Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni

The Physics Department and the Solid State Institute, Technion – Israel Institute of Technology
Haifa, Israel

Frisno 13,
March 21, 2015, Aussois, France
Overview

• Three main experimental results:
 1. Deterministic, all-optical excitation of a quantum-dot confined dark exciton (DE)
 2. Coherent “writing” of its spin state using single polarized picosecond pulse.
 3. Coherent control of the DE spin state using a picosecond optical pulse

• This talk:
 – Qubits in quantum dots
 – Deterministic DE generation and spin writing
 – DE life and coherence times
 – Coherent control of the DE spin state

Semiconductor Quantum Dots

Cross-sectional TEM of an uncapped QD

self assembled dots
Advantages of Quantum Dots

• Live forever
• Easily incorporated into microcavities and devices
• Easily accessed optically and electronically
• Level separation compatible with fast optics (picoseconds)
• Can be easily charged and discharged

• Disadvantages:
 – Every dot is different (size, structure, location)
 – Coupled to their solid state environment (phonons)
Conduction band
Empty of electrons

Valence band
Full of electrons

Orbital angular momentum \(\pm 1 \)
and spin \(\pm \frac{1}{2} \)
aligned: \(\pm \frac{3}{2} \)

Discrete set of energy levels

Photon emission
Due to recombination of e-h pair

Randomized carrier spin

Dark Exciton \(| \pm 2 \rangle \)

Photon does not alter electron spin.

From Spin to Polarization

Orbital angular momentum (0)
and spin (1/2)

Orbital angular momentum (±1)
and spin (±1/2)
aligned: ±3/2

Photon Polarization ↔ Exciton Spin State

Discrete set of energy levels

Conduction band
Empty of electrons

Valence band
Full of electrons
(no holes)

Resonant Excitation

Non-Resonant Excitation

Photon Polarization

Photon does not alter electron spin.

Resonant Excitation

Dark Exciton \(| \pm 2 \rangle \)

Randomized carrier spin

Benny et al., PRL (2011).

Photon Polarization

Exciton Spin State

Non-Resonant Excitation

Dark Exciton \(| \pm 2 \rangle \)

Randomized carrier spin

Benny et al., PRL (2011).
Dark Excitons in Quantum Dots

A long-lived two-level system. A qubit?

DiVincenzo criteria for QIP:

Fortschr. Phys. 48 77 (2000)

– We need to find some quantum property of a **scalable** physical system in which to encode our bit of information (**qubit**). It should live long enough to enable performing computation.

– **Initial state preparation.** Setting the state of the qubits to zero before each new computation.

– **Isolation** from the environment to maintain the quantum nature of the qubit - reducing the effects of decoherence.

– **Gate implementation.** Manipulation of the states of individual qubits with reasonable precision, and inducing interactions between them in a controlled way. The gate operation time must be much shorter than the decoherence time (allow error corrections)

– **Readout.** It must be possible to measure the final state of our qubits once the computation is finished, to obtain the output of the computation.
Other Quantum Dot Qubits

<table>
<thead>
<tr>
<th>System</th>
<th>Lifetime</th>
<th>Coherence Time</th>
<th>Initialization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Field</td>
<td>B Field</td>
<td>No Field</td>
</tr>
<tr>
<td>Electron Spin</td>
<td><1µs1</td>
<td>10s of ms1</td>
<td>1-10 ns1</td>
</tr>
<tr>
<td>Hole Spin</td>
<td>1 µs2</td>
<td>Few ms2</td>
<td>1-20 ns2</td>
</tr>
<tr>
<td>Bright Exciton</td>
<td>1 ns3</td>
<td>Same</td>
<td>>10 ns3</td>
</tr>
<tr>
<td>Dark Exciton</td>
<td>>1µs4</td>
<td>>100 ns4</td>
<td></td>
</tr>
</tbody>
</table>

Optically active: Short lifetime, electrostatic fluctuations.

3See Benny et al. *PRL* (2011) and others.

The Dark Exciton Bloch Sphere

\[|s\rangle = (\uparrow\uparrow + \downarrow\downarrow) / \sqrt{2} \]

\[|a\rangle = (\uparrow\uparrow - \downarrow\downarrow) / \sqrt{2} \]

\[\psi = A|s\rangle + B|a\rangle \]

\[\psi(t) = |s\rangle + e^{i\omega t}|a\rangle \]

\[\Delta_2 \approx 1.3 \mu eV \]

\[T = 2\pi / \omega = h / \Delta_2 \approx 3.1 ns \]
Heralding and Probing the DE Spin State

\[|S\rangle = \left(\uparrow\uparrow + \downarrow\downarrow \right) / \sqrt{2} \]

\[|A\rangle = \left(\uparrow\uparrow - \downarrow\downarrow \right) / \sqrt{2} \]

Spectroscopy of the DE

Rabi Oscillations and Spin Rotation

Rabi oscillations:
\[|g\rangle = \text{empty dot} \]
\[|e\rangle = \text{DE} \]
Change pulse area by varying laser intensity
Rabi Oscillations

\[\delta = \omega - \omega_0 \neq 0 \]

Pulse Area \(A = 2\pi \)

\[|s\rangle = |2\rangle + |-2\rangle \]

Spin rotation:
Direction determined by polarization
Angle determined by detuning

Y. Kodriano et al. PRB 85, 241304(R) (2012).
DE Rabi Oscillations

Pulse width 50ns
Rep rate 1 MHz

Deterministic writing of the DE!
Direct Measurement of the DE Lifetime

\[\tau_{DE} \approx 1.1 \, \mu s \]
Life and Coherence Time of the Dark Exciton

Autocorrelation of the biexciton emission line under D-polarized CW resonant excitation

Coincidences

\[P = \frac{1 + \cos(\omega t)}{2} - \frac{1 - \cos(\omega t)}{2} = \cos(\omega t) \]

Polarization Degree

\[P = \frac{I_{\sigma^+\sigma^+} - I_{\sigma^+\sigma^-}}{I_{\sigma^+\sigma^+} + I_{\sigma^+\sigma^-}} \]
Coherence of the Dark Exciton

$T_2^* \approx 100\text{nsec}$

Rep rate 76MHz
Controlling the DE Spin State

Bloch Sphere

\[\frac{\left(\uparrow \uparrow + \downarrow \downarrow \right)}{\sqrt{2}} \]

\[\frac{\left(\uparrow \uparrow - \downarrow \downarrow \right)}{\sqrt{2}} \]

Pulse Sequence

\[\left| \uparrow \downarrow (\uparrow \uparrow) \right> \]

\[\left| \uparrow \uparrow - \downarrow \downarrow \right> \]

\[\left| 0 \right> \]

Pump

Control (ps)

Probe

\[I(t) \]

\[t \]
Controlling the Dark Exciton Spin

\[
\frac{(\uparrow\uparrow + \downarrow\downarrow)}{\sqrt{2}}
\]

\[
\frac{(\uparrow\uparrow - \downarrow\downarrow)}{\sqrt{2}}
\]

Pump (H) Control (ps, R) Probe (R)

Time from Control Pulse (nsec)
Writing the spin of the bright exciton by one short optical pulse

\[H \equiv \frac{1}{\sqrt{2}} (R + L) \]

\[\left| V \right> = i \left(\downarrow \uparrow - \uparrow \downarrow \right) \]
\[\left| H \right> = \frac{1}{\sqrt{2}} (\downarrow \uparrow + \uparrow \downarrow) \]
\[\Delta = 34 \mu \text{eV} \]
\[|V> \]
\[|H> \]

\[\left| L \right> \]
\[\left| R \right> \]

\[\frac{1}{\sqrt{2}} \left| R + L \right> \]
\[\frac{1}{\sqrt{2}} \left| R + iL \right> \]
\[\frac{1}{\sqrt{2}} \left| R - iL \right> \]
\[\frac{1}{\sqrt{2}} \left| R - L \right> \]

Poincare sphere

\[\frac{1}{\sqrt{2}} \left| \uparrow \right> \]
\[\frac{1}{\sqrt{2}} \left| \downarrow \right> \]

Bloch sphere

\[T = \frac{\hbar}{\Delta} = 122 \text{ps} \]
‘Writing’ the spin of the bright exciton with one optical pulse

\[\alpha \cdot R + \beta \cdot L \]

\[\begin{aligned} |L\rangle & \rightarrow \frac{1}{\sqrt{2}} |R + L\rangle \\ \frac{1}{\sqrt{2}} |R - L\rangle \\ \frac{1}{\sqrt{2}} |R + iL\rangle \\ \frac{1}{\sqrt{2}} |R - iL\rangle \end{aligned} \]

\[\begin{aligned} |H\rangle & \rightarrow \frac{1}{\sqrt{2}} |\uparrow \uparrow\rangle \\ \frac{1}{\sqrt{2}} |\uparrow \downarrow\rangle \\ \frac{1}{\sqrt{2}} |\downarrow \downarrow\rangle \\ \frac{1}{\sqrt{2}} |\downarrow \uparrow\rangle \end{aligned} \]

\[X^0 \]

\[\begin{aligned} |V\rangle & \rightarrow \frac{i}{\sqrt{2}} (\downarrow \uparrow - \uparrow \downarrow) \\ \Delta = 34 \mu\text{eV} \\ \frac{1}{\sqrt{2}} (\downarrow \uparrow + \uparrow \downarrow) \end{aligned} \]

Poincare sphere

Writing the spin of the dark exciton by one ps optical pulse

BE-DE mixing induced by the QD asymmetry

\[
\begin{align*}
\begin{array}{c}
\uparrow \\
\downarrow
\end{array} & \begin{array}{c}
\uparrow \\
\downarrow
\end{array} = \alpha \begin{array}{c}
\uparrow \\
\downarrow
\end{array} + \beta \begin{array}{c}
\downarrow \\
\uparrow
\end{array}
\end{align*}
\]

Unpolarized DE quasi resonance

Coherent Writing the Dark Exciton spin State by a Single Picosecond-long Optical Pulse
Summary

The dark exciton is a neutral, long-lived, physical two-level system:

- Lifetime: longer than 1 µs
- Coherence time (T_2^*): longer than 100 ns
- *No magnetic field, without spin echo!*

We demonstrate:

- **Deterministic photogeneration** of the DE.
- **Control** of the DE state by a picosecond pulse - 6 and 5 orders of magnitude faster than its lifetime and coherence time, respectively.
- **Coherent writing** by a single polarized picosecond pulse

Consequently, the dark exciton is an excellent solid state spin qubit.
Thank you for your attention!