[ \begin{align*}
\text{Measurements} & = \text{Filtered Fourier transform (invertible)} \quad \text{signal} \\
\begin{bmatrix}
y_4 \\
y_3 \\
y_2 \\
y_1 \\
y_0 \\
y_{-1} \\
y_{-2} \\
y_{-3} \\
y_{-4} \\ \vdots
\end{bmatrix} & = \begin{bmatrix}
A_{-4-4} & A_{-4-3} & A_{-4-2} & A_{-4-1} & A_{-40} & A_{-41} & A_{-42} & A_{-43} & A_{-44} \\
A_{-3-4} & A_{-3-3} & A_{-3-2} & A_{-3-1} & A_{-30} & A_{-31} & A_{-32} & A_{-33} & A_{-34} \\
A_{-2-4} & A_{-2-3} & A_{-2-2} & A_{-2-1} & A_{-20} & A_{-21} & A_{-22} & A_{-23} & A_{-24} \\
A_{-1-4} & A_{-1-3} & A_{-1-2} & A_{-1-1} & A_{-10} & A_{-11} & A_{-12} & A_{-13} & A_{-14} \\
A_{0-4} & A_{0-3} & A_{0-2} & A_{0-1} & A_{00} & A_{01} & A_{02} & A_{03} & A_{04} \\
A_{1-4} & A_{1-3} & A_{1-2} & A_{1-1} & A_{10} & A_{11} & A_{12} & A_{13} & A_{14} \\
A_{2-4} & A_{2-3} & A_{2-2} & A_{2-1} & A_{20} & A_{21} & A_{22} & A_{23} & A_{24} \\
A_{3-4} & A_{3-3} & A_{3-2} & A_{3-1} & A_{30} & A_{31} & A_{32} & A_{33} & A_{34} \\
A_{4-4} & A_{4-3} & A_{4-2} & A_{4-1} & A_{40} & A_{41} & A_{42} & A_{43} & A_{44} \\
\vdots & \vdots
\end{bmatrix} \begin{bmatrix}
x_4 \\
x_3 \\
x_2 \\
x_1 \\
x_0 \\
x_{-1} \\
x_{-2} \\
x_{-3} \\
x_{-4} \\ \vdots
\end{bmatrix}
\end{align*} \]

(buried in the noise)
(exponentially small evanescent waves)
Under-determined system of equations

- Under-determined system of equations: more variables than equations
  \[ Ax = y \]

- Infinite number of solutions (x)
- Choose the one that “makes the most sense”

We choose the solution with maximum sparsity – the one with the fewest nonzero elements.

the object is sparse in a known basis.
Why sparsity?

• **General**: Many objects are sparse in some (general) basis.

• **Powerful**:
  
  • Robust to noise. Without noise, in a sparse enough case the sparsest solution is unique.
  
  • Sparsity is used successfully for image denoising, deconvolution, compression, enhancement of MR images and more. However – has never been used for sub-λ imaging, or temporal bandwidth extrapolation.

• **Attainable**: Efficient algorithms exist for estimating the sparsest solution.
Sparsity – a general feature of information

Sparsity in real space image

- **biological species:**
  - Real-space sparsity \( \sim 2\%-5\% \)

Sparsity in another basis

- **Electronic chips:**
  - Sparsity in gradient basis \( \sim \) few %
How to do it: for example - Basis Pursuit

Solve the (convex) optimization problem:

\[
\min_x \|x\|_1 \quad \text{subject to} \quad \|Ax - y\|_2 < \varepsilon
\]

- \(x\): unknown image
- \(y\): measured image
- \(A\): Low-pass filter + sparsity basis
- \(\varepsilon\): Noise parameter

\[\|x\|_1 = \sum_i |x_i|\]

- The requirement on the \(l_1\) norm is to promote sparsity.
- Find the \textbf{sparsest} \(x\) that is \textbf{consistent with the measurements}.

Proof of concept

Proof of concept

Original

Recovered


**True sub-\(\lambda\) experiments – 1D @ \(\lambda = 532\) nm**

- **Width:** 150 nm
- **Length:** 20 µm
- **Spacing:**
  - 150 nm (left/right pair)
  - 300 nm (center) ~ diffraction limit

**Fabrication:**
Kley – group
University of Jena
kley@iap.uni-jena.de
Best possible microscope image (NA ≈ 1)
Microscope image far-field
Experimental result (with hand-made microscope)

150 nm
Comparison original - reconstruction

real space

spatial spectrum

amplitude [a.u.]

width [nm]

spectral amplitude [a.u.]

spatial frequency [1/\lambda]
True sub-$\lambda$ experiments – 2D @ $\lambda = 532$ nm
Best possible microscope image (NA ≈ 1)
Microscope image far-field
Loss of power in the far-field

more than 90% of the intensity is lost
Experimental results

reconstructed image

SEM image

100 nm
Abbe limit
Can we do sub-wavelength reconstruction based on intensity measurements only? Without measuring phase at all?

Yes, indeed. The knowledge of sparsity is powerful.

First: Fourier phase recovery using iterative algorithm* – given the blurred image intensity and Fourier intensity.

Second: sparsity-based reconstruction using recovered phase.

or, better, combine the two!

Experimental: sparsity-based recovery of ‘random’ distribution of circles

Circles are 100 nm diameter

Wavelength ~ 532 nm

Diffraction-limited (low frequency) intensity measurements

Model

Fourier transform

* Assuming non-negativity
Experimental: incorrect reconstruction with wrong number of circles

30 circles left

22 circles left

11 circles left

12 circles left
Sparsity-based super-resolution in pulse-shape measurements – experimental

\[ V_{osc}(t) = \int IRF(t - t')I_{Laser}(t')dt' \]

Impulse response functions

\[ V_{osc}(\omega) = T(\omega)I_{Laser}(\omega) \]

Transfer functions
Sparsity-based super-resolution in pulse-shape measurements – experimental

Measured signals

Spectra of measured signals

Reconstruction
Because the interferogram cannot be collected from $x = -\infty$ to $+\infty$, it is always truncated, hence some error arises in the resulting spectrum: the spectral line is broadened + side-lobes are added.

Resolution of a F-T spectrometer:

$$\Delta \lambda = 1 / (\text{path difference} = 4x)$$
Sparsity-based super-resolution in FTIR spectrum measurement – experimental example
Conclusions

- method for recovering sub-\(\lambda\) information from the optical far-field of images
- requires *no* additional hardware
- works in *real time and with ultrashort pulses*
- applicable to *all* microscopes (optical and non-optical)
- reconstruction also with incoherent / partially coherent light
- Ideas are universal: can be used to recover
  - shapes of ultrashort pulses in time
  - spectral features
  - *quantum info!*
Many thanks for your attention!
A little about uniqueness

An object comprising on \( n \) ‘features’ is uniquely determined by \( 2n(n+1) \) measurements on a polar grid in k-space, without noise.

## Comparison of approaches

<table>
<thead>
<tr>
<th>Original CS approach</th>
<th>Our CS-related approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>• measurement in uncorrelated basis (commonly Fourier basis)</td>
<td>• measurement in far-field (= Fourier basis) OR blurred near field or in between</td>
</tr>
<tr>
<td>• sampling (randomly) over the entire measurement basis with low resolution</td>
<td>• sampling in a small part of the measurement basis (k_x &lt; k) with high resolution</td>
</tr>
<tr>
<td>• reduction of required samples to retrieve the function</td>
<td>• obtain maximal info on the frequency region where we do NOT measure</td>
</tr>
</tbody>
</table>

We do NOT do CS. We do NOT use CS “rules”. Why does it work for us?
Unique sparse solution

\[ y = Wd_1 = Wd_2 \quad \Rightarrow \quad W(d_1 - d_2) = Wz = 0 \]

triangle inequality:
\[ \|d_1 - d_2\|_0 \leq \|d_1\|_0 + \|d_2\|_0 \quad \Rightarrow \quad \|z\|_0 \leq S_1 + S_2 \]

if every \( S_1 + S_2 \) columns of \( W \) are linearly independant

\[ Wz = 0 \quad \Rightarrow \quad z = 0 \quad \forall z \quad \Rightarrow \quad d_1 = d_2 \]

if \( \|d\|_0 \leq \frac{1}{2} \left( 1 + \frac{1}{\mu(W)} \right) \), then there is a unique sparse solution

\[ \mu \text{ matrix coherence} \]
Reconstruction of the phase (Fienup-Algorithm)

Experimental: holes on a grid

 Recovered image

 Model phase

 Recovered phase

 139 nm

Nonlinear Optics Laboratory
Consider a function $f(t) \in \mathbb{R}^N$ that can be written as a superposition of spikes:

$$f(t) = \sum_{\tau \in T} f(\tau) \delta(t - \tau)$$

If it is comprises of $|T|$ spikes, and $N$ is a prime number, then $f(t)$ can be uniquely defined by any $2|T|$ of its Fourier measurements, defined as:

$$f(\omega) = \sum_{t=0}^{N-1} f(t) e^{-i2\pi\omega t/N} \quad \omega = 0, 1, \ldots, N-1$$

Specifically, the $2|T|$ low pass Fourier coefficients will do.

---

Sparsity-based super-resolution in pulse-shape measurements – theoretical example
Sparsity-based super-resolution in pulse-shape measurements – theoretical example

\[ I_{\text{Laser}}(\omega) = \frac{V_{\text{osc}}(\omega)}{T(\omega)} \]
Sparsity-based super-resolution in pulse-shape measurements – theoretical example
Sparsity-based super-resolution in pulse-shape measurements – theoretical example

- 40 ps features are well reconstructed (τ~1 ns)
- Resolution is enhanced by >10 times vs. Wiener de-convolution