Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound

Edwin S. Kitea,*, Itay Halevyb, Melinda A. Kahrec, Michael J. Wolffd, Michael Mangae,f

aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
bDepartment of Earth and Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA
cSpace Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA
dNASA Ames Research Center, Mountain View, CA 94035, USA
eDepartment of Environmental Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
fCenter for Integrative Planetary Science, University of California Berkeley, Berkeley, CA 94720, USA

\textbf{Abstract}

A model for the formation and distribution of sedimentary rocks on Mars is proposed. In this model (ISEE-Mars), the rate-limiting step is supply of liquid water from seasonal melting of snow or ice. The model is run for a 10^{-2} mbar pure CO\textsubscript{2} atmosphere, dusty snow, and solar luminosity reduced by 23\%. For these conditions snow melts only near the equator, when obliquity and eccentricity are high, and when perihelion occurs near equinox. These requirements for melting are satisfied by 0.01–20\% of the probability distribution of Mars’ past spin–orbit parameters. This fraction is small, consistent with the geologic record of metastable surface liquid water acting as a “wet-pass filter” of Mars climate history, only recording orbital conditions that permitted surface liquid water. Total melt production is sufficient to account for observed aqueous alteration. The pattern of seasonal snowmelt is integrated over all spin–orbit parameters and compared to the observed distribution of sedimentary rocks. The global distribution of snowmelt has maxima in Valles Marineris, Meridiani Planum and Gale Crater. These correspond to maxima in the sedimentary-rock distribution. Higher pressures and especially higher temperatures lead to melting over a broader range of spin–orbit parameters. The pattern of sedimentary rocks on Mars is most consistent with a model Mars paleoclimate that only rarely produced enough meltwater to precipitate aqueous cements (sulfates, carbonates, phyllosilicates and silica) and indurate sediment. This is consistent with observations suggesting that surface aqueous alteration on Mars was brief and at low water/rock ratio. The results suggest intermittency of snowmelt and long globally-dry intervals, unfavorable for past life on Mars. This model makes testable predictions for the Mars Science Laboratory Curiosity rover at Gale Crater’s mound (Mount Sharp, Aeolis Mons). Gale Crater’s mound is predicted to be a hemispheric maximum for snowmelt on Mars.

\textcopyright{} 2012 Elsevier Inc. All rights reserved.

1. Introduction

The early Mars climate problem has bedevilled generations of scientists (Sagan and Mullen, 1972; Kasting, 1991; Haberle, 1998; Wordsworth et al., 2012a): What allowed widespread sedimentary rocks and valley networks on a planet in a distant orbit around a faint young star? What caused that environment to deteriorate? Climate models struggle to maintain annual mean temperatures $T \approx 273$ K on early Mars (Haberle, 1998; Wordsworth et al., 2012a). Seasonal melting can occur for annual maximum temperatures $T_{\text{max}} \approx 273$ K, which is much easier to achieve. Therefore, seasonal melting of snow and ice is a candidate water source for surface runoff and aqueous mineralization on Mars. Surface temperatures reach ~ 300 K at low latitudes on today’s Mars. However, seasonal melting of surface-covering, flat-lying snowpack does not occur because of (1) evaporative cooling and (2) cold-trapping of snow and ice near the poles or at depth. Reduced solar luminosity for early Mars makes melting more difficult (Squyres and Kasting, 1994). Milankovitch cycles exert a strong control on Mars ice temperatures (Toon et al., 1980). Melting is favored when snow is darkened by dust, when evaporative cooling is reduced by increased pressure, and when the solid-state greenhouse effect is strong (Toon et al., 1980; Clow, 1987). Equatorial snowpacks should form at high obliquity (Jakosky and Carr, 1985), so melt could contribute to the observed low-latitude erosion. Orbital change shifts the locations of cold-traps in which subsurface ice is most stable (Schorghofer and Forget, 2012). Melting on steep slopes is a candidate water source for young midlatitude gullies (e.g., Costard et al., 2002; Hecht, 2002). For example, Williams et al. (2009) modeled melting of relatively clean snow overlain by a thin, dark lag deposit. They found melt rates $\sim 1 \text{ kg/m}^2\text{/h}$ on steep slopes, and argue that this is sufficient to form gullies through either fluvial or
debris-flow incision. The Laboratoire de Météorologie Dynamique (LMD) General Circulation Model (GCM) has been used to simulate the early martian hydrological cycle, including melting, for selected orbital parameters (Fastook et al., 2012; Wordsworth et al., 2012a).

This paper has two purposes:

- To extend the global snowmelt models with a new model, ISEE-Mars (Ice and Snow Environment Evaluator for Mars). For the first time, ISEE-Mars integrates a model of snowpack temperatures over all spin–orbit parameters, while keeping track of cold-traps. Chaotic diffusion in the Solar System makes it almost certain that Mars’ obliquity (\(\phi \)) has ranged 20 times more widely than Earth’s obliquity over billion-year periods, and that Mars’ eccentricity has had a long-term variance twice that of the Earth (Touma and Wisdom, 1993; Laskar and Robutel, 1993; Laskar et al., 2004; Laskar, 2008). These wide swings cause large variations in insolation and propensity to melt (Fig. 1).
- To understand the water source for sedimentary rock formation on Mars (Malin and Edgett, 2000; Squyres et al., 2004). We focus on the hypothesis that supply of water from seasonal melting was the limiting step in the formation of sedimentary rocks on early Mars. Existing evidence for snowmelt-limited sedimentary rock formation is discussed in Section 2.

If surface liquid water availability was the only limiting factor on sedimentary rock formation, then the spatial distributions of liquid water availability and sedimentary rock detections should correspond to each other. Section 3 analyzes the global sedimentary rock distribution. In the only previous global model of sedimentary rock formation on Mars, Andrews-Hanna et al. (2007) tracked groundwater flow in a global aquifer that is recharged by a broad low-latitude belt of precipitation. Groundwater upwelling is focused in low-lying areas, generally consistent with the observed distribution of sedimentary rocks (Andrews-Hanna et al., 2010; Andrews-Hanna and Lewis, 2011). Their model assumes \(T > 273 \text{ K} \), in order to avoid the development of an impermeable cryosphere. Especially in light of the Faint Young Sun predicted scenario, this assumption introduces a large uncertainty into the required change in climate forcing from the present state. If Mars’ climate once sustained \(T > 273 \text{ K} \), then it must have passed through climate conditions amenable to snowmelt en route to the modern desert (McKay and Davis, 1991). The converse is not true.

Sections 3–5 emphasize the model, Sections 6–8 emphasize comparison to geologic data. ISEE-Mars predictions for different paleoclimates are compared to global data in Section 6. Section 7 makes testable predictions for Mount Sharp\(^1\) in Gale Crater (Milliken et al., 2010; Grotzinger et al., 2012), which is the objective of the Mars Science Laboratory (MSL) Curiosity rover. The discussion (Section 8) compares three models for sedimentary rock formation: our snowmelt model, the global-groundwater model (Andrews-Hanna et al., 2010), and the ice-weathering model (Niles and Michalski, 2009). We conclude in Section 9. The most important results are shown in Fig. 12 and Fig. 16.

The scope of our paper is forward modeling of snowmelt production as a function of (unknown) early Mars climate parameters. We do not attempt to physically model the processes running from snowmelt production to sedimentary rock formation, beyond a qualitative discussion in Sections 7 and 8. A computationally inexpensive 1D model allows us to sweep over a large parameter space. The trade-off is that 1D models cannot track the effect of topographically-forced planetary waves on the atmospheric transport of water vapor, which controls snow precipitation (Colaprete et al., 2005; Vincendon et al., 2010). Any 1D snow location prescription is therefore an idealization.

2. Snowmelt hypothesis

Liquid water is required to explain sedimentary rock texture and bulk geochemistry along the Mars Exploration Rover Opportunity traverse across Meridiani Planum, and there is strong evidence for extending this conclusion to other light-toned, sulfate-bearing sedimentary rocks on Mars (Bibring et al., 2007; McLennan and Grotzinger, 2008; Murchie et al., 2009a). The hypothesis in this paper is that the water source for sedimentary rocks on early Mars was seasonal melting, and that liquid water was infrequently available so that melt availability was the limiting factor in forming sedimentary rocks. “Sedimentary rocks” is used to mean units comprised of chemical precipitates or siliciclastic material cemented by chemical precipitates, usually sulfates. These are recognized from orbit as light-toned layered sedimentary deposits (Malin et al., 2010) that

\(^{1}\) Mount Sharp is the informal name of Gale’s mound that is used by NASA and the MSL Project. The formal name is Aeolis Mons. We use Mount Sharp in this paper.
characteristically show diagnostic sulfate features in the near-infrared. This definition excludes layered deposits dominated by phyllosilicates, which usually predate sulfates (Bibring et al., 2006; Ehlmann et al., 2011; Grotzinger and Milliken, 2012).

2.1. What is the evidence that sediment lithification on Mars requires liquid water?

Erosion to form cliffs and boulders (Malin and Edgett, 2000; Edgett, 2010), ejection of meter-size boulders from small, fresh craters (Golombek et al., 2010), microscopic texture (Okubo, 2007), and resistance to crushing by rover wheels show that most light-toned sedimentary deposits are indurated or lithified. Lithification involves compaction and cementation. Water is required to form aqueous cements, as well as for fluvial sediment transport. At Opportunity’s landing site, evaporitic sandstones (60% chemical precipitates by weight on an anhydrous basis) record groundwater recharge and aqueous cementation, surface runoff, and shallow lithification (McLennan and Grotzinger, 2008). Aqueous minerals are present in sedimentary rocks throughout Meridiani and the Valles Marineris. Murchie et al. (2009a) argue for water-limited lithification of the Valles Marineris sedimentary rocks. Some layered sedimentary deposits on Mars might not require liquid water for long-term stabilization, but these deposits are usually younger or at higher latitudes than the sulfate-bearing layered sedimentary rocks (Hynek et al., 2003; Bridges et al., 2010; Fenton and Hayward, 2010).

2.2. When did sulfate-bearing sedimentary rocks form?

Sulfate-bearing sedimentary rocks occur relatively late in the stratigraphic sequence of evidence for stable surface liquid water on Mars (Murchie et al., 2009b; Fassett and Head, 2011; Massé et al., 2012; Mangold et al., 2010). The most commonly used age for sedimentary rocks on Mars is Hesperian (Carr and Head, 2010), well after the peak of phyllosilicate formation on Mars (Ehlmann et al., 2011; Fassett and Head, 2011). Sedimentary rocks appear to postdate almost all of the large-scale, regionally integrated highland valley networks (Carr and Head, 2010; Fassett and Head, 2011); the observed sedimentary rocks cannot be simply the terminal deposits of the classic valley networks. Therefore, the climate that created the classic valley networks could have been different from the climate that formed the sedimentary rocks (Andrews-Hanna and Lewis, 2011). However, sediments at Meridiani have themselves been reworked by wind, so the peak of sedimentary-rock production may predate the average age of extant outcrop. Sedimentary rocks do contain some channels, often preserved in inverted relief (Edgett, 2005; Burr et al., 2009). Many sedimentary rocks postdate the large impacts of the Late Heavy Bombardment, and some have quasi-periodic bedding suggesting orbitally-paced deposition (Lewis et al., 2008, 2010). These observations are inconsistent with brief bursts of rapid sedimentary rock formation during impact-induced greenhouse events.

2.3. What existing data supports the snowmelt hypothesis?

Liquid water was in short supply even at the time of sedimentary rock formation at the Opportunity landing site. Mineralogy indicates that weathering at Meridiani was either isochemoal or at low water/rock ratio or both (Berger et al., 2009; Hurowitz and McLennan, 2007; Ming et al., 2008), consistent with a rare trickle of snowmelt. Low specific grind energy of sandstones indicates weak aqueous cementation (Herkenhoff et al., 2008). All but two of the rock and soil classes at the Spirit and Opportunity landing sites contain olivine2 (Morris et al., 2006a,b, 2008), including rocks at both sites that contain aqueous minerals at the 5–60 wt.% level (e.g., Squyres et al., 2006). Orbital thermal spectra show olivine on terrain of all ages, so martian wet epochs were either brief, local, or both (Koeppen and Hamilton, 2008). The present day extent of sedimentary rock outcrops on Mars is small, and the persistence of opal, jarosite and olivine indicates minimal water–rock interaction since those minerals crystallized (Tosca and Knoll, 2009; Olsen and Rimstidt, 2007; Elwood Madden et al., 2009). Olivine’s pervasive persistence requires that for any given parcel of sediment the duration of water–rock interaction was a very small fraction of Mars surface history.

Sedimentary rocks outcropping at the Mars surface were once buried. If conditions at depth were cold or dry as in the snowmelt hypothesis, olivine persistence is easy to understand: even supposing surface melting occurred every year for hundreds of millions of years, each parcel of sediment would spend a relatively short time at shallow, seasonally wet depths before being buried and frozen. If groundwater pervaded the rocks after burial, then olivine persistence is less easy to understand.

Away from the sedimentary rocks themselves, aqueous mineralization was minor or absent elsewhere on the surface at the time when most sulfate-bearing sedimentary rocks formed (Murchie et al., 2009b; Salvatore et al., 2010; Ehlmann et al., 2011; Haurwath et al., 2008). No measurable regional-scale K/Th fractionation occurred, so “aqueous events must have been brief or the total throughput of water small” (Taylor et al., 2010). Globally, data are most consistent with soil formation “with little aqueous alteration under conditions similar to those of the current martian climate” (Bandfield et al., 2011). Elemental profiles indicate topdown mobilization of soluble elements (Amundson et al., 2008; Arvidson et al., 2010).

Geomorphic evidence that the Mars surface environment has only marginally supported surface liquid water since the Noachian includes long-term average erosion rates 1–10 m/Ga at Meridiani and ~0.03 m/Ga at Spirit’s landing site, Gusev Crater (Golombek et al., 2006), together with a sharp post-Noachian decline in valley network formation and crater infilling (Fassett and Head, 2008; Forsberg-Taylor et al., 2004). Dividing the total thickness of sedimentary rock deposits by the thickness of quasi-periodic layers and then multiplying by the obliquity periods thought to pace accumulation suggests that observed sedimentary rocks formed in 1–10 Ma (Lewis et al., 2010), consistent with the frequency of embedded craters (Kite et al., 2012). This is a small fraction of Mars’ history.

These data argue for a short-lived and downward-infiltrating post-Noachian water supply, suggestive of transient liquid water that is generated only during brief melt events.

2.4. How could brief pulses of snowmelt form kilometer-thick accumulations of sedimentary rock?

Seasonal meltwater can indurate loose material via wicking of water through soils to make the equivalent of caliche/gypcrete, or local ponding of water to form transient pools where layers of evaporite minerals accumulate. Peace-class rocks at Gusev preserve evidence for movement of water through soils to make the equivalent of caliche on early Mars. They consist of olivine-rich, relatively weakly altered ultramafic sand grains cemented by 16–17 wt.% sulfate salts; “the cement may be essentially a sulfate caliche” (Squyres et al., 2006). Peace-class rock specific grind energy is about 2 J/mm3, in family with Burns Formation rocks at the Opportunity landing site (Arvidson et al., 2004). Opportunity has not

2 Setting aside out-of-place rocks such as meteorites, the exceptions are the Independence class at the heart of Husband Hill and the Montalva class at Low Ridge.
found the source of the sulfate-rich sand grains that went into the Burns Formation, but data are consistent with ponding of water to form pools where layers of evaporite minerals accumulated (McLennan et al., 2005).

Antarctica’s McMurdo Dry Valleys are a terrestrial analog for seasonal-melt-limited fluvial erosion and sedimentary rock formation at $T < 273$ K (Lee and McKay, 2003; Marchant and Head, 2007; Doran et al., 2010). Weathering and mineralization is confined to lakes, hyporheic zones, and a shallow active layer. However, seasonal river discharges reach 20 m3 s$^{-1}$ (McKnight, 2011), fluvial valleys incise >3 m deep into granite (Shaw and Healy, 1980), and annually-averaged weathering intensity within the hyporheic zone is greater than in temperate latitudes (Nezat et al., 2001). Sublimation concentrates ions within ice-covered lakes. Outcrops of gypsum, carbonate evaporites, and algal limestone sediments show that sediments have accumulated at the base of melt-fed perennial lakes for 300,000 years (Doran et al., 1998; Hendy, 2000). Dry Valley Drilling Project cores show lithification in older horizons (McKelvy, 1981).

Order-of-magnitude energy balance and mass balance calculations show that brief, rare pulses of snowmelt provide enough water to form the kilometers of sedimentary rock observed on Mars. For solar luminosity reduced by 23%, peak noontime insolation at Mars at perihelion on a moderate-eccentricity ($e = 0.15$) orbit is ~ 630 W/m2. If the snowpack is dusty then its albedo will be that of Mars dust, 0.28 (Putzig et al., 2005). During melting, radiative losses are $\sigma T_{\text{air}}^4 \approx 320$ W/m2, and for a 200 mbar atmosphere a reasonable value for wind-speed dependent sublimation losses into dry air is ~ 60 W/m2. Conductive losses will be roughly one-half the diurnal temperature range divided by the diurnal skin depth, giving 60 W/m2 for a 100 K diurnal cycle of surface temperature and the snowpack thermal properties in Carr and Head (2003). Greenhouse forcing from a 200 mbar CO$_2$ atmosphere equilibrated with a 230 K daily mean surface temperature is ~ 60 W/m2 (from detailed radiative transfer calculations: Appendix B). Neglecting all other gains and losses, the net energy available for melting is therefore $630(1 - 0.28) > 320 - 60 = 60 \approx 100$ W/m2, equivalent to approximately 1 kg/m2/h snowmelt.

The total water required to form the 800 m-thick Meridiani sediments depends on the water/rock mass ratio (W/R) during alteration. W/R is given as ≤ 1 by Berger et al. (2009) and ≤ 300 by Hurowitz and McLennan (2007). This corresponds to a time-integrated melt column of either ≤ 0.3 km or ≤ 100 km, respectively, for a bulk Meridiani sandstone density of 2.3, and ignoring the contribution of water bound in hydrated minerals to the solid mass of the deposit. If melt was produced continuously at 1 mm/h, these time-integrated melt columns would be reached in 30 years (for W/R = 1) or 10 Kyr (for W/R = 300), but these surface liquid water production rates are completely unrealistic (except just after a large impact; Toon et al., 2010). However, if we make the realistic assumptions that melting occurs for 10% of each sol, the melt season lasts for 10% of the year, and 90% of melt refreezes and is unavailable for alteration, then the upper limit on W/R for the entire Meridiani sandstone is still reached after seasonal melt production for a small number of years (30 Kyr for W/R = 1, or 10 Myr for W/R = 300). Net loss of snow to melting is $Q(1\text{ cm})/\text{yea}$r in this case. Exhaustion of snowpack is unlikely to severely limit the melt produced: for example, ECM runs show 1–2 cm/year net accumulation (accumulation–sublimation) in sedimentary–rock locations (Madeleine et al., 2009). Sedimentary rocks formed on Mars for an interval of O(107) years, so climate and orbital conditions favorable for surface liquid water at Meridiani are only needed for <1% of that time.

This fraction is small, consistent with the geologic record of metastable surface liquid water acting as a “wet-pass filter” of Mars climate history, only recording orbital conditions that permitted surface liquid water, then modeling average orbital conditions is neither sufficient nor appropriate. To capture the orbital conditions that would be preserved by a wet-pass filter, it is instead necessary to calculate snowmelt for the full range of orbital elements that Mars likely sampled over the time interval of sedimentary rock deposition (Fig. 1). These predictions can then be compared to observations.

3. Distribution of sedimentary rocks on Mars

The Mars Orbiter Camera Narrow Angle (MOC NA) team documented ~4000 “layered rock outcrops of probable or likely sedimentary origin” (Malin et al., 2010), which is the only available global catalogue of sedimentary rocks on Mars (as of December 2012). Details of our analysis of these data are given in Appendix A. The resulting distribution of sedimentary rocks on Mars (Fig. 2) suggests that surface water availability was narrowly concentrated near the equator and at low elevations (Lewis, 2009). 64% of sedimentary rocks are within 10° of the equator, 60% where the Valles Marineris region (260°–330°E, 20°S–20°N) is excluded (Fig. 2a). Blanketing by young mantling deposits may contribute to the paucity of sedimentary rocks poleward of 35° in both hemispheres, but cannot explain the rarity of sedimentary rocks at 10–35° latitude relative to the equatorial belt. The ±10° band is not unusual in thermal inertia (TI), dust cover index, albedo, or surface age distribution, so a dependence of sedimentary rock on these parameters could not explain the latitudinal distribution.

On average, sedimentary rocks are lower than ancient terrain by 2 km (Fig. 2b). On Earth sedimentary rocks are low-lying because of sediment transport by regional-integrated channel networks, but evidence for regionally-integrated channel networks on Mars mostly predate the sedimentary rock era (Carr and Head, 2010; Fassett and Head, 2011). The low-elevation bias is independent of the equatorial concentration. Therefore, the low-elevation bias reflects a planetwide, non-fluvial process that occurs preferentially at low elevations.

Although sedimentary rock abundance away from the equator is much less than in the equatorial sedimentary–rock belt, “wings” of increased sedimentary rock abundance are found nearly symmetric about the equator at 25–30°S and 20–30°N. The sedimentary rocks in the southern wing are regionally associated with clusters of large alluvial fans (Fig. 2c).

4. ISEE–Mars model

This section describes ISEE–Mars. We give an overview of the model framework and assumptions in Section 4.1; describe the 1D snowpack thermal model in Section 4.2; describe the potential-well approximation for warm-season snow locations in Section 4.3; and explain how we combine results from 1D models to produce predictions in Section 4.4.

4.1. Overview of model framework

Controls on Mars snowmelt include:

- Spin–orbit properties $O = (\phi, e, L_p, L_\text{e}, \text{latitude})$ control the distribution of sunlight at a given location. These include obliquity ϕ, eccentricity e, solar longitude of perihelion L_p, solar longitude L_e, and latitude. Milankovitch parameters $O = (\phi, e, L_p)$ oscillate or circulate on 10$^4–10^6$ yr frequencies, and ϕ shows chaotic shifts
at ~250 Myr intervals (Head, 2011). We iterate over all the spin–orbit properties that have probably been encountered by Mars over the last 3.5 Ga (Steps 1–2 in Fig. 3).

- **Climate parameters** \(C = \{P, \Delta T, f_{\text{snow}}\} \) include atmospheric pressure \(P \) (assumed to be mostly CO₂), freezing-point depression/non-CO₂ greenhouse forcing \(\Delta T \), and snow coverage fraction \(f_{\text{snow}} \). These are iterated over a large range (Step 3 in Fig. 3). They are assumed to vary slowly relative to changes in spin–orbit properties.

- **Surface material properties, insolation.** These are held fixed for the ensemble of model runs.

Fig. 3 summarizes how we evaluate the predictions of the snowmelt hypothesis. First, for a given trial set of past climate parameters \(C \) and orbital parameters \(O \), we calculate snow temperature for all seasons and latitudes using a 1D surface energy balance model (Steps 1–2 in Fig. 3). This defines a zone in which snow could melt, if it were present. In reality much of this melt zone could lack snow during the warm season (or it could be snow-free year round). We pick snow locations using the assumption that warm-season snow is only found in places that have a low annual-average snow sublimation rate. We refer to this as the “potential-well approximation”. Using the 1D model output for a range of \(P \) (Step 3), potential peak temperatures and potential annual-average snow sublimation rates are mapped onto topography (Step 4). Snowmelt occurs when temperatures exceed freezing at locations that are near-minima in annual-average sublimation rate (Step 5) – when the melt zone overlaps the cold traps. The output at this stage consists of maps of snow stability for a single \(C \) and \(O \) (Step 6), convolving the outputs with the \(O \) probability distribution function (Laskar et al., 2004). The output is now a map of predicted snowmelt on Mars integrated over geologic time. This map can be compared to observed sedimentary rock abundance and thickness data (Section 5.5). Similar maps are computed for many plausible \(C \). Assuming the snowmelt model is correct, the \(C \) that gives the map in best agreement with data is the best-fit early Mars climate (Section 6.1). Interpolating in the melt rate output gives a predicted time series at Gale (Section 7).

4.2. Thermal model

Surface liquid water is always unstable to evaporation on a desert planet (Richardson and Soto, 2008a; Richardson and Soto,
2008b). However, transient liquid water can occur metastably if temperatures exceed the freezing point, and if P exceeds the triple point (in order to prevent internal boiling). ISEE-Mars captures these dynamics using a 1D thermal model (Fig. 4). When temperature exceeds $(273.15 \text{ K} - D_T)$, melting occurs and buffers the temperature at the melting point. Within the snowpack, we assume material properties are uniform with depth, and heat flow is by conduction and solar absorption only. When melt is not present, energy balance in the subsurface layer adjacent to the surface is given for unit surface area by (Fig. 4)

$$\frac{\partial T}{\partial t} = k \nabla^2 T + \frac{1}{\rho C_v \Delta z} \left[LW - \epsilon \sigma T^4 + (1 - s_r) Q(z) SW \right]$$

and energy balance at depth z within the snowpack is given by (Fig. 4)

$$\frac{\partial T_k}{\partial t} = k \nabla^2 T + \frac{1}{\rho C_v \Delta z} \left[(1 - s_r) Q(z) SW \right]$$

Here, ρ is snow density, C_v is snow specific heat capacity, Δz is the thickness of the subsurface layer whose upper boundary is the surface, T is the temperature at subsurface level $K = \{1, 2, \ldots, n_z\}$, k is snow thermal conductivity, ϵ is the longwave emissivity of ice, LW is downwelling longwave radiation, s_r is the Rayleigh-scattering correction factor, $Q(z)$ is the fraction of sunlight absorbed at level z (Appendix C), SW is solar flux per unit surface area, S_{fr} corresponds to free sensible heat losses driven by atmosphere-surface temperature differences, L_f corresponds to free evaporative cooling by free convection when the atmosphere has relative humidity <1, S_{fo} corresponds to forced sensible heat losses caused by cool breezes over warm ground, and L_{fo} corresponds to additional evaporative cooling by wind. Snow albedo, α, is $1 - \int Q(z) dz$. We use the 3.5 Gya solar luminosity calculated by Bahcall et al. (2001), which is 23% below present.

To keep the model straightforward, melt is not permitted to drain, and refreezes in place. In reality, snow and soil are porous. Draining and channelization of melt and associated release of latent heat at better-insulated depths are key in terrestrial snow hydrology (e.g., Bengtsson, 1982; Illangasekare et al., 1990). Examples of meltwater flowing through the ground below the diurnal/annual thermal skin depth include flow down shadowed crevasses that (in the absence of flow) would be below the freezing point day and night; taliks (Sloan and van Everdingen, 1998; Arcone et al.,
supraglacial lake drainage; and high Arctic springs (Andersen et al., 2002; Scheidegger et al., 2012). Although low-latitude melting in ISEE-Mars only occurs within O(1) diurnal skin depth of the surface, these Earth analogs suggest that shallow melting can recharge significantly deeper aquifers. Although large, deep aquifers can result from snowmelt, this is not strictly necessary to explain the sedimentary rocks. Small amounts of melt, which cement unconsolidated material close to the surface, are probably sufficient.

We give details of the flux parameterizations, melt handling, and run conditions in Appendix B. Representative output is shown in Fig. 5.

Low-latitude melting is most likely when both x and TI are low (Fig. 6). We use fixed, low values of TI (\sim277 Kieffers, where 1 Kieffer = 1 J m$^{-2}$ K$^{-1}$ s$^{-1/2}$) and x (0.28, the same as that of Mars’ dust continents; Mellon et al., 2000). Our simulated snowpack has similar TI to the snow in previous Mars snowmelt models, and it is more reflective (Fig. 6 and Table B.1) (Costard et al., 2002; Carr and Head, 2003; Williams et al., 2009; Morgan et al., 2010). Snow-like (low) TI is justified because water snow precipitation is predicted by all General Climate Models (GCMs) at high ϕ (e.g., Mischna et al., 2003; Fastook et al., 2008; Madeleine et al., 2009; Wordsworth et al., 2012) and was observed on Mars by Phoenix (Whiteway et al., 2011). Pure, fresh, fine-grained snow has a high albedo that prevents melting, but snow albedo is greatly reduced during the warm season at the equator. Orange through red contours are for peak temperature within the snowpack, and the dark-shaded area experiences some melting. “Clean snow” and “clean ice” never melt, so contamination with dark materials is required to lower albedo. The black dashed contour shows the onset of significant melting (1 kg/m2/day). The material properties used in this paper (yellow diamond and yellow triangles) are shown in the context of snowpack properties adopted by a subset of other Mars snowmelt modeling groups (diamonds) and measurements of currently snow-free Mars terrain (circles). Gray circles are the modes of TES thermophysical classes A, B and C (Mellon et al., 2000). White circles are for landing sites (Golombek et al., 2012): VL1 = Viking Lander 1; VL2 = Viking Lander 2; MPF = Mars Pathfinder; Ga = Spirit at Gusev; MP = Opportunity at Meridiani Planum, PHX = Phoenix, Ga = Curiosity at Gale. Diamonds correspond to properties adopted by Costard et al. (2002) (cyan diamond), Morgan et al. (2010) (green diamond) and Williams et al. (2009) (red diamond). Note that the green diamond and red diamond should actually lie slightly offscale to the right. White triangles on the x-axis highlight the range of albedos observed and calculated for seasonal H$_2$O ice on Mars (0.25–0.4, see text), and the albedo of H$_2$O ice exposed near the south pole (0.3, see text). White triangles on the y-axis highlight the thermal inertias of ice at 248 K and of fresh, fluffy snow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.3. Snow location prescription: the potential-well approximation

For \sim100 mbar CO$_2$, the model predicts melt only during the warmest season, and usually within a diurnal skin depth of the
surface. Warm-season snow and ice within this depth range on Mars are near equilibrium with present-day forcing (Mellon and Jakosky, 1995; Boynton et al., 2002; Schorghofer and Aharonson, 2005; Hudson and Aharonson, 2008). Above-freezing T only leads to melt when snow is present. Therefore, we are interested in the annual-maximum T experienced by the cold traps, whose location depends on orbital conditions and topography. For most orbital conditions, this T is below freezing, so the greatest interest is in the orbital conditions that maximize the cold-traps’ annual maximum T.

We find the location of cold traps for the flat-planet case as follows. For each \(\mathbf{O} \), the output of the thermal model for all seasons \((L_s) \) and geographic locations \(\mathbf{x} \) is used to determine the \(\mathbf{x} \) where snow is most likely to be present during the melt season. We assume melt-season snow is only found at locations where annually-averaged sublimation is minimized (Fig. 7). To calculate annually-averaged sublimation, we use Kepler’s equation to linearly interpolate thermal model output that is equally spaced in annually-averaged sublimation, we use Kepler’s equation to linearly interpolate thermal model output that is equally spaced in annually-averaged sublimation. To calculate sublimation, snow is most likely to be present during the melt season. We assume melt-season snow is only found at locations where annually-averaged sublimation is minimized (Fig. 7). To calculate annually-averaged sublimation, we use Kepler’s equation to linearly interpolate thermal model output that is equally spaced in annually-averaged sublimation. These ranks are weighted by area appropriately, so that \(f = 10 \% \) implies that \(10 \% \) of the planet’s surface area is more favorable for interannual snow accumulation. Ice lost by melting is assumed to be recovered by refreezing close \((<100 \text{ km})\) to source. Warm-season snow is assumed not to occur above a critical \(f \), termed \(f_{\text{snow}} \) (the percentage of the planet’s surface area that has warm-season snow). Using the \(f(\mathbf{x}) \) and \(f_{\text{snow}} \), warm-season snow can then be assigned to favored geographic locations (Fig. 8). The warm season is the time of fastest snow retreat, not minimum snow extent. Therefore, the critical \(f \) for warm-season snow will be greater than the critical \(f \) for interannually-persistent snow and melting does not have to be supraglacial. In fact, the most favorable set-up for aqueous alteration may be where melt occurs during a seasonal accumulation–ablation cycle which leaves bare soil during part of the year. Under this set-up, the snow is thin and bare soil is close to the zone of meltwater production.

Melting is almost certain to occur when orbital forcing leads to annual-maximum temperatures above freezing at all latitudes (Fig. 8). Thermal barriers >10 cm thick can insulate snow against diurnal melting, but a sublimation lag covering all ice is logically impossible, and a debris lag covering all ice is unlikely. Twice-yearly transfer of the entire water ice reservoir across the equator to the cold high-obliquity winter pole would require seasonally reversing mean wind speed >100 m/s.

With MOLA topography, annual-average sublimation rates are calculated as for the flat planet, but now for a range of \(P \) that spans mountaintop pressures and canyon pressures. ISEE-Mars then interpolates the latitude-\(P \) grid onto latitude and longitude using MOLA topography. This assumes that Mars’ long-wavelength bedrock topography was in place before the sedimentary rock era, in agreement with geodynamic analysis (e.g., Phillips et al., 2001). This also neglects the effect of the adiabatic lapse rate on surface \(T \), which is an acceptable approximation for the \(P \) of interest here (Section 8.1).

4.4. Integrating over all orbital states

Generating model predictions for a single \(\mathbf{O} \) requires \(f \) for each \(\mathbf{x} \), the potential snowpack temperatures, and the potential melt rates. Then, \(f_{\text{snow}} \) maps out the snow distribution, and \(f_{\text{snow}} \) and \(\Delta T \) together map out the melt distribution. ISEE-Mars weights the maps using the probability distribution function for \(\mathbf{O} \) (Laskar et al., 2004), and the weighted maps are summed. (Note that this weighted mean is not the same as the median melt column from a large ensemble of Solar System integrations.) Melt likelihood is then given by

\[
M_k = \int (T_{\text{max,k}} - (273.15 - \Delta T))(f_{\text{snow}} > f_k)p(\mathbf{O})d\mathbf{O}
\]

where the “greater than” operator returns 1 if true and 0 if false, and \(p(\mathbf{O}) \) is probability.

5. Results and analysis

In this section we demonstrate the effect of different parameters on the results. This is not intended as a systematic sensitivity study, but rather as a means of providing insight into the processes at work.

5.1. Controls on the occurrence of near-surface liquid water on early Mars

By the potential-well assumption, warm-season snow locations have low sublimation rates. Sublimation depends on \(P \) (Fig. 9). Losses due to free convection decrease with increasing \(P \), because the greater atmospheric density dilutes the buoyancy of moist air. Losses due to forced convection do not vary strongly with increasing \(P \) (Eq. (B7) in Appendix B). Surface temperature increases monotonically with increasing greenhouse forcing, leading to an uptick in sublimation rate for \(P > 100 \text{ mbar} \). Snow is most stable against sublimation when \(P \sim 100 \text{ mbar} \). Therefore, snow is most stable in topographic lows when the atmospheric pressure at zero elevation \((P_0) \ll 100 \text{ mbar} \) (Fastook et al., 2008). Snow is most stable on mountaintops when \(P_0 \gg 100 \text{ mbar} \).

Melting and runoff depend on energy fluxes around the hottest part of the day. Fig. 10 shows the terms in the energy balance for a snow surface artificially initialized just below the freezing point. At low \(P \), \(L_p \) > insolation and melting cannot occur. At high \(P \), \(L_p \) is much less important. Instead, absorbed insolation and greenhouse warming are balanced principally by radiative losses and melting. The presence or absence of melt at the surface depends on the strength of conductive heating from deeper layers in the snow that are warmed by the solid-state-greenhouse effect (Fig. 10).

Both \(x \) and \(\mathbf{O} \) affect the energy absorbed by the snowpack. Considering the energy absorbed by equatorial snow at equinox:

\[
E_{\text{equinox}} = (1 - x) L_s \left(\frac{1 - e^2}{1 + e \cos \Psi} \right)^2 \quad \text{ distance from Sun}
\]

where \(E_{\text{equinox}} \) is the sunlight absorbed at noon at equinox, \(L_s \) is the solar luminosity at Mars’ semi major axis at geological epoch \(\tau \). \(\Psi \) is the minimum angular separation between \(L_p \) and either \(L_s = 0^\circ \) or \(L_s = 180^\circ \) (Murray and Dermott, 2000, their Eq. (2.20)), and the atmosphere is optically thin. If \(e \) is large then peak insolation need not occur at equinox. Eq. (4) shows that moving from average orbital conditions \((e = 0.06, \Psi = 90^\circ) \) to optimal orbital conditions \((e = 0.15, \Psi = 0^\circ) \) has the same effect on \(E_{\text{equinox}} \) as darkening from albedo 0.28 to albedo zero. Albedo zero cannot produce a warm–wet Early Mars (Fairén et al., 2012).

5.2. Seasonal cycle and snow locations

Fig. 7 shows the seasonal cycle of \(T \) and sublimation rate on a flat planet. Annual average sublimation rate controls warm-season snow location, and annual-peak snow temperature determines whether melting will occur. The cold trap latitudes indicated correspond to \(f_{\text{snow}} \to 0 \), i.e. a single thick ice-sheet. Suppose instead that warm-season snow covers a wider area – that the “potential well"
of Fig. 8 fills up with snow. For modern orbital conditions, the area of snow stability will then extend south from the North Pole. If warm-season snow covers more than 43% of the planet – if the cold-trap effect is weak or nonexistent – then melt is possible even under modern orbital conditions. For optimal orbital conditions, increasing f_{snow} expands the melting area to form a broad band equatorward of 30°.

5.3. Snowmelt on a flat Mars-like planet

Next, we sum the maps over orbital states to find how surface liquid water varies with P. If liquid water supply limits sedimentary rock formation, this should match how geological evidence for sedimentary rocks varies with latitude.

First consider a flat planet. Suppose warm-season snow is restricted to a narrow ring at the latitude that has the lowest sublimation rate on annual average. We impose a climate that only just allows melting, and only under the optimal orbital conditions. Then:

What is the latitudinal distribution of snow, melt and melt intensity? The strongest control on Mars snowpack stability is obliquity. The 1D model predicts that snow is most stable near the equator for $\phi = 0^\circ$; near the poles at $\phi = 0^\circ$, 10°, 20°, and 30°; and at intermediate latitudes ($\pm 55^\circ$) for $\phi = 30^\circ$, in agreement with other models (e.g., Mischna et al., 2003; Levrard et al., 2004; Forget et al., 2006; Madelaine et al., 2009) and geologic observations (e.g., Head et al., 2003). The hemisphere with an aphelion summer is favored for warm-season snow. Increasing e while holding ϕ fixed, the width of the latitudinal belt swept out by warm-season snow during a precession cycle decreases from $\pm 26^\circ$ at $\phi = 40^\circ$ to $\pm 6^\circ$ at $\phi = 80^\circ$ (for $e = 0.09$). Increasing e while holding ϕ fixed, the width of the warm-season snow belt increases from $\pm 18^\circ$ at $e = 0.09$ to $\pm 22^\circ$ at $e = 0.16$ (for $\phi = 40^\circ$).

Ninety-nine percent of melting occurs for latitudes $<10^\circ$. Annual column snowmelt is further concentrated toward the equator within this narrow melt band (Fig. 11). Even though this climate has been chosen so that the probability of a melt year is tiny ($\sim 0.05\%$), the orbitally integrated expectation for the equatorial snowmelt column is 5 km/Gyr. This is the global spatial maximum.
on this planet. A typical Mars-year of melting produces 9 kg/m² melt at the latitude of warm-season snow, which is comparable to mean annual precipitation in the hyperarid core of the Atacama Desert. Peak instantaneous melt rate is of order 0.1 kg/m²/h. Peak rates are less sharply concentrated at the equator than annual column snowmelt (Fig. 11). Such anemic melt rates are unlikely to carve rivers. However, aqueous alteration of silicates within or beneath the snow may be sufficient to produce sulfate-bearing aeolian deposits, alongside dissolution, mobilization and reprecipitation of preexisting salts that could cement the rocks and also concentrate the salts to detectable levels. Aeolian deposits volumetrically dominate the Mars sedimentary rock record (Grotzinger and Milliken, 2012).

What is the distribution of melt and melt intensity with orbital conditions? As C is moved towards conditions that allow melt, melt first occurs at $\phi > 40^\circ$ and $e > 0.13$ (Fig. 12). High ϕ is needed to drive snow to the equator, and high e is needed to bring perihelion close to the Sun (Fig. 12) (Kite et al., 2011b,c). Melting requires that the noontime Sun is high in the sky at perihelion. For the equator, this requires $L_p \approx 0^\circ$ or $L_p \approx 180^\circ$. Moving Mars around a precession cycle with e and ϕ fixed, the flat planet is entirely dry between $L_p = 45^\circ$ and $L_p = 135^\circ$ inclusive, and between $L_p = 225^\circ$ and $L_p = 315^\circ$ inclusive.

How does increasing f_{snow} affect the results? Pinning snow to within $\pm 1^\circ$ of the optimum latitude corresponds to $f_{snow} \approx 1\%$. This is similar to the present-day area of warm-season water–ice at the North and South poles. We do not know the Hesperian value of f_{snow}, but there is geologic evidence that f_{snow} can be much greater than 1% from the heights of Amazonian midlatitude pedestal craters (44 ± 22.5 m; Kadish et al., 2010). Assuming that the midlatitude pedestal craters correspond to the thickness of a single ancient ice layer of uniform thickness, and ice volume is not less than the 2.9 ± 0.3 \times 10^6 km³ volume of the modern Polar Layered Deposits (Selvans et al., 2010), the ice accumulation area is \sim 46% of the planet’s surface area. This ice accumulation area must be less

Fig. 8. The potential-well approximation for finding warm-season snow locations. Nominal parameters (Table B.1), 146 mbar atmosphere, flat topography. Curve corresponds to potential sublimation during a year. Temperatures are annual maxima. “MELT” denotes melting at some point during the year, should snow exist at that latitude. Horizontal lines correspond to f_{snow} values, assuming warm-season snow is found at locations that minimize annually-averaged sublimation, and colored red for values of f_{snow} that lead to melting. (a) Current orbital conditions. Massive ice or buried ice may exist in the southern hemisphere, but snowpack that persists through the warm-season is only likely in the far north, where temperatures are always below freezing. (b) Optimal orbital conditions. Melting occurs at all latitudes so melting is inevitable. (c) As for optimal orbital conditions, but with perihelion aligned with northern summer solstice. The short, intense northern summer displaces the potential-sublimation minimum to 20°S. $f_{snow} \geq 23\%$ is needed for melting to occur under these circumstances. The latitude of first melting will be near the equator. Note that 273 K is just below the melting point.
than \(f_{\text{snow}} \), suggesting that thin and extensive water ice deposits have occurred on Mars. In addition to these kilometer-scale pedestals, decameter-scale pedestals suggest a widespread equatorial ice deposit in the geologically more recent past (Mitchell, 2004; Maarry et al., 2012; Schon and Head, 2012). These observations motivate calculating melt distribution for \(f_{\text{snow}} = 50\% \).

At \(f_{\text{snow}} = 50\% \) in ISEE-Mars, the melt belt thickens to \(\pm 33^\circ \), with minor melt activity around \(\pm 50^\circ \) (Fig. 11). Maximum annual column melt and melt rates are at \(\pm 22^\circ \), where column melt is \(5 \times \) greater (98 km/Gyr) and peak melt rates are \(3 \times \) greater than at the equator. Peak melt rates now reach 0.7 mm/h, so runoff is conceivable (Fig. 11). Provided that \(\phi \geq 40^\circ \), melting can now occur for any value of \(L_p \) and most \(e \). There is still a very strong increase of melting with increasing \(e \). Melt is strongest in the Northern Hemisphere at \(15^\circ < L_p < 45^\circ \) and \(135^\circ < L_p < 165^\circ \). It is strongest in the Southern Hemisphere at \(195^\circ < L_p < 225^\circ \) and \(315^\circ < L_p < 345^\circ \). This is because the belt of warm-season snow is now so wide that it partly overlaps the hot zone for all \(L_p \). The edge of this belt closest to the pole with the highest peak temperatures sees the Sun at zenith near perihelion, when perihelion occurs near equinox. The dramatic increase in melting for \(f_{\text{snow}} = 50\% \) does not require any change in greenhouse forcing or paleopressure, just a change in the way the climate system deposits snow.

How does changing atmospheric pressure affect snowmelt? At 293 mbar, which is the highest \(P \) we considered, low values of \(f_{\text{snow}} \) produce a broad band of melting between \(\pm 15^\circ \) and \(20^\circ \). There is a secondary peak around \(\pm 50^\circ \). The equatorial maximum in melt rate bifurcates at \(f_{\text{snow}} \geq 35\% \), forming low-latitude peaks symmetric about the equator. Further increases in \(f_{\text{snow}} \) cause these maxima to drift to higher latitudes. These patterns are similar at 98 mbar and 149 mbar, although the peak melt rates and expected-seasonal-mean melt rates are both lower because of the reduced greenhouse effect. At 49 mbar, melting only occurs for \(f_{\text{snow}} > 35\% \), and never at equatorial latitudes. Lower \(P \) further restricts melting to high \(f_{\text{snow}} \) and higher latitudes. This is because of the need for a long day-length (or perpetual sunlight) to warm the snowpack at low \(P \). This is not possible at the equator, which never receives more than \(\pm 12 \) h of sunlight. The melt rate under orbital conditions that are optimal for melting can be thought of as a potential well in latitude, with maxima at high latitudes (for high-\(\phi \) polar summer), and a minimum near the equator. At low \(P \) the melt potential is zero at low latitudes, so large values of \(f_{\text{snow}} \) are needed for melting, which will then occur away from the equator. Increasing \(P \) shifts melt rate upwards everywhere, and for \(\gtrsim 98 \) mbar melt potential exists even at the equator, allowing melting as \(f_{\text{snow}} \rightarrow 0 \). If Mars had a relatively thick >0.1 bar atmosphere during the sedimentary-rock era, then progressive inhibition of equatorial melting should be a latitudinal tracer of Mars atmospheric loss.

Our flat-planet results have strong echoes in the geologic record of ancient Mars. The distribution of evidence for liquid water shows strong latitudinal banding: sedimentary rocks are concentrated at \(< 15^\circ \) latitude but have “wings” at \(25–30^\circ \) and \(20–30^\circ \), and alluvial fans are most common at \(15–30^\circ \) (Kraal et al., 2008; Wilson et al., 2012).

5.4 With MOLA topography

ISEE-Mars shows similar latitudinal trends whether run with MOLA topography or no topography. This is because nominal model parameters produce snow distributions that are more sensitive to latitude than to elevation.

Snow distribution shows only a weak preference for low points at \(P_o = 48 \) mbar and optimal \(\Omega(\phi = 50^\circ, e = 0.16, L_p = 0^\circ) \). However, melting only occurs in topographic lows close to the equator at low \(f_{\text{snow}} \) and \(\Delta T = 2 \) K (Fig. 13). LW is stronger (and \(L_p \) is weaker) at low elevations, so peak temperature is higher.

For \(f_{\text{snow}} = 50\% \), melting at optimal orbital conditions occurs for all low-lying locations equatorward of \(30^\circ \). When perihelion is aligned with solstice at \(\phi = 50^\circ \), the snow distribution shifts away from the equator, and no melting occurs below \(f_{\text{snow}} = 50\% \).

Low \(\phi \) is less favorable for snow melting than high \(\phi \) (Jakosky and Carr, 1985). For \(\phi < 30^\circ \) and perihelion aligned with solstice, snow is most stable poleward of \(60^\circ \), but these locations never reach the freezing point. As \(f_{\text{snow}} \) is raised, melting will first occur at lower latitudes because these receive more sunlight. The most favored locations are S Hellas and the lowest ground around \(40^\circ \). Interestingly, these are the midlatitude locations where
The trade-off between P and sublimation rate controls snow stability on MOLA topography, and this sets the snow and melt distributions (Fig. 9). For example, suppose wind speed on early Mars was much higher than in our calculations. This would increase the relative importance of wind-speed-dependent turbulent losses in the surface energy balance. In turn, this would increase the importance of elevation ($\sim 1/P$) in setting snow location, relative to latitude which sets SW_l. The snow and melt distributions for this “windy early Mars” (not shown) are broader in latitude and more concentrated in low areas (especially Northern Hellas, but also Northern Argyre and the Uzboi–Ladon–Margaritifer corridor).

5.5. Effects of climate on snowmelt distribution with MOLA topography

Integrating over the orbital-snapshot maps of melt likelihood ($\int \rho(O) dO$) reveals the effect of $C = \{P, AT, f_{snow}\}$ on melt likelihood averaged over geological time (Fig. 14,15).

- For $P_o = 49$ mbar and for small values of $AT (5 K)$ and $f_{snow} (2\%)$, warm-season snow is found primarily in (Fig. 14a) Valles Marineris, the circum-Chryse chaos, the Uzboi–Ladon–Margaritifer corridor, craters in W Arabia Terra, the Isidis rim, northern Hellas, Gale, Aeolis–Zephyria Planum, and parts of the Medusae Fossae Formation, as well as at high ($>50^\circ$) latitudes. However, warm-season snow only melts very close to the equator (Fig. 14b) – in Gale, the circum-Chryse chaos, Meridiani Planum, Aeolis–Zephyria Planum, the Isidis rim, and the floors of Valles Marineris. Even in central Valles Marineris, among the wettest parts of the planet under this climate, melting occurs with probability $<0.5\%$ (e.g., 5 Myr of melt years during 1 Gyr). As f_{snow} is increased to 5–10% at $AT = 5 K$, melting in Meridiani Planum and Valles Marineris becomes more frequent. Melting in Northern Hellas does not occur until either f_{snow} or AT is greatly increased.

- As the atmosphere is lost, melting becomes restricted in space as well as time ($AT = 5 K$, $P_o = 24$ mbar, $f_{snow} = 0.1\%$, Fig. 15a). The last holdouts for surface liquid water as pressure is lost are Gale, du Martheray, and Nicholson Craters in the west-of-Tharsis hemisphere, and the floors of Valles Marineris in the east-of-Tharsis hemisphere (Fig. 15a). Gale (near 6S, 135E) is usually a hemispheric maximum in snowmelt for marginal-melting climates such as this. Melting can only occur for very improbable orbital combinations under this climate. Wet periods would be separated by long dry intervals, if they occurred at all.

- At $P_o = 293$ mbar and low f_{snow}, low-latitude snow is restricted to high ground and so is melt. Fig. 15b shows the melt distribution for $f_{snow} = 10\%$ and $AT = 7.5 K$. For $f_{snow} \geq 20\%$, snow is still most likely at high ground, but the melt pattern flips: melting occurs at all elevations, but it is most common at low ground as in the low-P case. As $f_{snow} \rightarrow 100\%$, melt extent is limited only by temperature. Temperature is anticorrelated with elevation, because of the greater column thickness of greenhouse gas and because evaporative cooling is suppressed. The adiabatic atmospheric temperature lapse rate, neglected in ISEE-Mars, would also contribute to this effect at high P_o (Section 8.3 and Forget et al., 2012).

- Hellas is usually the most favored area for snowmelt within the midlatitude ancient terrain. A climate relatively favorable for melting in Northern Hellas is shown in Fig. 15c ($AT = 15 K$, $P_o = 24$ mbar, $f_{snow} = 40\%$). The contour of locally maximal snowmelt extending from deepest Hellas, to the Northern Hellas floor, to crater Terby, is intriguing because these are the locations of the thickest packages of sedimentary rock in midlatitude ancient terrain (e.g. Wilson et al., 2007, 2010). The Uzboi–Ladon–Margaritifer corridor of fluvial activity (e.g., Grant and Parker, 2002; Milliken and Bish, 2010) is the next most favorable midlatitude zone for snowmelt.

Fig. 11. Flat-planet results for a climate that only marginally rises above the freezing point. Black solid lines correspond to the orbitally-averaged melt column per Mars year (relevant for aqueous alteration). Dashed gray lines correspond to the peak melt rate experienced at any point in the orbits considered (the geomorphically relevant melt rate). Thick lines correspond to a very small value of f_{snow} (4%), and the thin lines are for $f_{snow} = 50\%$. Scalloped depressions (e.g., Zanetti et al., 2010) and thumbprint terrain (Skinner et al., 2012) are most prominent, although these features might not require liquid water to form (Lefort et al., 2010) and these ISEE-Mars runs are not directly applicable to Middle/Late Amazonian features.

Fig. 12. Sensitivity of peak snowpack temperature to Milankovitch forcing. Maximum snowpack temperatures over a precession cycle (black contours) are highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity. Mars orbital elements are shown by color ramp, with white shading least probable and red shading highest for high obliquity and moderate eccentricity.
• For the wettest conditions considered (e.g., Fig. 15d: $\Delta T = 15$ K, $P_o = 49$ mbar, $f_{snow} = 40\%$), melt occurs more than 25% of the time in most places equatorward of 30°. Such wet global climates overpredict the spatial extent of both surface aqueous alteration and sedimentary rock formation on early Mars, as discussed in the next section.

6. Snowmelt in space: understanding the distribution of sedimentary rocks on Mars

6.1. Comparison to global sedimentary-rock data: implications for early Mars climate

The full climate ensemble consists of 343 orbitally integrated melt-likelihood maps similar to those in Fig. 15. To reduce this to a manageable number for analysis, k-means clustering was used (Press et al., 2007). The spatial variability of each melt-likelihood map was normalized by the within-map mean and within-map standard deviation, and clustering was carried out on these self-standardized maps. Representative results are shown in Fig. 16, together with the mean melt-likelihood maps for each of the climate clusters identified. These climate clusters were as follows:

Dark blue cluster of climates. These are perpetually-global-desert climates caused by cold, thin-atmosphere climates (Fig. 16a). Zero melting is predicted on horizontal surfaces under all orbital conditions, so no map is shown.

Red cluster of climates. At $P_o \geq 150$ mbar, all ΔT, and low-to-moderate f_{snow}, melting occurs at high elevation. Some melt also occurs at mid-southern latitudes. Neglect of the adiabatic lapse rate will lead to growing inaccuracy at high P_o, but will not alter the conclusion that warm-season snow will be driven to high ground at high P_o, far from the places where sedimentary rocks are observed (Fig. 16b).

Amber cluster of climates. ISEE-Mars predicts a broad swath of low latitude melting for a wide range of P_o, all ΔT, and moderate-to-high f_{snow}. Fig. 16c is effectively a map of maximum snowpack temperature – as f_{snow} becomes large, warm-season snow is no longer restricted by elevation. Melting is most intense at low elevation because there is more CO2 overhead, but the overall pattern is diffuse in both elevation and latitude. This contrasts with the strongly-focused observed sedimentary rock distribution (Fig. 2).

Cyan cluster of climates. For $P_o < 150$ mbar and at least one of low ΔT or low f_{snow}, the model predicts focused, equatorial melting, in excellent agreement with observations (Fig. 16d). The agreement is especially notable given the simplicity of the model physics (Section 4) and the fact that we are considering one of three objectively-defined classes of paleoclimates rather than the optimum C. We highlight seven points of data/model agreement:

1. The thickest sedimentary rock exposures on Mars are in Valles Marineris (up to 8 km), Gale (5 km), and Terby Crater (3 km). The Medusae Fossae Formation is a sedimentary accumulation up to 3 km thick (Bradley et al., 2002) which may be aqueously cemented sedimentary rock at least in its lower part (Press et al., 2007). Sedimentary layered deposits in the chaos regions are up to ~1 km thick (at Aram). Except for Terby, these are also the global snowmelt maxima predicted by the cyan cluster of climates. The Northern Valles Marineris canyons contain thicker sedimentary-rock mounds than the southern Valles Marineris canyons, and are correspondingly more favored for snowmelt in the model. This can be understood if unconsolidated material was not in short supply, but water for cementation was in short supply.

2. Gale is a hemispheric maximum in ancient-terrain sedimentary rock thickness, and is a hemispheric maximum in ancient-terrain snowmelt in the model.

3. Predicted deposit thickness dies away quickly from the predicted maxima, such that snowmelt is strongly focused in Valles Marineris, the chaos source regions, and Gale.

4. Meridiani Planum is correctly predicted to be a local maximum within a wedge-shaped Sinus Meridiani outcrop narrowing and thinning to the East (Edgett, 2005; Hynek and Phillips, 2008; Andrews-Hanna et al., 2010; Zabrusky et al., 2012). Zooming in (not shown) confirms that the concentration of sedimentary rock in Western Arabia mound-filled craters (e.g. Crommelin, Firsoff, Danielson, Trouvelot, and Becquerel) is reproduced by the model. Alignment of Meridiani Planum with snowmelt maximum implies net True Polar Wander <10° since sediment deposition (Kite et al., 2009; Matsuyma and Manga, 2010).

Fig. 13. Snapshot of snowmelt distribution for a single example of orbital forcing, showing role of snow stability and melting potential. $\phi = 50\%$, $e = 0.145$, $L_e = 0$; $P_o = 49$ mbar, $\Delta T = 5$ K. Blue-shaded areas correspond to $f_{snow} < 15\%$ – likely snowpack locations. Red-shaded areas receive enough sunlight for melting at some point during the year, if snow were present. Where the blue “snow stability” zone intersects the red “high maximum temperatures” zone, some melting will occur (solid green shading). Thick black line corresponds to the boundary of terrain resurfaced since sedimentary rocks formed, which is masked out. Landing sites of long-range rovers are shown by green circles: – Ga = Gale; Gu = Gusev; MP = Meridiani Planum. Background contours are topography at intervals of 1.5 km from – 5 km up to +10km. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The southern rim of the Isidis basin is identified as a regional maximum for post-Noachian surface liquid water, consistent with geological mapping (Jaumann et al., 2010; Erkeling et al., 2010, 2012).

Large, old equatorial craters in the Northern Plains are commonly modified by sedimentary infill (e.g., Nicholson, Reuyl). This correlation is reproduced by the model.

Melting is strongly enhanced in Northern Hellas relative to other locations in the same latitude band (similarly to Fig. 15). However, $\Delta T \geq 10$ K is needed for non-negligible melting away from the equator, so this longitudinal enhancement is diluted in the class-average map and is not visible. A secondary enhancement within this southern latitude belt is the Uzboi–Ladon–Margaritifer corridor. These longitudinal enhancements match data on the distribution of sedimentary rocks and alluvial fans (Kraal et al., 2008). However, the model underpredicts the thickness of Terby's fill relative to the equatorial belt of sedimentary rocks.

The model predicts more snowmelt in the circum-Chryse canyons than in the Valles Marineris, but the greatest thickness of sedimentary rocks is in the Valles Marineris, not the circum-Chryse canyons. However, chaos and outflow channels formed around Chryse as late as the Early Amazonian (Warner et al., 2009), and would have destroyed sedimentary rocks deposited earlier. If the chasms were once brimful of ice, and supraglacial snowmelt crevassed to the base of the ice masses and inflated subglacial lakes (Das et al., 2008), then seasonal melting could have contributed to chasm flooding and overflow. Alternatively, if the input rate of unconsolidated material limited sedimentary-rock accumulation in the circum-Chryse canyons, our model predicts more persistent water–sediment interaction here than at other sites. Sedimentary rocks overly chaos in Aram and Iani (Glotch and Christensen, 2005; Warner et al., 2011). The model does not predict snowmelt at Mawrth, consistent with Mawrth's interpretation as a Noachian deposit formed under an earlier climate (McKewin et al., 2009; Loizeau et al., 2012), nor does it predict snowmelt in Terra Sirenum, consistent with the nominally Late Noachian age of the inferred paleolake deposits there (Wray et al., 2011).

Red, amber, cyan and dark blue in Fig. 16 correspond to a hot-to-cold sequence in early Mars climate parameter space. The high elevation (red) and broad-swath (amber) classes have melt likelihood as high as 0.17. The focused equatorial (cyan) class shows much lower melting probabilities (<0.054) and is wrapped around the perpetual-global-desert climates (dark blue) in climate-forcing parameter space (Fig. 15a). At least one of P_m, ΔT or f_{snow} must be small to obtain a snowmelt map that matches sedimentary rock data. This assumes that sedimentary rocks accumulate in proportion to the number of years with snowmelt. Sedimentary rock formation involves nonlinear and rectifying processes such as runoff production and refreezing of downward-percolating melt. This means that years with little melt might leave no record, which could sharpen the geographically-broad swath of melting predicted by the amber cluster of climates and produce a sedimentary

Fig. 14. Probabilities of warm-season snow (upper panel) and melting (lower panel) for $P = 49$ mbar, $\Delta T = 5$ K, and $f_{snow} = 2\%$. Background is shaded relief MOLA topography, illuminated from top right. Maximum probability on the warm-season snow map is 0.33, maximum of the melt map is 7.1×10^{-3} – the location is Hydaspis Chaos for both maxima. Contours are at 1%, 5%, 10%, 25%, 50%, 75% and 90% of the maximum value. The lowest colored contour in the snow map is greater than the highest colored contour in the melt map, because melting requires infrequent orbital conditions whereas warm-season low-latitude snow only requires high obliquity. Thick black line corresponds to the border of recently-resurfaced terrain, within which contours are grayed out. Landing sites of long-range rovers are shown by red circles: Ga = Gale; Gu = Gusev; MP = Meridiani Planum. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. Sensitivity of snowmelt maps to extreme variations in model parameters. Background is shaded relief MOLA topography, illuminated from top right. Colored contours correspond to snowmelt probabilities on ancient terrain. Contours are at 1%, 5%, 10%, 25%, 50%, 75% and 90% of the maximum melt likelihood, which is given at the top left of each panel and is different for each case. Thick black line corresponds to the border of recently-resurfaced terrain, within which contours are grayed out. Landing sites of long-range rovers are shown by red circles; Ga = Gale; Gu = Gusev; MP = Meridiani Planum. (a) Parameters that only marginally allow melting even under optimal orbital conditions: $P = 24$ mbar, $\Delta T = 5K, f_{\text{snow}} = 0.1%$. (b) High P drives snow (and melt) to high ground: $P = 293$ mbar, $\Delta T = 7.5K, f_{\text{snow}} = 10%$. This is inconsistent with the observed concentration of sedimentary rock at low elevations, but may be relevant to the distribution of older valley networks. (c) Parameters that produce snowmelt in Hellas: $P = 24$ mbar, $\Delta T = 15K, f_{\text{snow}} = 20%$. For legibility, the 1% contour is not shown for this subfigure. (d) Very high f_{snow} and ΔT predict a latitudinally broader distribution of sedimentary rocks than observed: $P = 49$ mbar, $\Delta T = 15K, f_{\text{snow}} = 40\%$. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
rock distribution consistent with observations. Aeolian erosion would preferentially efface thin deposits, and this could also focus a broad initial sedimentary-rock distribution. Therefore, we cannot rule out the broad-swath-of-melting (amber, high \(f_{\text{snow}} \)) climate class. Data-model comparison supports the focused-equatorial-melting climate class (cyan), and rules out the high-elevation melting paleoclimates (red class) and the perpetual global desert (dark blue).
In summary, if the seasonal-melting hypothesis is correct, Mars paleoclimate has left a fingerprint in the sedimentary rock distribution. Sedimentary rocks are distributed as if Mars only marginally permitted snowmelt, even under near-optimal orbital conditions. If the wettest location on Mars was dry for \(\geq 90\% \) of the time – which is true for the climates identified by our model as giving the best fit to the data – then Mars during the sedimentary-rock era would have been life-threateningly dry. If our model is correct, then the possibility for life is reduced but not removed, because microbial ecosystems exist in similarly hyperarid environments on Earth (Amundson et al., 2012; Wierzchos et al., 2012).

The possibility for biosignature preservation is greatly reduced, because we are not aware of any hyperarid environment with a fossil record (Summons et al., 2011).

6.2. Possible implications for valley networks, chlorides, and alluvial fans

Regionally-integrated valley networks are found over a wide range of latitudes, and record overland flow prior to the sedimentary rock era. The melt rates predicted by our model with nominal parameters are \(\leq \text{mm/h} \), insufficient to form the classical valley net-
works. Therefore a warmer climate than the one considered in this paper is required, at least transiently. Three processes not modeled here could be explored in future work to determine if runoff from snowmelt in that warmer climate could form the classical highland valley networks: (1) a stronger greenhouse effect than considered here, with or without the orbital variability considered in this paper; (2) increasing e to ~ 0.22, as can occur transiently during the restructuring of Solar System orbital architecture predicted by the Nice model (Agnor and Lin, 2012); (3) transient darkenings from impact ejecta and ash, and transient heating from impact ejecta. Using the Hynek et al. (2010) database, we find that Mars valley-network elevation distribution is biased high by 600 m relative to ancient terrain, although this may reflect the generally higher elevation of mid-Noachian (as opposed to Early Hesperian) outcrop. High elevation is the fingerprint of high P_0 (Figs. 15b and 16b). This suggests a geologic record of progressive atmospheric loss: P_0 is >100 mbar at valley-network time (to drive snow to high ground as suggested by valley network elevations), falls to ~ 100 mbar by sedimentary-rock time (high enough to suppress evaporative cooling, low enough to allow sedimentary rock formation at low elevation), and falls further to the current state (6 mbar: L_p prevents runoff on horizontal surfaces). This progression was independently suggested by Wordsworth et al. (2012a).

Chloride deposits ($n = 634$) are extremely soluble, generally older than the sedimentary rocks, and regionally anticorrelated with sedimentary rock (Osterloo et al., 2010). Equatorial chlorides are rare, which could be because chlorides were dissolved in the equatorial band during the melt events that lithified the sedimentary rocks. This would imply that melt rarely occurred far from the equator. Another possibility is that dust obscures chlorides at low latitudes. Either way, the large numbers of chlorides at 10–50°S excludes an erosional mechanism for the latitudinal distribution of sedimentary rocks.

Peak runoff production during the sedimentary-rock era is constrained to $\sim 0.3 \pm 0.2$ mm/h (Irwin et al., 2005; Jaumann et al., 2010). Melt production at these rates does occur in our climate ensemble. However, peak runoff will be less than peak melting, because of refreezing, infiltration, and the damping effect of hydrograph lag time. Similar to the case of the classical highland valley networks, additional energy could be supplied by transient darkenings or greenhouse warming. An alternative way to maximize runoff at low P_0 is a phase lag between the position of cold traps, which is set by orbital forcing (e.g., Montmessin et al., 2007), and the position of ice deposits. For example, an ice deposit built up at 20°S at high ϕ while $L_p \sim 90°$ may melt if it is not removed by sublimation before L_p swings back to 270°. In this paper, snow is always in equilibrium with orbital forcing (phase lag = 0°). Phase lags and ice deposits could be considered in future work.

7. Snowmelt in time: predictions for Curiosity at Mount Sharp

7.1. Testing snowmelt at Gale Crater’s mound

The base of the Gale mound is a good place to test the snowmelt hypothesis: snowmelt is predicted at Gale for most of the paleoclimates that permit surface liquid water somewhere on Mars. We think that it is not a coincidence that Gale is a good place to test the snowmelt hypothesis. Curiosity was sent to Gale because it hosts one of the thickest sedimentary rock packages on Mars, with mineralogic and stratigraphic hints of climate change (Wray, 2012). The snowmelt model predicts relatively abundant snowmelt at Gale (Fig. 16d), even in a changing early martian climate. Therefore, if snowmelt is the limiting factor in sedimentary-rock production, then Gale would naturally be a place that would sustain sedimentary-rock formation for a wide range of climate conditions. Gale’s peak-to-moat elevation range is >5 km. When run with modern topography, the model predicts more snowmelt at the lowest elevations within Gale (the moat, and the lowest part of the mound) than at higher elevations (the rim and the top part of the mound). Before Mount Sharp accumulated, the entire Gale interior would have been at low elevation, so we predict a drying-upward sequence with most aqueous minerals deposited early (at low elevations) and few aqueous minerals deposited late (at high elevations). This is consistent with orbital spectroscopy (Milliken et al., 2010) and a new model of mound topography (Kite et al., 2012a).

Hypothesis: We hypothesize that the Gale Crater mound is an accumulation of atmospherically-transported sediments pinned in place and subsequently reworked by seasonal-meltwater-limited processes (Cadieux, 2011; Niles and Michalski, 2012).

Tests: We list predictions of the snowmelt model for Gale’s mound in order of their potential to give a decisive test:

- **Mound-scale geochemistry records a succession of closed systems, not a flow-through geochemical reactor.** If the fluids responsible for alteration were in contact with the atmosphere, as is true of all the ancient waters yet sampled by meteorites and rovers (e.g., Hruwitz et al., 2010; Halevy et al., 2011), then any early-Mars climate model with $T < 273$ K implies restriction of diagenesis to perched aquifers close to the surface (greater depths are possible beneath lakes). This predicts that the 5 km-high Gale mound is a succession of tens-to-thousands of closed systems. Alternatively, if the layers near the top of the mountain were altered by groundwater that had flowed from the bottom of the mountain, then the mountain is a flow-through geochemical reactor. In the flow-through scenario, basal layers would be vulnerable to alteration by subsequent upwelling fluids. If smectite layers are sandwiched between Mg-sulfate layers, this would place a tight upper limit on flow-through aqueous chemistry (Vaniman, 2011).

- **Wet-dry cycles on orbital timescales, with dry conditions most of the time (Metz et al., 2009).** This predicts repeatable or quasi-periodic patterns in mound geochemistry and sedimentology, with aeolian processes dominant (Kite et al., 2012a).

- **Generally homogenous chemistry and mineralogy on ascending the mound.** Except for episodic inputs of ash and impact-ejecta, the protolith is atmospherically-transported sediment with a composition that averages over global scales (for dust) or regional-to-global scales (for sand) (McSween et al., 2010). Most alteration is local, although boxwork structures have been observed and indicate fluid transport at least at the 1–10 m scale (Siebach and Grotzinger, 2012). This leaves little scope for unmixing of major-element chemistry. Reworking by wind erosion and subsequent alteration would further homogenize compositions.

- **Clay/sulfate transitions correspond to a change in protolith composition, not a change in global environmental chemistry.** At Gale and many other sites on Mars, sedimentary rocks transition upsection from irregular to rhythmic bedding (Grotzinger and Milliken, 2012). This suggests a change over time in the relative importance of transient forcing from volcanism and impacts, versus orbital forcing. Early on, large explosive eruptions and large impacts were more frequent – so many melt events were assisted by regional-to-global albedo reduction or greenhouse forcing. As volcanism and impacts declined, darkening events became less frequent, so eccentricity change (Fig. 12) emerged as the key regulator of melt events. Therefore, we predict that
the phyllosilicate layers in the base of the Gale mound were altered in situ, and are stratigraphically associated with (possibly reworked) volcanic ash layers or impact ejecta (Barnhart and Nimmo, 2011).

- **Isotopic gradients.** Within a hypothetical unit representing a single identifiable melt event, isotopic trends will depend on the water loss mechanism. If the water evaporated, earlier deposits will be isotopically lighter (in H and O isotopes) and later deposits heavier. This is due to the preferential evaporation of light water and will give an O isotope trend similar to that seen within ALH84001 (Halevy et al., 2011). If the water froze instead of evaporating, later deposits will be lighter or no time-dependent trend in isotopic composition will be observed. By contrast, in a global-groundwater model, if the supply of groundwater is constant during mineralization, then the isotopic composition of the evaporating fluid will be some steady-state function of the evaporation rate and the isotopic composition of the upwelling fluid. Lesser variability is expected within a single deposition event.

- **No organic carbon.** Slow, orbitally-paced sedimentation and oscillation between reducing and oxidizing conditions would disfavor preservation of organic carbon.

- **No Gale-spanning lakes (except immediately after the Gale-forming impact).** Local perennial lakes are possible, as in the Antarctic Dry Valleys (Doran et al., 1998).

A complication is that layers outcropping near the base of Mount Sharp may have been buried to depths below the base of the ancient cryosphere (especially if insulated by salt hydrates; Kargel et al., 2007). Deeply buried layers may have been altered by deeper-sourced fluids, but the prediction of a horizontally-stratified early hydrosphere (Head, 2012) still holds.
7.2. From snowmelt time series to the Mount Sharp stratigraphic logs

Seasonal cycles and runoff. Early in the melt season, melt will percolate vertically and refreeze (Marsh and Woo, 1984). Infiltrating snowmelt can indurate and cement aeolian sand and dust. Flow-fingerling (Albert et al., 1999) will lengthen the lifetime of subsurface melt. Refreezing of early-season melt builds an impermeable ice table which favors horizontal flow and runoff. Channelized drainage and ponding in ice-covered lakes requires that water reaches channels before it refreezes. By analogy with the Antarctic Dry Valleys, ice cover should slow further freezing once water reaches channels. Because the daily average temperature is below freezing (this is not a general requirement for seasonal-melting models, but it is a feature of the model output considered here), drainage times through firn must be <1 sol, in turn requiring high drainage density. Channel deposits with high drainage density are sometimes seen within the sedimentary rocks of Mars, feeding into much larger (and much more frequently preserved) inverted channels (e.g., Malin et al., 2010).

Milankovitch cycles. Snowmelt predictions are mapped onto sedimentology and stratigraphy in Fig. 17 (compare Fig. 1). Wet–dry cycles with period ~20 kyr are inevitable unless ΔT \geq 15 K. Early in the wet phase of a wet–dry cycle, infiltration can provide water for diagenesis of layers that were deposited under dry conditions (Fig. 17). Runoff will be increasingly favored as cementation impairs infiltration. The primary control on temperature cycles is precession, with secondary control by ~100 Kyr eccentricity cycles. Fig. 17’s “STEADY ACCUMULATION” column shows sedimentological predictions for the case where sediment deposited during dry episodes is lithified by infiltration of snowmelt. Fig. 17’s “WET-PASS FILTER/DISCONFORMITIES” column shows sedimentological predictions for the case where rock formation only occurs during wet intervals. Episodic reworking and further aqueous alteration is possible in either case. Preferential preservation of aeolian sediment during wet periods has been proposed for Earth – only small quantities of salt or clay cement are needed to make aeolian sediment stick in place (Nickling, 1984; Kocurek, 1998; Stokes and Bray, 2005; Hesse, 2011). Quasi-periodic liquid water availability at Gale will not necessarily produce quasi-periodic sedimentology. On Earth, climate signals at orbital frequencies are recorded with high fidelity by abyssal sediments (Pälike et al., 2006), but they are shielded by fluvial processes and barely detectable in fluvio-deltaic sediments (Jorolmack and Paola, 2010).

Sequence stratigraphy on Earth divides stratigraphic sequences into unconformity-bound packages (e.g., Stanley and McCabe, 1999). ISEE-Mars output suggests that the equivalent of sequence stratigraphy for Mars will involve mound accumulation during rare wet periods, and either bypass or mound degradation (and apron accumulation?) during more common dry periods (Kocurek, 1998; (Kite et al., 2012a).

8. Discussion

8.1. Water, dirt and sulfur: which was the limiting factor for sedimentary rock production?

Without cementation, sand and dust may accumulate but will ultimately be blown away by wind. Induration is required for strata to survive 3 Ga. We assume that cementation is the bottleneck step for making martian sedimentary rocks. The bottleneck could be earlier (piling up) or later (present-day exposure of cemented material), at least in principle.

If sediment starvation throttled early Mars sedimentary rock production, then either sediment fluxes or sediment reservoirs must have been small – but neither seems likely. Gross deposition rates for atmospherically-transported sediment on today’s Mars (10^{11}–10^{12} m/yr; Arvidson et al., 1979; Geissler et al., 2010; Johnson et al., 2003; Kneip et al., 2003; Drube et al., 2010) are much less than past accumulation rates of sedimentary rocks: ~30 μm/yr at Bécquerel Crater (Lewis et al., 2008), ≤20–300 μm/yr at Aeolis Dorsa (Kite et al., 2012). Planet-wide sand motion occurs on Mars (Bridges et al., 2012). Both sand and dust transport increase sharply for small increases in P (Newman et al., 2005). Mars has lost CO$_2$ over time (Barabash et al., 2007), and gross accumulation rates for atmospherically-transported sediment were probably $\geq 10^{-2} \mu$m/yr at the O(10)7 mbar level required for snowmelt. Present-day reservoirs of airfall deposit are large. For example, dust deposits at Tharsis and E Arabia Terra are O(10)7 m thick (Bridges et al., 2010; Mangold et al., 2009). On early Mars, background dust supply would be supplemented by sediment produced during impacts and volcanic eruptions. We do not have good constraints on the current surface dust (and sand) budget and how important finite dust reservoirs are for the current dust cycle, let alone on early Mars. Therefore, applying current deposition rates to make the argument that sediment availability is not a limiting factor is fairly speculative. Nevertheless, if fluxes and reservoirs were as large in the past as today, sedimentary rock formation would not have been limited by the availability of atmospherically-transported sediment. The difficulty then is to pin the sediment in place for >3 Gyr, and cementation by snowmelt is one mechanism that can resolve this difficulty.

Malin and Edgett (2000) and Edgett and Malin (2002) have suggested sedimentary rocks were once much more widespread, and that blanketing or erosion since sedimentary-rock time explains today’s restricted exposure. In this view, what makes Gale special is deep moat erosion, not deep sedimentation (Edgett, 2011). At least in some craters, stratal orientations support the alternative hypothesis that mounds grew from a central core (Conway et al., 2012; Kite et al., 2012a).

Sulfate cementation requires water and S. It is possible that very early in Mars history (during relatively intense highland eruption), water was not limiting and so S was. Relatively late, it is unlikely that S was limiting largely because of geochemical evidence for low water/rock ratios. Mars sedimentary rocks are enriched in S relative to the global soil (McLennan et al., 2010), and are estimated to contain a large proportion of the total S degassed by Mars volcanoes (Michalski and Niles, 2012). Therefore, it is necessary to explain how S became concentrated in sedimentary rocks. Acidic conditions like those observed at Meridiani Planum are likely only a part of a range of conditions that existed on the martian surface throughout its history. Charge balance of meltwater in equilibrium with the CO$_2$ in the atmosphere (and containing no additional ions other than sulfate) shows that only ~0.5 mM sulfate are required to reach pH ~3, if the sulfur arrived as sulfuric acid. This is also true if the sulfur comes from preexisting sulfate minerals, providing that the cations released by sulfate mineral dissolution in meltwater are precipitated as carbonates due to interaction of the solutions with the CO$_2$ in the atmosphere. An intense snowmelt episode might generate O(1012) kg of meltwater per year (O(109) kg/m2 yr over 0.1% of the planet), and would therefore require approximately 7.5 x 1019 moles of sulfur per year for acidification. This is equivalent to approximately 10% of Earth’s present volcanic outgassing rate (Halevy et al., 2007). Given the higher estimated sulfur content of martian magmas (Righter et al., 2009), this would represent a still smaller fraction of the average volcanic outgassing rate. Melting does not occur continuously, so sulfuric acid deposited onto the dry surface could partly avoid neutralization by silicate weathering and accumulate to acidify meltwater once melting occurred. Sulfur could also be contributed by preexisting and remobilized sulfates. Melting occurs episodically, with 102–103 years between episodes of melting. Volcanic outgassing of sulfur or aeolian remobilization of preexisting sediments during these dry
periods “charges” the unconsolidated, mobile soil with sulfur (Catling et al., 2006), although not to the concentrations seen in the sedimentary rocks. The snowmelt model does not require initial S contents to be as high as in the sedimentary rocks we observe: once snowmelt forms, it dissolves and remobilizes the S to concentrate it in the last place that the water reached before evaporating or freezing. The sulfate may thus cement previously unconsolidated sediments in a process analogous to gypcrete formation, or accumulate in basins where water collected and evaporated. Spirit observations of the Peace-class rocks and the Troy deposit provide strong evidence that this S-concentrating mechanism has operated on Mars (Squyres et al., 2006; Arvidson et al., 2010).

8.2. Comparison with ice-weathering and global-groundwater models

Mechanisms for sedimentary rock formation on Mars must define sources of water, sediment, sulfur, and heat. In the ice-weathering model of Niles and Michalski (2009), the water source is an ice sheet. Sediment and sulfur is sourced from dust and gas trapped within the ice sheet. The heat source for weathering is the solid-state greenhouse effect at shallow depths, and geothermal heating as the ice is buried. In the global-groundwater model (Andrews-Hanna et al., 2010), strong greenhouse forcing warms the low latitudes to >273 K (long term average). The water source is a deep, regional-to-global groundwater reservoir, which is recharged by precipitation or basal melting. The sulfur source can be sulfide minerals, or the atmosphere. The seasonal melting model implies conditions that are warmer and wetter than the ice-weathering model, but much colder and drier than the global-groundwater model. Snowmelt under a moderately thicker atmosphere is the water source, and insolation under influent but expected orbital conditions supplies heat. Sediment is atmospherically transported – ice nuclei, dust-storm deposits, saltating sand, ash, and fine-grained impact ejecta – and it is trapped in the snowmelt area by aqueous cementation. The sulfur source is the atmosphere.

The main strength of the ice-weathering model is that it is (near-)uniformitarian – there is no requirement for temperatures on early Mars to have been much greater than temperature on today’s Mars. Ice-sheet sulfate weathering is ongoing on Earth, and there is evidence for recent sulfate formation on Mars (Mangold et al., 2010; Massé et al., 2012). Current gaps in the ice-weathering model include the difficulty of explaining interbedded runoff features (Grotzinger et al., 2006), except as post-sulfate reworking, and a lack of a physical model for the proposed weathering mechanism.

Global groundwater models can explain the location of sedimentary rocks and the diagenetic stratigraphy at Meridiani (Andrews-Hanna et al., 2007; Andrews-Hanna and Lewis, 2011). The global groundwater model is internally self-consistent and complete. Upwelling rates are consistent with inferred sediment accumulation rates. The discovery of gypsum veins in material eroded from the Shoemaker Formation ejecta in Endeavour Crater has been interpreted as evidence for bottom-up groundwater flow (Squyres et al., 2012), but this is inconclusive because gypsum veins are common in settings with a top-down water supply. Chaos terrain strongly suggests Mars had cooled enough to form a cryosphere that could modulate groundwater release. Therefore, even in the global-groundwater model, post-chaos interior layered deposits must have formed via a mechanism consistent with $T < 273K$, such as spring flow (Pollard et al., 1999).

The advantages of the snowmelt model over previous models for the sedimentary-rock water source are as follows. The snowmelt model arises from a self-consistent climate solution (Sections 4 and 5). Liquid water production can “start and stop” rapidly relative to Milankovitch cycles. The equatorial concentration of sedimentary rocks arises directly from insolation (Sections 5 and 6). In the global-groundwater model, the low-latitude concentration of sedimentary rocks flows from a prescribed low-latitude distribution of recharge (Andrews-Hanna et al., 2010). Ice-weathering can take place even under modern Mars polar conditions (Niles and Michalski, 2009). In the snowmelt model, the sedimentary rocks form more or less in their current locations, with their current layer orientations, and in their current shapes. Most sedimentary rocks are now in moat-bounded mounds, filling craters and canyons. Groundwater models imply removal of $>10^8$ km3 of siliciclastic rock to an unknown sink (Andrews-Hanna, 2012; Zabrusky et al., 2012). This removal is mediated by a major phase of aeolian erosion which produces the moats. Structural deformation is also required to tilt the near-horizontal primary dips expected for playa-like deposition to the observed present-day draping dips. There is no need to appeal to large-scale postdepositional modification in either the snowmelt model or the ice-weathering model (e.g. Kite et al., 2012, in preparation). Notwithstanding these advantages, the snowmelt model assumes that precipitation is uniform, but in reality it must have been spatially variable. ISEE-Mars also does not include a physical model for any of the steps linking melt generation to bedrock formation, and so it does not currently make detailed geochemical or mineral-stability predictions.

8.3. Validity of model assumptions

We neglect the lapse rate in surface temperature. Radiative fluxes set surface temperature on current Mars, so this is a good approximation for 6 mbar CO$_2$ atmospheres (Zalucha et al., 2010). What happens as P is increased? Results from the LMD GCM (Wordsworth et al., 2012b) show that the adiabatic lapse rate is not large at 250 mbar but is important for P$_s$ ~ 500 mbar. We ran the NASA Ames Mars GCM at 80 mbar for modern orbital conditions, topography, and luminosity, as a double-check. Only a weak change in $\partial T/\partial z$ was found relative to the 6 mbar case. Both models show weak coupling of the adiabatic lapse rate to surface temperature for P_s ~ 100 mbar.

![Fig. 18. Three routes to runoff on early Mars. Assuming runoff did not occur during most years on early Mars, runoff can be produced by perturbing orbital conditions, reducing albedo, heating from greenhouse forcing or impact shock energy, or some combination (black axes). All mechanisms can produce runoff ~1 mm/h, but are distinguishable (gray arrows) by their limiting runoff and by their timescale.](image-url)
Atmospheric collapse to form perennial CO₂ ice caps is more likely for Faint Young Sun insolation and for ~100 mbar initial P (Kahre et al., 2011; Soto, 2012). However, snowmelt requires high ϕ, which is less favorable for atmospheric collapse. Will a CO₂ atmosphere that has collapsed at low ϕ reinitate on return to high ϕ? The rapid response of Mars atmospheric pressure to surface-energy-balance changes suggests that atmospheres need not stay collapsed. Dividing a 100 mbar atmosphere by the current seasonal CO₂ exchange rate of ~3 mbar/yr gives a reinitiation time of 30 yr, much shorter than orbital change timescales of 10⁴ yr. Therefore the atmosphere is relatively unlikely to be collapsed for orbital conditions that optimize snowmelt.

3D effects arising from the general circulation of the atmosphere are not included in ISEE-Mars. The most recent equatorial glaciers formed at intermediate elevations on Tharsis and Terra Sabaea (Forget et al., 2006; Shean, 2010), associated with 3D effects such as orographic precipitation. Models disagree about where ice should precipitate under different orbital conditions (Mischna et al., 2003; Forget et al., 2006); results are sensitive to the rate of precipitation (Mischna and Richardson, 2006) and the treatment of thermal inertia (Madeleine et al., 2009). This motivates follow-up GCM work.

We assume that the freezing-point depression for melting is not very large. This is appropriate for sulfates (e.g., ΔT ≤ 4 K for the magnesium sulfate – H₂O eutectic brine), which are the most commonly reported secondary minerals in martian sedimentary rocks. Chloride brines allow liquid at much lower temperatures (Fairén et al., 2008).

We assume C changes more slowly than O, because post-Noachian rates of volcanic degassing, weathering, and loss to space are small compared to the atmospheric reservoir of CO₂. This assumption does not consider volcanic- or impact-driven transients in ΔT, nor reversible sequestration of CO₂ in ice deposits (Kreslavsky and Head, 2011; Phillips et al., 2011).

Finally, we assume no correlation between instantaneous values of e, ϕ, and Lp. Individual reverse integrations of the Solar System (obtained from http://www.imcce.fr/Equipes/ASD/insola/mars/DATA/index.html) show statistically significant correlation between e and ϕ, but the correlation coefficients are small (|R| < 0.08) and, more importantly, the sign of correlation varies between integrations. The weakness of these correlations justifies treating each orbital parameter independently. Mean probabilities exceed median probabilities for high e, but the exceedance probability for e = 0.15 is ~0.8 over 4 Gya (Laskar, 2008).

8.4. Atmospheric evolution and the decline of sedimentary rock formation

Few sedimentary rocks form on Mars now, and there is minimal surface liquid water. The only evidence for liquid water at Meridional Mounts is that the formation of evaporite deposits near the south pole is consistent with extensive liquid water (Ehlmann et al., 2012; Boynton et al., 2009; Morris et al., 2010), but it is unclear how much of this carbonate formed before the sedimentary rocks. Carbonate in young soils could be reworked from older materials (McGlynn et al., 2012). A problem for carbonate-formation during the sedimentary rock era is that many sedimentary rocks contain sulfates, and small amounts of SO₂ make carbonate precipitation more difficult (Bullock and Moore, 2007; Haley and Schrag, 2009).

An intriguing possibility is that a positive feedback between carbonate formation and increasing maximum temperatures led to a runaway decline in Mars’ atmospheric pressure (Kite et al., 2011a). In this feedback, decreasing pressure allows the amplitude of the diurnal temperature cycle to grow, which favors melting (as pointed out by Richardson and Mischna (2005)). Liquid water availability promotes carbonate formation, so pressure decreases more steeply (Kite et al., 2011a). This positive feedback does not occur when the ground is covered with snow – strong evaporitic cooling ensures that peak temperatures decline as pressure falls (Fig. 9). However, for thin-film or dispersed-frost melting where the thermal environment is controlled by soil, evaporitic cooling is less important. Decreasing pressure may favor thin-film or dispersed-frost melting.

Theory predicts that Mars’ mean obliquity has jumped between high and low values many times in the past 3.5 Ga (Laskar et al., 2004), so orbital change is not a theoretically attractive explanation for Mars’ long-term drying trend.

8.5. What could allow streams to flow on early Mars?

This paper has emphasized infrequent, but expected, orbital conditions as a driver of melting (Figs. 12 and 18). Other drivers are possible. Deposition of ash or fine-grained ejecta can drive transient runoff events by lowering albedo (Fig. 6, Eq. (4)). Dark unweathered silicates provide the trigger for their own alteration by darkening the snow. In addition to Mount Sharp (Section 7.1), albedo reduction may have supplied meltwater for phyllosilicate formation at Mawrth: a regionally extensive, layered deposit possibly formed by top-down weathering of ash (e.g., Michalski and Noe Dobrea, 2007; McKeown et al., 2009; Noe Dobrea et al., 2010). Layered clays generally predate the sulfate rocks. The decline of volcanism and impacts in the Early Hesperian is consistent with the hypothesis that albedo reduction is needed to make clays. Albedo effects are the primary regulator of spatial and temporal melt production in the Antarctic Dry Valleys (e.g., Hall et al., 2010). Sharp increases in melt rate followed experimental dusting of an Antarctic Dry Valleys glacier surface with 13–100 g/m² fine sand (Lewis, 2001). Dry Valleys snowpack melts faster when it is buried beneath sand, provided the sand cover is mm–dm thick (Heldmann, 2012).

Heating from longwave forcing or conduction (ΔT or impact ejecta heating) could also drive melting. Increased LWI could result from clouds (but see Colaprete and Toon, 2003 and Wordsworth et al., 2012a) or short-lived pulses of volcanogenic gases (Haley et al., 2007; Johnson et al., 2008; Tian et al., 2010; Haley and Head, 2012).

A bright young Sun would provide more energy for melting on early Mars. This paper uses a standard solar model (Bahcall et al., 2001) that is consistent with solar neutrinos and helioseismology, but not elemental abundances in the photosphere.
orbital conditions are relatively long-lived, but again runoff production is downwind of the large volcanoes (Kerber et al., 2012). Optimal production cannot exceed 2–3 mm/h, and should be most common when the Sun is farthest from the Earth (e.g., Mangold et al., 2012). Canic- or impact-driven events are short-lived, but with potentially very large discharge (e.g., Mangold et al., 2012). The climates considered in this paper are extremely cold. Melt amounts of melting with dusty, low-thermal-inertia snow, and find amounts of runoff. One possibility is that cementation of the ice grain radius 1 mm Appendix C
Solar constant (now) 1.361 × 10^2 W/m² Kopp and Lean (2011)

Future work could determine which mechanism is responsible using geologic observations and paleohydrology to constrain discharge and timescale. Albedo reduction events are short-lived, with runoff production that cannot exceed 2–3 mm/h, and should be most common downwind of the large volcanoes (Kerber et al., 2012). Optimal orbital conditions are relatively long-lived, but again runoff production is limited by sunlight energy and cannot exceed 2–3 mm/h (Fig. 6). Volcanic- or impact-driven events are short-lived, but with potentially very large discharge (e.g., Mangold et al., 2012).

The climates considered in this paper are extremely cold. Melt amounts of melting with dusty, low-thermal-inertia snow, and find amounts of runoff. One possibility is that cementation of the ice grain radius 1 mm Appendix C
Solar constant (now) 1.361 × 10^2 W/m² Kopp and Lean (2011)

Future work could determine which mechanism is responsible using geologic observations and paleohydrology to constrain discharge and timescale. Albedo reduction events are short-lived, with runoff production that cannot exceed 2–3 mm/h, and should be most common downwind of the large volcanoes (Kerber et al., 2012). Optimal orbital conditions are relatively long-lived, but again runoff production

Selected variables

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>Spin–orbit properties</td>
</tr>
<tr>
<td>O′</td>
<td>Milankovitch parameters</td>
</tr>
<tr>
<td>C</td>
<td>Climate parameters</td>
</tr>
<tr>
<td>φ</td>
<td>Obliquity</td>
</tr>
<tr>
<td>b backers “b” of Dundas and Byrne (2010)</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>Eccentricity</td>
</tr>
<tr>
<td>Lp</td>
<td>(Solar) longitude of perihelion</td>
</tr>
<tr>
<td>Ls</td>
<td>Solar longitude</td>
</tr>
<tr>
<td>M</td>
<td>Mean anomaly</td>
</tr>
<tr>
<td>p</td>
<td>Atmospheric pressure</td>
</tr>
<tr>
<td>Ps</td>
<td>Atmospheric pressure at zero elevation</td>
</tr>
<tr>
<td>ΔT</td>
<td>Non-CO₂ greenhouse forcing</td>
</tr>
<tr>
<td>f_snow</td>
<td>Fraction of planet surface area with warm-season snow</td>
</tr>
<tr>
<td>Q_k</td>
<td>Fraction of incident sunlight absorbed at level k</td>
</tr>
<tr>
<td>LW</td>
<td>Greenhouse forcing</td>
</tr>
<tr>
<td>LW_s</td>
<td>Thermal emission by surface</td>
</tr>
<tr>
<td>SW</td>
<td>Insolation</td>
</tr>
<tr>
<td>s_r</td>
<td>Rayleigh scattering correction factor</td>
</tr>
<tr>
<td>L_p</td>
<td>Latent heat losses by forced convection</td>
</tr>
<tr>
<td>L_l</td>
<td>Latent heat losses by forced convection</td>
</tr>
<tr>
<td>S_l</td>
<td>Sensible heat lost by forced convection</td>
</tr>
<tr>
<td>S_r</td>
<td>Sensible heat lost by forced convection</td>
</tr>
</tbody>
</table>

(Aasplund et al., 2005). Enhanced mass loss from the young Sun would help resolve this discrepancy, and would make the young Sun more luminous (Sackmann and Boothroyd, 2003; Guzik and Mussack, 2010; Turck-Chièze et al., 2011). To change the conclusion that the Sun was faint at the time the sedimentary rocks formed, the subsequent solar mass loss rate must have been two orders of magnitude higher than inferred from nearby solar-analog stars (Wood et al., 2005; Minton and Malhotra, 2007).

Future work could determine which mechanism is responsible using geologic observations and paleohydrology to constrain discharge and timescale. Albedo reduction events are short-lived, with runoff production that cannot exceed 2–3 mm/h, and should be most common downwind of the large volcanoes (Kerber et al., 2012). Optimal orbital conditions are relatively long-lived, but again runoff production is limited by sunlight energy and cannot exceed 2–3 mm/h (Fig. 6). Volcanic- or impact-driven events are short-lived, but with potentially very large discharge (e.g., Mangold et al., 2012).

The climates considered in this paper are extremely cold. Melt amounts of melting with dusty, low-thermal-inertia snow, and find amounts of runoff. One possibility is that cementation of the
sedimentary rocks is the result of optimal orbital conditions, but that river deposits interbedded with those highly erodible sediments (Williams, 2007) record additional transient (non-orbital) warming. Future work could explore warmer snowmelt-producing climates, comparable to the coast of Greenland.

9. Summary and conclusions

Our paper has two objectives. First, we have presented a seasonal melting framework for Mars, ISEE-Mars, that relates candidate paleoclimate parameters to the production of seasonal meltwater. This framework has potentially broad applications. Second, we have applied the model to a specific problem: the origin and distribution of sedimentary rocks on Mars. Our approach has several novel elements:

- Cold-trap tracking using the potential well approximation (Section 4.3).
- Integrating over all orbital conditions (Section 4.4).
- k-means clustering of climate model output for comparison to data (Section 6).

Seasonal melting on Mars is the product of tides of light and tides of ice, which move around the planet on Milankovitch timescales. The peaks of these tides infrequently intersect, and melting can occur when they do. This meltwater may contribute to sedimentary rock cementation.

The main conclusions from our study are as follows:

1. Order-of-magnitude calculations indicate that snowmelt is a sufficient water source for sedimentary rock cementation on a cold early Mars.
2. Sedimentary rocks on Mars are narrowly concentrated at equatorial latitudes and at low elevations.
3. Spin–orbit conditions for snowmelt in cold traps on Mars are optimal when obliquity is high, eccentricity is high, and longitude of perihelion is aligned with equinox. Melting then occurs in the early afternoon, at the equator, during perihelion equinox season.
4. A model of snowmelt on early Mars has been presented, which uses a potential-well approximation to track cold traps for all orbital conditions. Integrated over all orbital conditions on an idealized flat planet with a ~100 mbar pure CO₂ atmosphere, and assuming snowpack with the albedo of dust, ISEE-Mars predicts a narrow equatorial concentration of snowmelt. This assumes that warm-season snow is tightly confined to cold traps. ISEE-Mars predicts a broad low-latitude belt of snowmelt if warm-season snow is more broadly dispersed.
5. When MOLA topography is used, atmospheric pressure > 100 mbar drives snow to high ground. High \(f_{\text{snow}} \) allows snowmelt on low ground even at high P. Sedimentary rocks are not on high ground, so either \(f_{\text{snow}} \) was high, snowmelt was not the water source for the sedimentary rocks, or P was < 100 mbar at the time of sedimentary rocks.
6. With MOLA topography, a large swathe of parameter space produces a snowmelt distribution that is a good match to sedimentary rock locations. Enough water is produced to satisfy mass balance for aqueous alteration of sedimentary rock.
7. Within our model framework, cold early Mars climate states give the best fit to the spatial distribution of sedimentary rocks on Mars. Much warmer climates would lead to extensive snowmelt over a large swath of the planet, inconsistent with observations.
8. Climates that allow surface liquid water anywhere usually predict snowmelt at Gale. Therefore, if Curiosity finds that snowmelt did not make a major contribution to sedimentary rock formation at Mount Sharp, this would be a decisive failure for our model.
9. Specific predictions for MSL at Gale’s mound include generally homogenous aqueous chemical processing on ascending the mound, and wet/dry orbital cycles, with wet events only during optimal conditions. Evidence for vertical fluid flow over distances comparable to the height of Gale’s mound would be a major failure of the model presented here.
10. This is the first physical model to identify Gale as a hemispheric maximum for sedimentary rock formation on Mars. ISEE-Mars therefore has the potential to relate observations at Gale to global habitability. We have presented a minimal model in which potentially habitable surface conditions are severely restricted in space and time.

Acknowledgments

It is a pleasure to thank the following people for their generosity with time, ideas and data. We are grateful to Richard Brandt and Steve Warren for sharing the radiation code underlying (Brandt and Warren, 1993). Paul Niles and anonymous reviewers wrote stimulating, thorough, and fair reviews. This work was triggered by discussions with Oded Aharonson, Jeff Andrews-Hanna, and Devon Burr. Discussions with Mark Allen, Konstantin Batygin, Bill Cassata, Bill Dietrich, Bethany Ehlmann, John Eiler, Woody Fischer, John Grotzinger, Alex Hayes, Jim Head, Joel Hurowitz, Ross Irwin, Gary Kocurek, Misha Kreslavsky, Mike Lamb, Vedran Lekic, Alejandro Soto, Ken Tanaka, Aaron Wolf and Robin Wordsworth supplied us with new ideas and refined our existing ones. E.S.K. is grateful to Oded Aharonson, Woody Fischer, Francois Forget, John Grotzinger, Kevin Lewis, Joannah Metz, Mikki Osterloo, Robin Wordsworth, and James Wray for sharing their preprints and datasets. This research was supported by the U.S. taxpayer through NASA Grants NNX08AN13G, NNX09AJ18G, and NNX09AL20G (to M.M.), NNX11AF51G (to Oded Aharonson), and NSF Teragrid allocation TG-EAR100023. I.H. acknowledges support from a Sir Charles Clore Prize for Outstanding Appointment in the Experimental Sciences at the Weizmann Institute of Science, and an Alon Fellowship for Young P.I.s from the Israeli Committee for Higher Education. E.S.K. is supported at Caltech by an O.K. Earl Fellowship.

Appendix A. Data analysis

The MOC NA sedimentary rock database is probably a good proxy for the true distribution of sedimentary rocks on Mars, even though MOC NA did not sample the planet uniformly. MOC NA took 97,000 images of Mars and about 4% showed sedimentary rocks (Malin et al., 2010) (http://marsjournal.org/contents/2010/0001/files/figure16.txt). Although MOC NA imaged only 5.5% of Mars’ surface (Malin et al., 2010), the Mars Reconnaissance Orbiter Context Camera (CTX) has surveyed >75% of the planet at comparable resolution to MOC NA (April 2012 Malin Space Science Systems press release, http://www.mssss.com/news/index.php?id=43) and has not found large areas of sedimentary rock missed by MOC NA. MOC NA targets were selected on a 1-month rolling cycle, and sedimentary rocks were among the highest scientific priorities of the MOC NA investigation (Malin et al., 2010). In the same way that oil wells are drilled more frequently in productive basins, there is a high density of MOC NA images in areas of sedimentary rocks that were identified early in the mission. Regardless, there is little difference between maps of the relative abundance of sedimentary rocks defined using the fraction of MOC NA images showing sedimentary rocks within a given spatial bin versus maps.
defined using the absolute number of sedimentary rock observations in a given spatial bin. We assumed sedimentary rock locations are close to image-center coordinates. We exclude orbits early in the MOC NA mission, which can have large image footprints.

The Terra Sirenum drape deposit (Grant et al., 2010) and a large part of the Medusae Fossae Formation (Bradley et al., 2002) are sedimentary in origin, but are excluded by the definition of sedimentary rock used by the MOC NA team. These omissions from the database have little or no effect on our data-model comparison. The Terra Sirenum drape deposit has a phyllosilicate-rich mineralogy that is distinct from the sulfate-bearing sedimentary rocks that are the focus of this paper, while ISEE-Mars consistently predicts the entire Medusae Fossae Formation to be a global near-maximum in sedimentary rock accumulation.

Because the abundance of sulfate-bearing sedimentary rocks peaks in the Hesperian, Terminal Hesperian and Amazonian terrain may conceal underlying sedimentary rocks and should be excluded from the analysis. We traced the edge of these young materials using the USGS Mars Global GIS (ftp://pdsimage2.wr.usgs.gov/pub/pigpen/mars/Global_GIS_Mars/) as a basemap. The resulting young-terrain mask excludes 45% of the planet, but only 3.5% of the images of sedimentary rocks (n = 105). These 3.5% are mostly from the Medusae Fossae Formation and the plateaux surrounding Valles Marineris. These rocks appear to represent a late talus in sedimentary rock formation. We retain them in Fig. 2, but omitting them does not change our conclusions.

Appendix B. Details of thermal model

The 1D model draws on previous work by others (particularly Clow, 1987; Liston and Winther, 2005; Williams et al., 2009; and Dundas and Byrne, 2010) and by ourselves (Kite et al., 2011b,c).

B.1. Radiative terms

A line-by-line radiative transfer model of the atmosphere (Halevy et al., 2009) is used to populate two look-up tables: LW$_j$ as a function of T_1 and P; and SW$_j$ as a function of P and solar zenith angle. The radiative transfer model, which for simplicity assumes a clear-sky, pure CO$_2$ atmosphere with no clouds or dust, is not run to radiative-convective equilibrium. Instead, for each combination of surface P, T, x, and solar zenith angle, an atmospheric P-T structure is prescribed and the resulting radiative fluxes are calculated. Following the approach of Kasting (1991), the tropospheric lapse rate is dry adiabatic and the stratosphere is approximated as isothermal with a temperature of 167 K. A two-stream approximation to the equations of diffuse radiative transfer (which accounts for multiple scattering) is solved over a wavelength grid as isothermal with a temperature of 167 K. A two-stream approximation to the equations of diffuse radiative transfer (which accounts for multiple scattering) is solved over a wavelength grid.

B.2. Free convective terms

Our turbulent-flux parameterizations closely follow Dundas and Byrne (2010). Sensible heat loss by free convection is:

$$S_h = 0.14(T - T_a)k_a\left(\frac{C_p v_a \rho_a}{\kappa_a} \frac{g}{v_a^2} \frac{\Delta P}{P_a}\right)^{1/3}$$

(B1)

where T_a is the atmospheric temperature, k_a is the atmospheric thermal conductivity, C_p is specific heat capacity of air, v_a is viscosity of air, ρ_a is density of air, g is Mars gravity, and $\Delta P/P_a$ is the difference in density between air in equilibrium with the ground and air overlaying the surface layer. $\Delta P/P_a$ is given by

$$\frac{\Delta P}{P} = \frac{(m_s - m_w)\epsilon_{sat}(1 - r_h)}{m_w P}$$

(B2)

Here, m_s is the molar mass of CO$_2$, m_w is the molar mass of H$_2$O, r_h is the relative humidity of the overlying atmosphere, and ϵ_{sat} is the saturation vapor pressure over water ice. The expression for ΔP assumes that water vapor is a minor atmospheric constituent.

T_a is parameterized as (Dundas and Byrne, 2010)

$$T_a = T_{min} + b_{DDB} T_a^{1-b_{DDB}}$$

(B3)

where T_{min} is the coldest (nighttime) surface temperature experienced by the model, and b_{DDB} is the Dundas–Byrne ‘b’, a fitting parameter. This is an empirical model motivated by Viking 2 measurements (Dundas and Byrne, 2010). b_{DDB} decreases as P increases, because atmosphere-surface turbulent coupling strengthens. $b_{DDB}(P)$ is obtained by fitting to the output of GCM runs at 7, 50, and 80 mbar which employed a version of the NASA Ames Mars GCM described in Haberle et al. (1993) and Kahre et al. (2006). Specifically, $b_{DDB}(P)$ is fit to the global and annual average of the temperature difference between the surface and the near-surface atmosphere for local times from 11:00 to 13:00.

We set (Dundas and Byrne, 2010)

$$L_P = L_0 1.14\Delta P P_a D_a \left(\frac{v_a}{D_a}\right) \left(\frac{g}{v_a^2} \frac{\Delta P}{P}\right)^{1/3}$$

(B4)

where L_0 is the latent heat of evaporation, ΔP is the difference between atmosphere and surface water mass fractions, and D_a is the diffusion coefficient of H$_2$O in CO$_2$.

B.3. Forced convective terms

Sensible heat lost by forced convection is given by:

$$S_f = \rho_a C_p u A(T_a - T)$$

(B5)

where u is the near-surface wind speed. Near-surface winds are controlled by planetary boundary layer turbulence which serves to mix the atmosphere vertically, so $S_f \neq 0$ is consistent with the assumption of no meridional heat transport. The drag coefficient A is given by

$$A = \left(\frac{A_{v_{200}}}{\ln(z_{anem}/z_0)}\right)^2$$

(B6)

where $A_{v_{200}}$ is von Karman’s constant, z_{anem} is anemometer height, and z_0 is surface roughness. The anemometer height is virtual – it is the lowest model level in Mars Climate Database (5.33 m).

Near-surface wind speed u in the NASA Ames Mars GCM decreases with increasing P and decreasing solar luminosity. Near-surface wind speed is 3.37 m/s in the European Mars Climate Database (“MY24” simulation, global average) (Millour et al., 2008). This is extrapolated for $P \leq 293$ mbar using a logarithmic dependence of u on P fitted to the global and annual average of Ames...
Mars GCM model surface wind speed for initial pressures of 7, 50 and 80 mbar. u_0 is lowered by a factor of 1.08 for the Faint Young Sun using the ratio of wind speeds for two 50 mbar Ames Mars GCM simulations that differ only in solar luminosity. Simulations suggest u_0 increases with ϕ (Haberle et al., 2003), but this is ignored. Fig. 8 shows the sensitivity of results to $u_0 = f(P)$ versus $u_0 = f(P)$.

Latent heat losses by forced convection are given by:

$$L_f = \frac{M_p}{K_{sht}} u_s (e_{sat}(1 - r_h))$$

(87)

where M_p is the mass of water, and k is Boltzmann's constant. Latent heat fluxes for dirty snow are calculated assuming that the entire exposed surface area is water ice. Because dirty concentrations are at the percent level by volume, or less, for all results presented here, this is acceptable.

The free and forced fluxes are summed together, rather than considering only the dominant term. This matches the functional form of Mars-chamber data (Chittenden et al., 2008) and is the result from interpolation. Statements about melt-likelihood map construction. Results in this paper are based on grids of runs at $\phi = \{0^\circ, 10^\circ, 20^\circ, \ldots, 80^\circ\}$, $e = \{0.03, 0.06, 0.09, 0.115, 0.13, 0.145, 0.16\}$, $L_p = \{0^\circ, 15^\circ, 30^\circ, \ldots, 90^\circ\}$ (with mirroring to build up a full precession cycle), $L_s = \{0^\circ, 22.5^\circ, 45^\circ, \ldots, 337.5^\circ\}$, and latitude $\{0^\circ, -90^\circ, -80^\circ, -70^\circ, \ldots, 90^\circ\}$, giving 1.5×10^6 snowpack thermal model runs for each C. Quoted results at intermediate values result from interpolation. Statements about C are based on interpolation in a grid of runs at $P = \{4, 8, 16, 24, 48\} \times 610 \text{ Pa} = \{24, 49, 98, 146, 293\} \text{ mbar}$, with $\Delta T = 0 \text{ K}$. For the ensemble shown in Fig. 15, ΔT and f_{snow} were varied in postprocessing.

To remove longitudinal stripes of high snow probability in the Northern Plains that are artifacts of finite model resolution in the table, the stage function in ($f_{snow} - f$) is replaced by a linear ramp in ($f_{snow} - f$). This is a minor adjustment.

Appendix C. Snowpack radiative transfer

Crystalline water ice is opaque in the thermal infrared, but almost transparent to visible light. The resulting solid-state greenhouse effect enhances snowmelt (Clow, 1987; Brandt and Warren, 1993; Möhlmann, 2010). The purpose of the solid-state greenhouse parameterization in this paper is to self-consistently model the tradeoff between snowpack broadband albedo (a) and subsurface absorption of sunlight. This does not require precisely calculating a as a function of dust content, so the model uses simple linear approximations to the radiative transfer equations developed for widely-separated atmospheric aerosols (e.g. Kieffer, 1990; Calvin et al., 2009). Although more sophisticated models can be employed to take account of aspherical particles, near-field effects, and heterogeneous compositions (e.g. Cull et al., 2010; Yang et al., 2002), the lack of consensus on their importance leads us to not include them in our algorithm.

The solid-state greenhouse parameterization uses the snow radiative transfer model of Brandt and Warren (1993). Ice refractive indices are from Warren and Brandt (2008), and are converted to Henyey-Greenstein parameters using a standard Mie code following Bohren and Huffman (1983). Mars dust optical parameters are calculated using the refractive indices of Wolff et al. (2006, 2009). An illustration of these parameters for the canonical atmospheric dust sizes is shown in Fig. 1 of Madeleine et al. (2011), but we also employ larger sizes as well. The 2000 ASTM Standard Extraterrestrial Spectrum Reference E-490-00 is used to describe the wavelength dependence of the direct flux component; diffuse flux is neglected as being a minor perturbation. The young Sun was ~100 K cooler in the standard solar model. Solar reddening increases a by <0.01, so the spectral shift is ignored here. The effect of small amounts of meltwater on a is minor (Warren, 1982) and is also ignored. The effects on wavelength-dependent direct-beam semi-infinite albedo (not shown) are broadly similar to the idealized “red dust” in Warren and Wiscombe (1980). Once optical properties are prescribed, the most important variables are dust content, effective dust grain radius, and effective ice grain radius. A given a can usually be obtained by several different combinations of these properties. The Brandt and Warren (1993) model is used to build a look-up table of fractional subsurface absorption.
as a function of these variables, plus direct-beam path length. This length is mapped to depth within soil by multiplying by the cosine of the zenith angle.

The radiative transfer model reproduces the trends found by Clow (1987). Recent measurements increase the martian dust single scattering albedo in the optical (Wolff and Clancy, 2003; Wolff et al., 2006, 2009), which reduces the amount of melting for a given dust concentration. Ice grain size growth is slow in Mars’ present day polar caps (Kieffer, 1990) but much faster under the near-melting conditions that are important for the model presented here. We adopt an effective size of 1 mm, corresponding to observed ice-grain radii in hoar layers in Earth snowpacks. Not surprisingly, there are no direct measurements of dust content in snow on Mars. Dust content in ice has been reported as “a few percent (up to at most around 30%)” by volume in the Northern Plains subsurface deposit (Dundas and Byrne, 2010), and ~15% by mass in the South Polar Layered Deposits. (Zuber et al., 2007). We assume ~2% dust mass fraction by volume and a dust grain radius of 4 μm.

Elwood Madden, M., Madden, A., Rimstidt, J., 2009. How long was Meridiani Planum wet? Applying a jarosite stopwatch to constrain the duration of diagenesis. Geology 37, 635.
