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Russian School

The towering figure of Kolmogorov and his very productive school is what
was perceived in the twentieth century as the Russian school of turbulence.
However, Russian important contributions neither start from nor end with
that school.

1.1 Physicist and pilot

“...the bombs were falling almost the way the theory predicts. To have
conclusive proof of the theory I'm going to fly again in a few days.”

A.A. Friedman, letter to V.A. Steklov, 1915.

What seems to be the first major Russian contribution into the turbu-
lence theory was made by Alexander Alexandrovich Friedman, famous for
his work on non-stationary relativistic cosmology, which has revolutionized
our view of the Universe. Friedman’s biography reads like an adventure
novel. Alexander Friedman was born in 1888 to a well-known Petersburg
artistic family [10]. His father, a ballet dancer and a composer, descended
from a baptized Jew who had been given full civil rights after serving 25 years
in the army (a so-called cantonist). His mother, also a conservatory gradu-
ate, was a daughter of conductor of the Royal Mariinsky Theater. Parents
divorced in 1897, the son stayed with the father and became reconciled with
his mother only after the 1917 revolution. While attending Petersburg’s sec-
ond gymnasium (the oldest in the city) he befriended a fellow student Yakov
Tamarkin, who later became a famous American mathematician and with
whom he wrote their first scientific works (on number theory, received pos-
itively by David Hilbert). In 1906, Friedman and Tamarkin were admitted
to the mathematical section of the Department of Physics and Mathematics
of Petersburg University where they were strongly influenced by the great
mathematician V. A. Steklov who taught them partial differential equations
and regularly invited to his home (with another fellow student V.I. Smirnov
who later wrote the well-known course of mathematics, the first volume with
Tamarkin). As his second, informal, teacher Alexander always mentioned
Paul Ehrenfest who was in Petersburg in 1907-1912 and later corresponded
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with Friedman. Friedman and Tamarkin were among few mathematicians
invited to attend the regular seminar on theoretical physics in the Ehren-
fest’s apartment. Apparently, Ehrenfest triggered Friedman’s interest in
physics and relativity, at first special and then general. During his gradu-
ate studies, Alexander Friedman worked on different mathematical subjects
related to a wide set of natural and practical phenomena (among them on
a potential flow, corresponding with Joukovsky, who was in Moscow). Yet
after getting his MSc degree, Alexander Friedman was firmly set to work
on hydrodynamics and found an employment in the Central Geophysical
Laboratory. There, the former pure mathematician turned into a physicist,
not only doing theory but also eagerly participated in atmospheric exper-
iments, setting the measurements and flying on balloons. It is then less
surprising to find Friedman flying a plane during the World War I, when
he was three times decorated for bravery. He flew bomb and reconnais-
sance raids, calculated the first bombardment tables, organized the first
Russian air reconnaissance service and the factory of navigational devices
(in Moscow, with Joukovsky’s support), all the while publishing scientific
papers on hydrodynamics and atmospheric physics. After the war ended
in 1918, Alexander Alexandrovich had been given a professorial position at
Perm University (established in 1916 as a branch of Petersburg University),
which boasted at that time Tamarkin, Besikovich and Vinogradov among
the faculty. In 1920 Friedman returned to St. Petersburg. Steklov got him
a junior position at the University (where George Gamov learnt relativity
from him). Soon Friedman was teaching in the Polytechnic as well, where
L.G. Loitsyansky was one of his students. In 1922 Friedman published his
famous work “On the curvature of space” where the non-stationary Uni-
verse was born [11]. Conceptual novelty of this work is that it posed the
task to describe the evolution of the Universe, not only its structure. The
next year saw the dramatic exchange with Einstein, who at first published
the paper that claimed that Friedman’s work contained an error. Instead of
public polemics, Friedman sent a personal letter to Einstein where he elab-
orated on the details of his derivations. After that, Einstein published the
second paper admitting that the error was his. In 1924 Friedman published
his work, described below, that laid down the foundations of the statistical
theory of turbulence structure. In 1925 he made a record-breaking balloon
flight to the height of 7400 meters to study atmospheric vortices and make
medical self-observations. His personal life was quite turbulent at that time
too, he was tearing himself between two women, devoted wife since 1913
and another one pregnant with his child (“I do not have enough willpower
at the moment to commit suicide” he wrote in the letter to the mother of his
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future son). On his way back from summer vacations in Crimea, Alexander
Friedman bought on a Ukrainian train station a nice-looking pear, did not
wash it before eating and died from typhus two weeks later.

The work on turbulence theory was done by Friedman with his student
Keller and was based on the works of Reynolds and Richardson both cited
extensively in [12]. Recall that Richardson derived the equations for the
mean values which contained the averages of nonlinear terms that charac-
terize turbulent fluctuations. Friedman and Keller cite Richardson’s remark
that such averaging would work only in the case of a so-called time sep-
aration when fast irregular motions are imposed on a slow-changing flow,
so that the temporal window of averaging is in between the fast and slow
timescales. For the first time, they then formulated a goal to write down a
closed set of equations for which an initial value problem for turbulent flow
can be posed and solved. The evolutionary (then revolutionary) approach
of Friedman to the description of the small-scale structure of turbulence
parallels his approach to the description of the large-scale structure of the
Universe. Achieving closure in turbulence description is nontrivial since hy-
drodynamic equations are nonlinear. Indeed, if v is the velocity of the fluid,
then Newton’s second gives the acceleration of the fluid particle:

% = 88—:' + (vV)v = force per unit mass (1.1)
Whatever the forces, already the acceleration contains the second (inertial)
term, which makes the equation nonlinear. Averaging fluid dynamical equa-
tions one expresses time derivative of the mean velocity, d(v)/0t, via the
quadratic mean ((vV)v). Friedman and Keller realized that a meaningful
closure can only be achieved by introducing correlation functions between
different points in space and different moments in time. Their approach was
intended for the description of turbulence superimposed on a non-uniform
mean flow. Writing the equation for the two-point function d(viva)/0t, they
then derived the closed system of equations by decoupling the third moment
via the second moment and the mean: (vivivk) = (v13) (vojvaK) + ... [12].
It is interesting that Friedman called the correlation functions ”moments
of conservation” (Erhaltungsmomenten) as they express "the tendency to
preserve deviations from the mean values” in a curious resemblance to the
modern approach based on martingales or zero modes. The work was pre-
sented at the First International Congress on Applied Mechanics in Delft in
1925. At the discussion after Friedman’s talk he made it clear that he was
aware that the approximation is crude and that time averages are not well-
defined. He stressed that his goal was pragmatic (predictive meteorology)
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and that only a consistent theory of turbulence can pave the way for dy-
namical meteorology: “Instruments give us mean values while hydrodynamic
equations are applied to the values at a given moment”. The introduction of
correlation functions was thus the main contribution into turbulence theory
of Alexander Friedman, a great physicist and a pilot.

One year after Friedman’s death, the seminal paper of Richardson on
atmospheric diffusion appeared. I cannot resist imagining what would have
happened if Friedman saw this paper and made a natural next step: to
incorporate the idea of cascade and the scaling law of Richardson’s diffusion
into the Friedman-Keller formalism of correlation functions and to realize
that the third moment of velocity fluctuations, that they neglected, is crucial
for the description of the turbulence structure. As it happened, this was done
15 years later by another great Russian scientist, mathematician Andrei
Nikolaevich Kolmogorov.

1.2 Mathematician

“At any moment, there exists a narrow layer between trivial
and impossible where mathematical discoveries are made.
Therefore, an applied problem is either solved trivially or
not solved at all. It is altogether different story if an
applied problem is found to fit (or made to fit!) the new
formalism interesting for a mathematician.”

A. N. Kolmogorov, diary 1943

Russians managed to continue for some time in the twentieth century the
tradition of great mathematicians doing physics.

Andrei Kolmogorov was born in 1903. His parents weren’t married. The
mother, Maria Kolmogorova, died at birth. The boy was named according
to her wish after Andrei Bolkonski, protagonist from the novel “War and
Peace” by Lev Tolstoy. Andrei was adopted by his aunt, Vera Kolmogorova,
and grew up in the estate of his grandfather, district marshal of nobility, near
Yaroslavl. The father, agronomist Nikolai Kataev, took no part in his son
upbringing, he perished in 1919, fighting in the Civil War. Vera and Andrei
relocated to Moscow in 1910. In 1920, Andrei graduated from the Madame
Repman gymnasium (cheap but very good) and was admitted to Moscow
University, with which he remained associated for the rest of his life. In few
months, he passed all first-year exams and was transferred to the second year
which “gave a right to 16 kg of bread and 1 kg of butter a month — full
material prosperity by the standards of the day” [21]. His thesis adviser was
Nikolai Luzin who ran the famous research group “Luzitania”. Apart from
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that, Kolmogorov was influenced by D. Egorov, V. Stepanov, M. Suslin, P.
Urysohn and P. Aleksandrov. With the latter Kolmogorov was close until
the end of his life, sharing a small cottage in Komarovka village where they
regularly invited colleagues and students, who described the unforgettable
atmosphere of science, art, sport and friendship [54]. Kolmogorov com-
pleted his doctorate in 1929. In 1931, following a radical restructuring of
the Moscow mathematical community, he was elected a professor. He spent
nine months in 1930-31 in Germany and France, later citing important inter-
actions with R. Courant, H. Weyl, E. Landau, C. Caratheodory, M. Frechet,
P. Levy. Two years later he was appointed director of the Mathematical Re-
search Institute at the university, a position he held until 1939 and again
from 1951 to 1953. In 1938-1958 he was a head of the new Department of
Probability and Statistics at the Steklov Mathematical Institute. Between
1946 and 1949 he was also the head of the Turbulence Laboratory in the
Institute of Theoretical Geophysics.

Andrei Nikolaevich Kolmogorov was a Renaissance man: his first scien-
tific work was on medieval Russian history, he then did research on met-
allurgy, ballistics, biology and statistics of rhythm violations in classical
poetry, worked on the educational reform, was a scientific head of the round-
the-world oceanological expedition and used to make 40 km cross-country
ski runs wearing only shorts. But first and foremost he was one of the
greatest and most universal mathematicians of the twentieth century (if
not of all time) [19]. Kolmogorov put the notion of probability on a firm
axiomatic foundation [20] and deeply influenced many branches of modern
mathematics, especially the theory of functions, the theory of dynamical
systems, information theory, logics and number theory. Seventy one people
got degrees under his supervision, among them several great and quite a
few outstanding scientists. There is certain grand design in the life work of
Kolmogorov, which one cannot give justice in this short essay. In his own
words: “I wish to stress legitimacy and dignity of a mathematician, that
understands the place and the role of his science in the developments of
natural sciences and technology, yet quietly continues to develop the “pure
mathematics” according to its internal logics”. Kolmogorov used to claim
that mathematical abilities of a person are in the inverse proportion to a
general human development: “Supreme mathematical genius has his devel-
opment stopped at the age of five or six when kids like to tear insect legs
and wings”. Kolmogorov estimated that he himself stopped at the age 13-14
when adult problems do not yet interfere with boy’s curiosity about every-
thing in the world ([54], pages 43, 171). Recall that Kolmogorov turned 14
in 1917 when the Revolution struck.
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What brought this man to turbulence? Kolmogorov’s interest in exper-
imental aspects may have been triggered as early as 1930 when he met
Prandtl (as did Friedman eight years earlier) [13]. An impetus could be
the creation of the Institute of Theoretical Geophysics by academician O.
Schmidt (who in 1939 made the freshly elected academician Kolmogorov a
secretary of the section of Physics and Mathematics) [55]. Kolmogorov’s
works on stochastic processes and random functions immediately predate
his work on turbulence. Turbulence presents a natural step from stochastic
processes, as functions of a single variable, to stochastic fields, as functions
of several variables. His diary entry that starts this section may shed addi-
tional light, see also [60].

Kolmogorov later remarked that “it was important to find talented col-
laborators ... who could combine theoretical studies with the analysis of
experimental results. In this respect I was quite successful” [60]. The first
student of Kolmogorov to work on turbulence was mechanical engineer M.
Millionschikov who treated turbulence decay. In 1939, Loitsyansky used the
Kéarman-Howarth equation to infer the conservation of the squared angular
momentum of turbulence, A = [r%{(vy - v2))dris. Considering the late
(viscous) stage of turbulence decay when the size of the turbulence region
grows as [(t) ~ /vt, one can readily infer the law of the energy decay:
v2(t) ~ Al™® o t7%/2. Also, neglecting the third moment (as Friedman
and Keller before), Millionschikov obtained a closed equation and solved it
for the precise r,t dependencies of the second moment [31]. To describe
turbulence at large Reynolds number Re, one needs to face eventually the
third moment and account for nonlinearity of hydrodynamics. That Kol-
mogorov did himself estimating dv?/dt ~ v*/l and obtaining I(t) oc AY/7¢2/7
[23].  While Kolmogorov used his theory of small-scale turbulence (to be
described below) to argue for these estimates, the relation v ~ [/t for inte-
gral quantities seems to be not very sensitive to the details of microscopic
theories. The correction, unexpectedly, came from another direction: con-
servation of the Loitsyansky integral takes place not universally but depends
on the type of large-scale correlations in the initial turbulent flow. In terms
of Fourier harmonics v(p) = [ v(r)exp(ip - r)dr, the energy spectral den-
sity E(p) = p*lv(p)]?
power of p. Only if the quadratic term is absent and E(p) oc Ap* then A

is expected to go to zero at pl — 0 as an even

is conserved. If, however, E(p) o Sp?, then it is the squared momentum
(called the Saffman invariant), S = [((v1 - va))dri2, which is conserved and
determines turbulence decay. This is treated in more detail in the Chap-
ters on Batchelor and Saffman. More interesting was the second paper of
Millionschikov [32], where the quasi-normal approximation was presented
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(apparently formulated by Kolmogorov who often attributed his results to
students [60]). This approximation consists in supplementing the equation
for the second moment (which contains third moment) by the equation for
the third moment (which contains the fourth moment, which is decoupled
via the second moments, assuming Gaussianity) [32]. Such approximation is
valid only for weakly nonlinear systems such as the weak wave turbulence de-
scribed in Sect. 1.4 below; for hydrodynamic turbulence it is a semi-empiric
approximation which was extensively used for the next forty years.

Kolmogorov in 1941 was more occupied by the behavior of E(p) for pl > 1
and by finding the third moment exactly. Already at the end of 1939, he
outlined the scheme of mathematical description (of what we now call the
Richardson cascade) based on self-similarity and predicted that E(p) for
pl> 1 will be a power law but did not get the exponent (see [60] and [48],
page 83). Some time in 1940 (most likely in the Fall), Andrei Nikolaevich
invited another student, mathematician Alexander Obukhov, and suggested
to think about the energy distribution in developed turbulence. At that
time, Kolmogorov did not know about the Richardson cascade picture while
Obukhov did [15]. Obukhov later recalled that they met in two weeks,
compared notes and found that the exponent was the same — the first
Kolmogorov-Obukhov theory (KO41) came into being [15].

Alexander Mikhailovich Obukhov was born in 1918 in a middle-class fam-
ily in Saratov. He finished school in 1934 and spent a year working on a
weather observation station, which probably influenced his long-life fascina-
tion with atmospheric phenomena. There, he published his first scientific
work “Atmospheric turbidity during the summer drought of 1934”. Next
year he was old enough to be accepted to the Saratov University where he
wrote in 1937 his first mathematical work “Theory of correlation of random
vectors” which received the first prize in the all-country student competi-
tion (on the occasion of the Revolution jubilee) and attracted Kolmogorov’s
attention. That was an extraordinary work on multivariate statistics where
the young student proposed a new statistical technique which later became
known as canonical correlation analysis (simultaneously proposed by the
American statistician H. Hoteling). Kolmogorov invited Obukhov to transfer
to the mathematical department of the Moscow University in 1939. Obukhov
graduated in 1940 and was allowed to stay in the University for research
work, in particular, on spectral properties of sound scattered by turbulent
atmosphere. It was then natural that Obukhov took a spectral approach to
turbulence.

After that fateful meeting, when Kolmogorov and Obukhov compared
notes and found that their results agree, they published separately. The
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first Kolmogorov paper was submitted on December 28, 1940 [22]. Kol-
mogorov considers velocities at two points, following Friedman and Keller,
whose work he knew and valued [60], yet he was apparently the first to focus
on the velocity differences vio = vi —vy. Kolmogorov describes a multi-step
energy cascade (without citing Richardson) as a “chaotic mechanism of mo-
mentum transfer” to pulsations of smaller scales. He then argues that the
statistics of velocity differences for small distances (and small time differ-
ences) is determined by small-scale pulsations which must be homogeneous
and isotropic (far from boundaries). That is Kolmogorov introduces local
homogeneity and turns Taylor’s global isotropy (see Sreenivasan’s Chapter
on Taylor) into local isotropy. Kolmogorov never invokes an accelerating
nature of the cascade. He then makes a very strong assumption (later found
to be incorrect) that the statistics of vio at the distances rj2 much less
than the excitation scale L is completely determined by the mean energy
dissipation rate, defined as

B ov? v ot OvI 2
6_<26t>_2%:<<6xj+6:ni> > '

That allows him to define the viscous (now called Kolmogorov) scale as

n = (v3/€)/* and make the second (correct) assumption that for rio > 7
the statistics of velocity differences is independent of the kinematic viscosity
v. For n <« ri9 < L, one uses both assumptions and immediately finds from
dimensional reasoning that (v}y) = C(ér12)?/3, where the dimensionless C
is called Kolmogorov constant (even though it is not, strictly speaking, a
constant, as will be clear later).

What made a mathematician to hypothetize so boldly? “I soon under-
stood that there was little hope of developing a pure, closed theory, and
because of absence of such a theory the investigation must be based on
hypotheses obtained on processing experimental data. While I didn’t do ex-
periments, I spent much energy on numerical and graphical representation
of the experimental data obtained by others” (A. N. Kolmogorov, 1985).
Sinai recalls Kolmogorov describing how he inferred the scaling laws after
“half a year analyzing experimental data” on his knees on the apartment
floor covered by papers (see [54], page 207). Some 30 years later, we find
Andrei Nikolaevich again in this position on the ship’s cabin floor catching
mistakes in the oceanic data during round-the-world expedition (see [54],
page 54). In 1941, the data apparently were from the wind tunnel [7]; they
were used in the third 1941 paper [24] to estimate C.

More important, in this third paper, Kolmogorov uses the Karman-Howarth



1.2 Mathematician 9

equation, implicitly assumes that, although proportional to v, the dissipa-
tion rate € has a finite limit at v — 0, and derives the elusive third moment.
Schematically, one takes the equation of motion (1.1) at some point 1, mul-
tiplies it by vo and subtracts the result of the same procedure taken at the
point 2. All three forces acting on the fluid give no contribution in the inter-
val 1 <« rio < L: viscous friction because r12 > 7, external force because
r1o < L and the pressure term because of local isotropy. This is why that
interval is called inertial, the term so suggestive as to be almost misleading,
as we will see later. In this interval the cubic (inertial) term, which is the
energy flux through the scale 715, is equal to the time derivative term, which

is a constant rate of energy dissipation: ((vig-V)v?y) = —2(0v?/0t) = —4e.
Integrating this one gets:
((Vlg . I'12/’I"12)3> = *4@"12/5 . (12)

For many years, the so called 4/5-law (1.2) was the only exact result in the
theory of incompressible turbulence. It is the first derivation of “anomaly” in
physics in a sense that the effect of breaking the symmetry (time-reversibility)
remains finite while the symmetry-breaking factor (viscosity) goes to zero;
the next example, the axial anomaly in quantum electrodynamics, was de-
rived by Schwinger ten years later [53].

Obukhov’s approach is based on the equation for the energy spectral den-
sity written as OF /0t + D = T where D is the viscous dissipation and 7 is
the Fourier image of the nonlinear (inertial) term that describes the energy
transfer over scales [40]. Obukhov starts his paper by saying that for a given
observation scale | = 1/p, larger-scale velocity fluctuations provide almost
uniform transport while smaller-scale eddies provide diffusion. It is then
natural to divide the velocity into two orthogonal components, containing
respectively large-scale and small-scale harmonics: v = v + v/. Obukhov
stresses that this is not an absolute Reynolds separation into the mean
and fluctuations but decomposition conditional on a scale, as a harbinger
of the renormalization-group approach which appeared later in high-energy
physics and critical phenomena. In this very spirit, Obukhov averages his
energy equation over small-scale fluctuations, shows that what contributes
to T is the product v'v/'Vo and then decouples it as F(p) times the rms
large-scale gradient A/2(p) defined by A(p) = I k*E(k)d3k. That way of
closure differs from that of Friedman-Keller since the focus is not on instan-
taneous values and solving initial value problem for dynamic meteorology
but on average values and finding steady-state distribution. Obukhov then
solves the resulting nonlinear (but closed!) equation and finds the spec-

—5/3

trum E(p) < p which gives a Fourier transform (v?,) = (Ary2)?/3. As
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the boundary of this spectrum he finds the Kolmogorov scale (which thus
should be called Kolmogorov-Obukhov scale). He then derives the law of
turbulent diffusion in such a velocity, R?(t) = At?, compares it with the
Richardson diffusion law R?(t) = & and obtains A ~ €. Along the way,
Obukhov gives a theoretical justification to the scaling of turbulent diffusiv-
ity D(Il) x [4/3 that was empirically established by Richardson. Obukhov
ends by estimating the rate of atmospheric energy dissipation, assuming that
two percent of the Solar energy is transformed into windst, and obtains a
factor comparable with that measured by Richardson. Magnificent work!

One can imagine the elation the authors felt upon discovering such beauti-
ful simplicity in such a complicated phenomenon: the universality hypothesis
was supported by the exact derivation of the third moment (1.2) and by the
experimental data. One is tempted to conclude that the statistics of the
velocity differences in the inertial interval is determined solely by the mean
energy dissipation rate. What could possibly go wrong?

The answer came from a physicist. Lev Davidovich Landau was perhaps
as great and universal a physicist as Kolmogorov was a mathematician. The
fundamental contributions of Landau and his school and the monumental
unique Landau-Lifshits course of theoretical physics to a significant extent
shaped the physics of the second half of the twentieth century. Landau was
born in 1908 and grew up enthusiastic about the communist ideas. The
years 1929 - 1931 he spent abroad, interacting with N. Bohr, W. Pauli,
W. Heisenberg, R. Peierls and E. Teller among others. In the mid-thirties,
Landau discovered that he could no longer travel abroad. Building his school
and creating the course may be seen as an attempt to create a civilization
in what he saw as a wilderness. In 1938, Landau co-authored an anti-Stalin
leaflet, was arrested and spent a year in Stalin’s jails; after Kapitza and
Bohr wrote to Stalin, Landau was freed with his black hair turned gray.

Meanwhile the second World War eventually came to the Soviet Union and
a large part of the Academy was evacuated to Kazan’. There, Kolmogorov
gave a talk on their results on January 26, 1942. Landau was present. An
official record of the talk contains a brief abstract by Kolmogorov and a
short remark by Landau. In the abstract, Kolmogorov lucidly presents his
results on the local structure and then adds something new: a closed system
of three partial differential equations that describe large-scale flow and inte-
grated properties of turbulence (the energy and the strain rate). That semi-
empiric model is a significant step forward comparing to the earlier mod-
els of Prandtl, von Karman and Taylor, where the Reynolds equations for

1 Obukhov does not give an argument, my guess is that he took 2% as an estimate for the relative
change of the Kelvin temperature between day and night, see [52] for the modern data.
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mean velocity were closed by hypothetical algebraic equations for Reynolds
stresses. In 1945, Prandtl suggested a less sophisticated two-equation model.
The models of the type suggested by Kolmogorov (later invented indepen-
dently by Saffman and others) with the advent of computers found numerous
engineering applications. Landau remarked: “Kolmogorov was the first to
provide correct understanding of the local structure of a turbulent flow. As
to the equations of turbulent motion, it should be constantly born in mind...
that in a turbulent stream the vorticity is confined within a limited region;
qualitatively correct equations should lead to just such a distribution of ed-
dies”. It is reasonable to assume that the second part of the Landau remark
is related to the second part of Kolmogorov’s presentation i.e. to the equa-
tions for the large-scale flows. In 1943 Landau derived his exact solution for
a laminar jet from a point source inside a fluid [28], so apparently he was
thinking about flows of different shapes. Incidentally, I was unable to find
a steady solution of Kolmogorov’s equations that describe such a limited
region. One may try to interpret Landau’s remark as implicitly questioning
universality of the small-scale motions: the further the probe from the axis
of a turbulent jet the less time it spends inside the turbulence region because
of boundary fluctuations, therefore, the value of the Kolmogorov constant
C must depend on the distance to the axis [13]. However, Kolmogorov ex-
plicitly postulated that his theory works away from any boundaries, so that
the universal value of C' is what he expects to be measured near the jet axis
or deep inside other turbulent flows. It is likely that Landau started to have
doubts about Kolmogorov’s description of small-scale structure only later.
In 1944, the sixth volume of the Landau-Lifshits course, “Mechanics of con-
tinues media”, appeared [28]. This book firmly set hydrodynamics as part
of physics. The book contained a remark (attributed in later editions to
Landau, 1944), which instantly killed the universality hypothesis: “It might
be thought that the possibility exists in principle of obtaining a universal
formula, applicable to any turbulent flow, which should give (v},) for all
distances 719 small compared with L. In fact, however, there can be no such
formula, as follows from the following argument. The instantaneous value
of v3, might in principle be expressed in a universal way via the energy
dissipation € in that very moment. However, averaging these expressions
is dependent on the variation of € over times of large-scale motions (scale
L), and this variation is different for different specific flows. Therefore, the
result of the averaging cannot be universal.” Let’s observe a moment of
silence for this beautiful hypothesis.

To put it a bit differently: the third moment (1.2) is linearly propor-
tional to the dissipation rate € and is then related in a universal way to the
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mean dissipation rate €. Yet other moments (vfy) are averages of nonlin-
ear functions of the instantaneous value ¢, so that their expressions via the
mean value € depend on the statistics of the input rate determined by the
motions at the scale L (that was more clearly formulated later by Kraich-
nan, see the respective Chapter by Eyink and Frisch). The question now is
whether such influence of large scales changes order-unity factors (say mak-
ing C non-universal) or changes the whole scale dependence of the moments,
since now one cannot rule out the appearance of the factor (L/ri2) raised
to some power. Kolmogorov and Obukhov themselves found the answers
twenty years later which will be described below.

During the war years Kolmogorov-Obukhov works were unknown to the
rest of the world, they became known after the war primarily through Batch-
elor’s discovery of them. Kolmogorov’s 4/5-law was not independently de-
rived but his 1/3-law and Obukhov’s 5/3-law were rederived by Heisenberg,
Weizsécker and Onsager [2, 13, 56]. Apparently it is more difficult to get
the factor than the scaling, all the more that the factor is exact while the
scaling is not. Note however, that it is reasonable to expect that the mo-
ments depend in some regular way on the order n of the moment. If so,
then the fact that n = 2 is not far from n = 3 means that KO41, which is
exact for n = 3, must work reasonably well for n = 2 i.e. for the energy
spectrum, which is indeed what measurements show. This is the reason that
this flawed theory turned out to be very useful in numerous geophysical and
astrophysical applications as long as one is interested in the energy spectrum
and not high moments or strong fluctuations. For the next twenty years,
Kolmogorov and Obukhov developed the applications and generalizations of
KO41 instead of looking for a better theory. In retrospect, that seems to be
a right decision. Its implementation involved creation of a scientific school.

1.3 Applied mathematicians

One of my students rules the Earth atmosphere, another - oceans.

A. N. Kolmogorov

Alexander Obukhov was soon joined by Andrei Monin and Akiva Yaglom,
the other two key people that established Kolmogorov school of turbulence.
Andrei and Akiva were born the same year, 1921, and died the same year,
2007. They wrote the book [34] that for several decades was “the Bible
of turbulence”. The triple A of Alexander, Andrei and Akiva were very
different and in some respect polar opposite people. Alexander and Akiva
were never Party members with the latter even refusing to work on the
nuclear project since he disliked the idea of developing a bomb for Stalin
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([54], p. 440), while Andrei was a devoted communist who joined the Party
during the war. That was a stark difference in the Soviet Union back then.
Kolmogorov himself was not a Party member, yet allowed neither regime
critique nor political conversations in his presence ([54], page 442); the de-
scent from nobility and homosexuality (criminal under Soviet penal code)
added extra vulnerability for Andrei Nikolaevich in Stalin’s Russia.

Yaglom grew up in Moscow where his high-school friend was Andrei
Sakharov (who later was a friend of Obukhov too). Akiva had a twin brother
Isaak, with whom they shared a first prize at the Moscow Mathematical
Olympiad in 1938. The prize was presented by Kolmogorov who never for-
got good students [60] and in 1943 invited Yaglom to work on the theory
of Brownian motion. Andrei Monin graduated in 1942 and the same year
was also invited by Kolmogorov to work on probability distributions in func-
tional spaces (where there is no volume element and thus no density). Both
Akiva (in 1941) and Andrei (in 1942) volunteered for military service to fight
in the war. Akiva was rejected because of poor eyesight, Andrei was drafted
and spent the war as an officer-meteorologist serving at military airfields.
He returned in 1946 ready to work on turbulence.

The first new result after 1941 was, however, obtained by Obukhov whose
Kazan’ years were important and formative. Apart from Landau, he inter-
acted there with the physicist M. A. Leontovich, a man of great integrity
(who, among many other things, published with Kolmogorov the paper on
Brownian motion in 1933). Landau and Obukhov were first to suggest inde-
pendently the Lagrangian analog of KO41. If R(¢) describes the trajectory
of a fluid particle, then the Lagrangian velocity is defined as V (t) = v(R, ).
The relation V(t) — V(0) =~ (et)'/? first appeared in the Landau-Lifshits
textbook in 1944. Note however that the exact Lagrangian relation which is
a direct analog of the flux law (1.2) is not the (still hypothetical) two-time
single particle relation |V (t) — V(0)|? ~ et, but the Lagrangian time deriva-
tive of the two-particle velocity difference: (d|0V|?/dt) = —2€ (remark that
€ >0in 3d and € < 0 in 2d) [8].

From 1946, Kolmogorov arranged a bi-weekly seminar on turbulence which
was a springboard for the explosive development of KO41 and applications.
Obukhov started to work on the atmospheric boundary layer and dynamic
meteorology. Already in 1943 he wrote a paper which because of the war was
published in 1946 and yet was ahead of its time ([48], page 96, translated in
[47]). Following Prandtl and Richardson, Obukhov considered the influence
of stable stratification on turbulence. It is clear that turbulence disturbs sta-
ble stratification and increases the potential energy thus loosing the kinetic
energy of the fluid. In other words, stratification suppresses turbulence. On
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the other hand, turbulence influences the vertical profile of the temperature.
Obukhov developed a semi-empirical approach based on a systematic use of
universal dimensionless functions. In addition to the dimensionless Richard-
son number that quantifies the relative role of stratification and wind shear,
Obukhov measured the height in units of the sub-layer where the Richard-
son number is small and stratification is irrelevant. This defines what is now
called the Obukhov-Monin scale, since the idea of the sub-layer was system-
atically exploited by Obukhov and Monin in 1954. In the paper which is a
sequel to that of Obukhov ([48], page 135), they have shown that the profiles
of the wind and the temperature are determined by the vertical fluxes of the
momentum and heat, see [57] for more details.

The year 1949 was exceptionally productive. Kolmogorov applied KO41
to the problem of deformation and break-up of droplets of one liquid in a
turbulent flow of another fluid: flow can break the droplet of the size a if
the pressure difference due to flow p(6v)? ~ p(a)?/? exceeds the surface
tension stress o/a [26]. Obukhov established the basis of dynamic meteorol-
ogy by his famous work on a geostrophic wind, derived what is now called
the Charney-Obukhov equation for the rotating shallow water, known as
Hasegawa-Mima for magnetized plasma (though I've heard Obukhov re-
marking that the plasma version was known to Leontovich before). Turbu-
lence theory was significantly advanced when Obukhov published a pioneer-
ing work on the statistics of a passive scalar § mixed by a turbulence flow
[41]. Obukhov correctly describes the common action of turbulent mixing
and molecular diffusion as a mechanism of relaxation. He then focuses on
62 (assuming () = 0) which is a nontrivial step, missed by several people
who got wrong answers, see [34]. Obukhov identifies 62 as an analog of the
energy density, arguing that when @ is the temperature then [ 6%(r) dr is the
maximal work one can extract from an inhomogenously heated body. That
opens the way to considering the cascade of this quantity in a direct anal-
ogy with the energy cascade. Obukhov’s work then follows Kolmogorov’s
approach of his first 1941 paper, that is considers the statistics of the differ-
ences 61 = 61 — 65. Obukhov assumes that there exists an interval of scales
between the scales of production and dissipation where the statistics of 019
is completely determined by the dissipation rates ¢ and N = (96%/9t). Di-
mensional reasoning then gives (#3,) ~ N(r2,/€)'/3. Of course, the rhs here
is the mean dissipation rate of 6% multiplied by the typical turnover time
on the scale rjo. This 2/3-law was independently established by Corrsin in
1951 and is called Obukhov-Corrsin law (see also the Corrsin Chapter). The
second exact relation in turbulence theory, the flux expression for a passive
scalar analogous to (1.2) for energy, was derived by Yaglom the same year
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[58]. That very year Obukhov dispelled an erroneous belief (expressed in
[32]) that pressure fluctuations are zero in incompressible turbulence [42].
By taking the divergence of the Navier-Stokes equation, Obukhov obtained
the incompressibility condition Ap = —V,;V;(v'v’), which allows one to
express the second moment of pressure via the fourth moment of velocity,
which is then decoupled via the product of the second moments again as-
suming Gaussianity: (ply) oc r*/3. That 4/3-law together with 5/3, 2/3 and
others was the basis for the joke that Obukhov discovered the fundamen-
tal “all-thirds law”. There is a truth in every joke since number 3 in the
denominator of these scaling exponents comes because of two fundamental
reasons: i) the nonlinearity of the equation of motion is quadratic and ii)
the fluxes considered are of the quadratic integrals of motion. Immediately,
Yaglom used Obukhov’s approach to derive the mean pressure gradient and
the mean squared fluid acceleration [59]. Remarkably, Yaglom’s estimate for
atmosphere showed that typical winds can make for accelerations exceeding
that of gravity. Obukhov, Monin and Yaglom had a chance to experience
that, flying on balloons in turns, thus continuing Friedman’s tradition; in
1951 the wind data were obtained confirming KO41 scaling [43]) (later,
they also observed a layered structure of turbulence, the so-called turbulent
“pancakes”, predicted by Kolmogorov in 1946, [54], page 181). In 1951,
Obukhov and Yaglom published together a detailed paper that presented
all the results on pressure and acceleration. Similar results were obtained
independently by Heisenberg in 1948 and Batchelor in 1951.

The Kolmogorov turbulence seminar was attended by applied scientists
and engineers as well, and discussions of applied problems went along with
the focus on fundamental issues. In 1951, Kolmogorov accepted the next
student, Gregory Barenblatt, whose name he remembered from the list of the
first-prize student works (following the familiar Obukhov-Yaglom pattern).
Barenblatt was given the task to describe the transport of a suspended
sediment by turbulent flows in rivers. Somewhat similarly to stably stratified
flows, turbulence spends energy lifting sediments which, being small, then
dissipate energy into heat when descending. Barenblatt built an elegant
theory similar to that of Obukhov-Monin [3].

Important insights into the advection mechanisms were obtained by elim-
inating global sweeping effects and describing the advected fields in a frame
whose origin moves with the fluid. This picture of the hydrodynamic evo-
lution, known under the name of quasi-Lagrangian description, was first
introduced by Monin in 1959 [36]. In a kind of a bridge between the works
on stratification and passive scalar, Obukhov considered unstable stratifica-
tion, accounted for the buoyancy force and defined a new scale above which
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this force starts to be important [44]. Bolgiano discovered this indepen-
dently the same year and also suggested KO41-type scaling for turbulent
convection at larger scales [5].

In 1956 the Institute of Geophysics was divided into three parts and
Obukhov was appointed director of the newly created Institute of Atmo-
spheric Physics which now bears his name. That followed his long conversa-
tion with Leontovich which ended with the advice to “avoid administrative
zeal” [49]. In the Soviet Union, the Academy was a huge body that oper-
ated hundreds of scientific institutes with tens of thousands of researchers.
Academia worked under the strict Party control and a non-communist di-
rector was a rare bird. Obukhov flouted Party policy in another important
respect: employing numerous Jewish scientists in his Institute. Since the
late forties antisemitism as a Party policy was steadily gaining ground in
the Russian society and Academia. Moscow University was particularly hos-
tile: it was difficult for a Jew to be accepted as an undergraduate and next
to impossible as a graduate student; that further deteriorated at the end
of sixties when undegraduate studies were closed as well (all the way to
the seventies when I avoided Moscow and went to Novosibirsk University).
Mathematical students of Kolmogorov were particularly affected. For exam-
ple, Sinai was not accepted for graduate studies after the committee failed
him in Marxist philosophy, Kolmogorov was present at the exam but did not
interfere [55]. Kolmogorov then negotiated for Sinai a second attempt which
succeeded. Turbulence people had it easier thanks to the Institute of Geo-
physics and later to Obukhov’s Institute. Remarkably, that quite unusual
director did not even fire refuseniks as was required by a direct Party order.
Obukhov was universally admired by the co-workers despite his sometime
harsh style (whose acceptance was softened by a common agreement that
he was invariably the smartest person in the room, best equipped to “rule
the Earth atmosphere”).

Andrei Monin was appointed “to rule the oceans” in 1965 when he was
made director of the Institute of Oceanology. He was not only a devout Party
member since 1945, but a high-level (if somewhat reluctant [15]) functionary
in the Party hierarchy as an instructor and then the deputy chairman of the
Science Department of the Party Central Committee. While the Academy
kept some marginal degree of independence in electing (or rejecting) new
members, the Department was the body which actually set the policy, ap-
pointed directors, issued permits for visits abroad etc. During the fifties, the
Department was particularly hostile towards “the group of non-communist
scientists led by Tamm, Leontovich and Landau” [35].

Around 1960-61, Obukhov decided at last to face the Landau remark on
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the dissipation rate fluctuations and initiated theoretical and experimental
works on the subject [15]. Systematic measurements of the wind velocity
fluctuations were made by A. S. Gurvich [17]. The calculations of the fluc-
tuations of the energy dissipation rate ¢ assuming quasi-normality was done
by Obukhov’s student G.S. Golitsyn (who later extended the approach of
KO41 to the analysis of the dynamics of planetary atmospheres [16] and
succeeded Obukhov as director of the Institute). Experimental data had
shown fluctuations much stronger than the theoretical estimates. Strong
non-Gaussianity of velocity derivatives was also observed before by Batch-
elor and Townsend. Looking for an appropriate model for the statistics of
¢, Obukhov turned to another seminal Kolmogorov 1941 paper [25] on a
seemingly different subject: ore pulverization. Breaking stones into smaller
and smaller pieces presents a cascade of matter from large to small scales.
A stone that appears after m steps has a size €,,, which is a product of
the size € of an initial large stone and m random factors of fragmenta-
tion: €, = €e1...en, where e; < 1. If those factors are assumed to be
independent, then loge,, is a sum of independent random numbers. As
m increases, the statistics of the sum tends to a normal distribution with
the variance proportional to m. In other words, multiplicative randomness
leads to log-normality. Since the number of steps of the cascade from L to r
is proportional to In(L/r), Obukhov then assumed that the energy dissipa-
tion rate coarse-grained on a scale r has such a log-normal statistics with the
variance (In?(¢,/€)) = B+ pIn(L/r) where B is a non-universal constant de-
termined by the statistics at large scales. Note that the variance grows when
7 decreases and so other (not very high) moments: (e?) o (L/r)Ha(a=1)/2,
Obukhov then formulated the refined similarity hypothesis: KO41 is true
locally, that is the velocity difference at the distance r is determined by the
dissipation rate coarse-grained on that scale: dv(r) ~ (er)'/3. Averaging
this expression over the log-normal statistics of ¢, one obtains the new ex-
pressions for the structure functions, which contains non-universal factors
C,, and universal exponents: (vly) = Cp,r™/3(L/r)#("=3)/18  That general
formula was actually derived by Kolmogorov who was shown Obukhov’s
draft [45] (containing only n = 2) before boarding the train that brought
him to the Marseille conference, separately from others who flew there. Kol-
mogorov arrived at Marseille with his own draft [27] and their two presenta-
tions were highlights of the conference. The Marseille gathering on August
28 - September 03, 1961 was a remarkable event that brought almost all the
leading researchers together, many for the first time. Yaglom recalls: “The
USSR delegation included Kolmogorov..., his two pre-war students M. D.
Millionschikov and A. M . Obukhov, and me — a war-years student. Such
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a composition had a flavor of Khrushchev’s liberalization (for me it was the
first time I was permitted to attend a meeting in a ”capitalist country”)”.
Russians at last had a chance to meet turbulence great scholars from all gen-
erations. Most of the heroes of this book were present: Von Karman, Taylor,
Batchelor, Townsend, Corrsin, Saffman and Kraichnan. It is poignant to see
Kolmogorov and Kraichnan (whose names are forever linked by the 2d-3d
5/3-scaling) in the same photograph.

\

.

(Leftto right)M . D. Millionshchikov, A. N. Kolmogorov, A. M. Yaglom, and R. Kraichnan
at meeting at the Institut de Mécanique Statistique de la Turbulence, Marseille, 1961. (Photo
courtesy J. L. Lumley.)

The new theory KO62 gives the same linear scaling for the third mo-
ment. Attempts to estimate p from the experimental data on the variance
of dissipation or velocity structure functions give p ~ 0.2, so that KO62
only slightly deviates from KO41 for n < 10 + 12. Its importance must
be then mostly conceptual. The main point is understanding that the rel-
ative fluctuations of the dissipation rate grow unbounded with the growth
of the cascade extent, L/r (in his paper, Kolmogorov credits that to Lan-
dau even though 1944 remark did not mention any scale-dependence of the
fluctuations [13]). That understanding opened the way to the description
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of dissipation concentrated on a measure [39], which was later suggested to
be fractal [30], and shown to be actually multi-fractal [50, 33]. Let us stress
another conceptual point: the 5/3-law for the energy spectrum is incorrect
despite being the most widely-known statement on turbulence (outside of the
turbulence community). Still, KO62 does not seem to be such a momentous
achievement as KO41. First, it evidently does not make sense for sufficiently
high n. Second and more important, it is still under the spell of two magic
concepts of the Kolmogorov school: Gaussianity and self-similarity. Com-
paring to KO41, the new version KO62 somehow pushes these two further
down the road: the new (refined) self-similarity is local and Gaussianity is
transferred to logarithms, replacing additivity with multiplicativity. Still,
KO62 is based on the belief that the single conservation law (of energy)
explains the physics of turbulence and that the (local) energy transfer rate
completely determines local statistics. As we now believe, direct turbulence
cascades (from large to small scales) on a fundamental level have nothing
to do with either Gaussianity or self-similarity, even though these concepts
can help to design useful semi-empirical models for applications. There is
more to turbulence than just cascade. The energy conservation determines
only a single moment (third for incompressible turbulence). To understand
the nature of turbulence statistics, one returns to the old remark of Fried-
man that the correlation functions are “moments of conservation”. In this
way, one discovers an infinite number of statistical conservation laws having
geometrical nature, each determining it own correlation function; add that
the exponents are now measured with higher precision and they are neither
KO41, nor KO62, see e.g. [8, 9].

Note in passing that the Landau-Kolmogorov interaction was a two-way
street. We described above how Landau’s reaction to KO41 changed the
theory of turbulence. No less fruitful was Kolmogorov’s reaction to the 1943
Landau’s suggestion that as the Reynolds number Re grows the sequence of
instabilities leads to the multi-periodic motion, that is the attractor in the
phase space of the Navier-Stokes equation is the torus whose dimensionality
grows with Re. Superficially, this seems to be very much in the spirit of
Kolmogorov’s own 1941 argument that “at large Re, pulsations of the first
order are unstable in their own turn so that the second-order pulsations
appear...” [22]. However, Kolmogorov developed deeper insights into tur-
bulence onset and posed the question if it is possible that the continuous
spectrum appears at finite Re. That was answered by the work on the dy-
namical system theory, which he started in 1953 “because the hope appeared
and my spirit uplifted” (Stalin died). The resulting KAM-theory (after Kol-
mogorov, Arnold and Moser) describes which invariant tori survive under a
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slight change of Hamiltonian and forms the basis of understanding Hamil-
tonian chaos. Later, Kolmogorov initiated a great synthesis of random and
deterministic, based on the notion of entropy and complexity, magnificently
carried out by his student Sinai and others. To overcome the natural preju-
dice to consider dynamic systems as deterministic one needs to be profoundly
aware of the finite precision of any measurement and of the exponential di-
vergence of trajectories [19]. Kolmogorov-Sinai entropy and dynamical chaos
are fundamental to our understanding of numerous phenomena; in partic-
ular, related ideas were used later in describing the statistics of turbulence
below the Kolmogorov-Obukhov scale where the flow is spatially smooth
but temporally random, see e.g. [8]. In addition, Kolmogorov’s program
for 1958 seminar contained the task to develop the theory of 1d (Burgers)
turbulence which was done by Sinai and others some 40 years later.

I find it puzzling though that Kolmogorov himself never applied his pow-
erful probabilistic thinking and understanding of stochastic processes and
complexity to quantum mechanics and statistical physics (it was done by his
students Gelfand and Sinai respectively). It seems that Kolmogorov’s direct
contact with physics was only via classical mechanics and hydrodynamics
[38].

In 1969, Obukhov started a new chapter by introducing what he called
systems of hydrodynamic type and what was later known as shell models
[46]. He was inspired by the 1966 work of Arnold on the analogy between the
Euler equation for incompressible flows and the Euler equation for solid body
motion, see [1] for the detailed presentation {. Obukhov approximated fluid
flow by a system of ordinary differential equations with quadratic nonlinear-
ity and quadratic integrals of motion. Since there were no consistent way
to determine the number of equation for this or that type of flow, Obukhov
initiated laboratory experiments and their detailed comparison with com-
putations. It is worth noting that Obukhov and his co-workers worked on
few-mode dynamic models (apparently independently of E. Lorentz) as well
as on chains intended to model turbulence cascades [14].

We conclude this section by referring the reader to the magnificent opus
by Monin-Yaglom where much more can be found on KO41, KO62 and many
other subjects including field-theoretical approaches of Edwards, Kraichnan
and others. “If ever a book on turbulence could be called definitive,” de-
clared Science in 1972, ”it is this book by two of Russia’s most eminent and
productive scientists in turbulence, oceanography, and atmospheric physics.”
As the presentation here, it stresses the physics of KO41 and KO62, but also

1 I believe that exploration of this analogy will bear even more fruit in the future.
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makes it clear that the theory in its entirety is definitely that of mathemati-
cians. Mathematical foundations were laid before and after 1941 in works
of Kolmogorov, Obukhov, Gelfand, Yaglom and others. A complete anal-
ysis of stationary processes using the Hilbert space formulation was done
in 1941. Considerable work was done on spectral representations of ran-
dom processes; subtle points of legitimacy and convergence were cleared for
Fourier transform and other orthogonal expansions for translation invariant
random functions, which physicists take for granted without much thinking.
The part 2 of the Monin-Yaglom book was finished in 1966 and published
in 1967, in time to cite the first 1965 paper of Zakharov on wave turbulence.
That is the subject of the next section.

1.4 Theoretical physicist

Keep your hands off our light entertainment,
Do not tempt us with crumbs of attainment,
Do not teach us the right aspirations,
Do not tease us with serving the nation.

V. Zakharov [67].

Another stream in the Russian work on turbulence originates from the
Landau school. Apart from his cameo appearance in the Kolmogorov-
Obukhov part of the story, Landau himself didn’t work on the theory of
developed turbulence, despite his firm belief that the problem belongs in
physics. In the fifties, he was interested in plasma physics and oriented in
this direction the young Roald Sagdeev, who went to work in the theoretical
division of the Russian project on controlled thermonuclear fusion. Plasmas
are subject to various instabilities and practically always are turbulent. In-
spired by the works of David Bohm on an anomalous diffusion in plasma
[4] and the needs of thermonuclear fusion, theory of plasma instabilities and
turbulence was intensely developed in Russia by B. Kadomtsev, A. Vedenov,
E. Velikhov, R. Sagdeev during the fifties and the sixties. Sagdeev’s uniform
approach to plasma hydrodynamics (extended then to other continuous me-
dia) was a trademark of the Landau school: at first all dynamical equations
of continuous media were supposed to be written in a canonical Hamiltonian
form, then particular solutions are found and their stability analyzed, then
perturbation theory applied to the description of random fields.

To carry on this project, the most unlikely figure appeared: a student ex-
pelled for a fistfight from the Moscow Energy Institute. Vladimir Zakharov
was born in Kazan’ in 1939 in a Russian family of an engineer. When at
elementary school, he did well and had a slight burr so was considered a Jew
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by his peers; an experience conducive to an early formation of personal in-
dependence. Zakharov knew Sagdeev before as a friend of his older brother
and he met him in the Energy Institute where Sagdeev was teaching physics
part-time. After expulsion, Sagdeev brought Zakharov to G. Budker who
lead parallel experimental projects in two fields (high energy and plasma
physics) and two cities (Moscow and Novosibirsk). In 1957, a new scientific
center was created some 3500 kilometers east of Moscow. In 1961 Budker
convinced Sagdeev and Zakharov to leave Moscow and come to that new
Novosibirsk center. Sagdeev was to lead the plasma physics department
in the newly established Nuclear Physics Institute (now Budker Institute)
while Zakharov was admitted to Novosibirsk University, leaving all his trou-
bles behind and starting the new life in the brave new world of hastily built
barrack-style buildings in the middle of the taiga.

Note in passing that Zakharov’s poetry is published by the main Russian
literary magazines, included in anthologies etc, there exists a bi-lingual book
with English translations [61]. As a scientist, he grew up inside a strongly
interacting community of physicists and mathematicians, particularly influ-
enced by M. Vishik, V. Pokrovsky and G. Budker. Zakharov succeeded in
making important advances in the directions usually considered far apart:
integrability and exact solutions on the one hand, and turbulence on the
other. In particular, he was able to find turbulence spectra as exact solu-
tions.

Following Sagdeev’s program, Zakharov reformulated the equations for
plasma and water waves in Hamiltonian variables. Written for the ampli-
tudes of plane waves all such equations have a form ap = —iwgag+ non-
linear terms (quadratic, cubic etc). Now, if the wave amplitudes are small
while the frequencies wy, are large and different for different k, one can treat
nonlinear terms as small perturbations. Considering a set of random small-
amplitude waves in a random-phase approximation, one expresses the time
derivative of the second moment (aray,) = nid(k — k') via the third mo-
ment, which is relevant if three-wave resonances are possible i.e. one can find
triads of wave vectors such that wyyp = wi + wypr. Exactly like in a quasi-
normal approximation, one then writes the equation for the third moment,
decouples the fourth moment and obtains the kinetic equation for waves:
n = [ W(k,p,q)d(wr —wp — wq)d(k — p — q)(npng — nkny — ngng)dpdg+
cyclic permutations £ — p — ¢ — k. The right-hand side is a collision term
very much like in the Boltzmann kinetic equation. The idea of phonon colli-
sions was introduced by Peierls in 1929 [51], the collision term was used by
Landau and Rumer in 1937 to calculate sound absorption in solids [29]. In
the article [63] submitted on 28 October, 1964, Zakharov took this equation
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(which he learnt from the article by Camac et al [6]) and asked if it has a sta-
tionary solution different from the equilibrium Rayleigh-Jeans distribution
ng = T'/wg. Inspired by the Kolmogorov-Obukhov spectrum he set to look
for a power-law solution n; o« k~°. Taking first the case of acoustic waves
when the coefficients are relatively simple, wi < k and W « kpq, Zakharov
first checked that the collision integral tends to —oo when s — 4 and to
400 when s — 5, so it has to pass through zero at some intermediate s. He
then bravely substituted s = 4.5 and obtained for the collision integral 18
gamma-functions that promptly canceled each other. The first Kolmogorov-
Zakharov spectrum was born. Still, it took then some time for Zakharov to
appreciate that the spectrum indeed describes a cascade of energy local in
k-space and is an exact realization of KO41 ideas: By checking convergence
of the integrals in the kinetic equation at p — 0 and p — oo, one can di-
rectly establish that the ends of the inertial interval really do not matter,
in contrast with hypothesizing about turbulence of incompressible fluids.
Interestingly, the position of the Kolmogorov-Zakharov exponent exactly
in the middle of the convergence interval is a general property now called
counterbalanced locality: the contributions of larger and smaller scales are
balanced on the steady spectrum [62]. In 1966, Zakharov submitted his PhD
Thesis (under supervision of Sagdeev) which was devoted to the waves on
a water surface [64, 65]. There, one finds a complete description for the
case of the capillary waves: obtaining spectrum from the flux constancy
condition, checking locality as integral convergence and showing that this
is indeed an exact solution by using conformal transforms that were inde-
pendently invented by Kraichnan for his Direct Interaction Approximation
at about the same time (see Kraichnan’s Chapter). Then Zakharov takes
on the turbulence of gravity waves whose dispersion relation, w; o vk,
does not allow for three-wave resonances. In this case, the lowest possible
resonance corresponds to four-wave scattering. Every act of scattering con-
serves not only the £ = [wgnidk but also the wave action, @ = [ ngdk,
which can be also called “number of waves”. The situation is thus similar
to the two-dimensional Euler equation which conserves both the energy and
squared vorticity. In his Thesis, Zakharov derives two exact steady turbu-
lent solutions of the four-wave kinetic equation, one with the flux of £ and
another with the flux of ). He then argues that the energy cascade is direct
i.e. towards small scales. While Zakharov derived an exact solution that
describes an inverse cascade, he didn’t explicitly interpreted it as such (he
also gave some arguments in the spirit of Onsager about transport of @ to
large scales in a decaying turbulence). After Kraichnan’s 1967 paper was
published and brought to his attention by B. Kadomtsev, Zakharov real-
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ized the analogy and interpreted the spectra he derived as a double-cascade
picture. In 1967, he published the direct-cascade spectrum for Langmuir
plasma turbulence [66], where the inverse-cascade spectrum was obtained in
1970 by E. Kaner and V. Yakovenko from Kharkov’s branch of the Landau
school [18]. Remark that the hypotheses Kolmogorov formulated in 1941
are true for Zakharov’s direct and inverse cascades of weak wave turbulence
and are probably true for Kraichnan’s inverse cascade in incompressible 2d
turbulence as well. In 2006, Kraichnan and Zakharov were together awarded
the Dirac medal for discovering inverse cascades.

Early years of the Novosibirsk scientific center were also the years of the
brief Khrushchev’s thaw. At that time, there was probably no other place
in the country where academicians, professors and young students lived in
such a close proximity and had so few barriers for scientific and social inter-
action. A small town in the forest, “Siberian little Athens”, was for a while
allowed some extra degrees of freedom. That was about to end in 1968 when
Zakharov became one of the initiators and signatories of the open letter to
the Party Central Committee protesting arrests of dissidents. Brezhnev’s
time was vegetarian comparing to that of Stalin, Zakharov’s only punish-
ment was a ban on foreign travel, then thought to be forever.

“Hard is Athenian mien,

harder still 'midst feasting vultures.
He who will get on the wing,

sees half the world as his home.” [67].

1.5 Epilogue

“In twenty years no one will know what
actually happened in our country.”
A.N. Kolmogorov, 1943 [37]

Our story ends (somewhat arbitrarily) in 1970. What followed - study
of shell models by Obukhov’s school, development of the weak turbulence
theory by Zakharov’s school, works on Lagrangian formalism and zero modes
- deserves a separate essay which may be too early to write.

At his old age Kolmogorov suffered from the Parkinson disease and from
an eye illness that made him almost blind. Nevertheless, he tried to work
practically until the end always surrounded by his former students, who also
took turns in providing necessary help. Landau was seriously injured in an
automobile accident in 1962, he was 59 days in a coma and survived with
the help of his students and colleagues in the country and abroad; he lived
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for six more years but was unable to work. Obukhov and Yaglom worked
until their last days, monuments of unageing intellect.

Kolmogorov died in 1987 and Obukhov in 1989. That year, the Berlin Wall
fell, Soviet Union opened the gates and disintegrated within two years. An
exodus of scientists brought substantial parts of the Kolmogorov, Obukhov
and Landau schools to the West. These schools then turned international
but also weakened their links to Russia and started to loose their distinct
Russian spirit.

Under one of the most oppressive regimes in the twentieth century, in
the country, which lost most of its educated class to emigration, civil war
and terror, and was often plagued by war, diseases, poverty and hunger,
great mathematical and physical schools flourished. Scholars raised in these
schools had a specific code of behavior. Long corridors chats were the most
effective forums of exchanging the latest ideas. Most seminars had no sharply
defined ends, some even had no clear beginning, as the people came before
to discuss related subjects [55]. Everyone worked inside a coherent group
of people familiar with the details of each other’s work (a downside was
that some people never had much incentive to learn how to present their
results to the outside world). Much has been said about the aggressive style
and interruptions at Russian seminars. One must however understand the
context: in a life which was a sea of official lies, doing science was perceived
as building a small solid island of truth; even unintentional errors risked
decreasing the solid ground on which we stand. Landau used to say: “An
error is not a misfortune, it is a shame”. One is reminded of monastic orders
that preserved and advanced knowledge during the dark ages (though in
other respects, most Soviet scientists weren’t monks). A more prosaic reason
that bonded people within a school was an impaired mobility of scientists -
recall that both Kolmogorov and Landau had a postdoctoral period abroad,
a possibility denied to most of their studentst. Still, the main attraction of
the schools was the personalities of the leaders.

By radically restricting creative activities, a tyrannical society channeled
the creative energy into the narrow sector of natural sciences and mathe-
matics. Russian society is more open now, and the choice of science as one’s
occupation is rarely placed in the context of morality. Will we ever again be
blessed with universalist geniuses of the caliber of Kolmogorov and Landau?

Acknowledgements. In preparing this essay, I benefitted from conver-

1 I believe that impaired mobility was the main reason why Soviet science as a whole never lived
up to our expectations.
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sations with U. Frisch, G. Golitsyn, K. Khanin, B. Khesin, D. Khmelnitskii,
S. Medvedev, R. Sagdeev, Ya. Sinai, K. Sreenivasan, V. Tseitlin and V.
Zakharov.



Bibliography

. Arnold V.I. and Khesin B. A. 1998. Topological methods in hydrodynamics, Appl.

Math. Sci. v. 125 (Springer-Verlag, New York)

. Battimelli, G. and Vulpiani, A. 1982. Kolmogorov, Heizenberg, von Weizséacker,

Onsager: un caso di scoperta simultanea, in Atto III congresso nazionale di
storia della fisica, (Palermo 11-16.10.1982), 169-175.

. Barenblatt G. I. 1 953. Motion of suspended particles in a turbulent flow. Prikl.

Mat. Mekh. 17: 261 -74; 1955. Motion of suspended particles in a turbulent
flow occupying a half-space or plane channel of finite depth. ibid 19: 61 -68.

. Bohm D. et al. 1949. The Characteristics of Electric Discharges in Magnetic

Fields (Cuthrie A., Wakerling R.K., New York)

. Bolgiano R. 1959. Turbulence spectra in a stably-stratified atmosphere, J. Geo-

phys. Res. 64, 2226-9; 1962. Structure of turbulence in stratified media, ibid
67, 3015-23.

. Camac M. et al. 1962. Shock waves in collision-free plasmas. Nuclear Fusion

Supplement 2, 423.

. Dryden H.L. et al, Nat. Adv. Com Aeronaut, 1937, Rep 581
. Falkovich, G., K. Gawedzki, and M. Vergassola, Particles and fields in fluid

turbulence, Rev. Mod. Phys., 73 913 (2001).

9. Falkovich, G. and K.R. Sreenivasan 2006. Lessons from hydrodynamic turbulence,

10.

11.

12.

13.

14.

15.
16.

17.

Physics Today 59(4), 43.

Frenkel, V. 1988. Alexander Alexandrovich Friedman, Biography, Sov Phys.
Uspehi, 155, 481.

Friedman, A.A. 1922. Uber die Kriimmung des Raumes, Z. Physik 10, H6,
377-387

Friedman, A.A. and L.V. Keller, 1925. Differentialgleichungen fiir die turbulente
Bewegung einer compressibelen Fliissigkeit, Proc. First. Internat. Congress
Appl. Mech. Delft, eds C. Beizano and J. Burgers, S 395-405.

Frisch, U. (1995). Turbulence: the legacy of A.N. Kolmogorov(Cambridge Univ.
Press, Cambridge).

Gledzer E.B. , Dolzhanskii F.V. and Obukhov A.M. 1981. Systems of Hydrody-
namic Type and Their Application (Nauka, Moscow) in Russian.

Golitsyn, G.S. private communications, 2009, 2010.

Golitsyn, G. S. 1973. An Introduction to Dynamics of Planetary Atmospheres
(Leningrad, Gidrometeoizdat) in Russian.

Gurvitz, A.S. 1960. Experimental study of the frequency spectra of the vertical

27



28

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

Bibliography

wind in the atmospheric boundary layer, Dokl. Akad. Nauk 132, 806-809.

Kaner, E.A. and V.M. Yakovenko, 1970. Weak turbulence spectrum and second
sound in a plasma, Sov. Phys. JETP 31, 316-30.

Kendall, D et al 1990. Andrei Nikolaevich Kolmogorov (1903-1987), Bull. Lon-
don Math. Soc. 22 (1) , 31-100.

Kolmogorov, A. N. 1933. Grundbegriffe der Wahrscheinlichkeitsrechnung,
Springer, Berlin.

Kolmogorov, A. N. private recollections, translated from Russian,
http://www.kolmogorov.info/curriculum-vitae.html

Kolmogorov, A. N. 1941. The local structure of turbulence in incompressible
viscous fluid for very large Reynolds number, C. R. Acad. Sci. URSS 30, 301-
305.

Kolmogorov, A. N. (1941. On decay of isotropic turbulence in an incompressible
viscous fluid, C. R. Acad. Sci. URSS 31, 538-540.

Kolmogorov, A. N. 1941. Energy scattering in locally isotropic turbulence in
incompressible viscous fluid for very large Reynolds number, C. R. Acad. Sci.
URSS 32, 19-21.

Kolmogorov, A. N. 1941. Logarithmically normal distribution of the size of
particles under fragmentation. Dokl. Akad. Nauk SSSR 31, 99-101

Kolmogorov, A. N. 1949. On the disintegration of drops in a turbulent flow,
Dokl. Akad. Nauk SSSR 66, 825-828

Kolmogorov, A. N. 1962. Precisions sur la structure locale de la turbulence- dans
un fluide visqueux aux nombres de Reynolds 61eves (in French and Russian). In
Mecanique de la Turbulence (Coil. Int. du CNRS a Marseille), pp. 447-58. Paris:
CNRS; A refinement of previous hypotheses concerning the local structure of
turbulence in a viscous incompressible fluid at high Reynolds numbers. J. Fluid
Mech. 13, 82-85.

Landau, L. and Lifshits, E. (1987). Fluid Mechanics (Pergamon Press, Oxford).

Landau, L. D. and Rumer, Yu. B. 1937. On sound absorption in solids, Phys.
Zs. Sovjet. 11, 8-15.

Mandelbrot, B. 1974. Intermittent turbulence in self-similar cascades: diver-
gence of high moments and dimension of the carrier, J. Fluid Mech. 62, 331-
58.

Millionschikov, M. D. 1939. Decay of homogeneous isotropic turbulence in a
viscous incompressible fluid, Dokl. Akad. nauk SSSR 22, 236.

Millionschikov, M . D. 1941. Theory of homogeneous isotropic turbulence. Dokl.
Akad. Nauk SSSR 22: 241-42; Izv. Akad. Nauk SSSR, Ser. Geogr. Geojiz. b5:
433- 46

Meneveau, C. and Sreenivasan K.R. 1987. Simple multifractal cascade model
for fully developed turbulence, Phys. Rev. Lett. 59, 14241427.

Monin, A. S., and A. M. Yaglom, 1979. Statistical Fluid Mechanics, MIT, Cam-
bridge.

Monin, A. S. 1958. Report to the Party Central Committee, published in
“Moskovskaya Pravda” 137(735), 1994, 19 June.

Monin, A. S., 1959. The theory of locally isotropic turbulence. Sov. Phys. Dok-
lady 4, 271.

S. M. Nicol’skii, 2006, in Mathematical FEvents of the Twentieth Century
(Springer, Berlin).

Novikov, S.P. Mathematics at the threshold of the XXI century (in Russian).

Novikov, E.A. and Stewart, R.W. 1964. The intermittency of turbulence and



40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.
53.

54.

55.
56.

o7.
o8.

59.

60.

61.

62.

63.

Bibliography 29

the spectrum of energy dissipation, Izv. Akad. Nauk SSSR, Ser. Geogr. Geojiz.
3, 408-13.

Obukhov, A. M., 1941. On the spectral energy distribution in a turbulent flow,
Izv. Akad. Nauk SSSR, Geogr. Geofiz. 5, 453-466.

Obukhov, A. M., 1949. The structure of the temperature field in a turbulent
flow, Izv. Akad. Nauk SSSR, Geogr. Geofiz. 13, 58.

Obukhov, A. M., 1949. Pulsations of pressure in a turbulent flow, Dokl. Akad.
Nauk. 66, 17-20.

Obukhov, A. M., 1951. Properties of wind microstructure in the near-ground
atmospheric layer, Izv. Akad. Nauk SSSR, Geofiz. 3, 49-68.

Obukhov, A. M., 1959. Influence of Archimedes force on the temperature field
in a turbulent flow, Dokl. Akad. Nauk. 125, 1246-8.

Obukhov, A. M. 1962. Some specific features of atmospheric turbulence. J.
Geophys. Res. 67: 311 - 14; J. Fluid Mech. 1 3 : 77-8 1
Obukhov, A. M., 1969. Integral invariants in systems of hydrodynamic type,
Dokl. Akad. Nauk. 184, 309-312.

Obukhov, A. M., 1971. Turbulence in an atmosphere with a non-uniform tem-
perature, Boundary-layer meteorology 2, 7-29.

Obukhov, A.M. 1988. Selected Works, Gydrometeoizdat (in Russian).

Obukhov, A. M. 1990. Interest in Geophysics, in Recollections about academi-
cian M.A. Leontovich, Nauka, Moscow (in Russian).

Parisi, G. and Frisch, U. 1985. On the singularity structure of fully developed
turbulence, in Turbulence and Predictability in Geophysical Fluid Dynamics,
Proc. Int. School ”E. Fermi”, 1983, Varenna, Italy, 84-87, eds. M. Ghil, R.
Benzi and G. Parisi, North-Holland, Amsterdam.

Peierls, R. 1929. Zur kinetischen Theorie der Wiirmeleitung in Kristallen, An-
nalen der Physik, 3, pp 1055-1101; On Kinetic Theory of Thermal Conduction
in Crystals in ”Selected Scientific Papers by Sir Rudolf Peierls with Commen-
tary” , World Scientific, 1997

Peixoto J. and Oort A. 1984. Physics of Climate, Rev. Mod. Phys. 56, 365-429.
Schwinger, J. 1951. On gauge invariance and vacuum polarization, Phys. Rewv.
82, 664-679.

Shiryaev A N (ed) Kolmogorov in memoirs of students, Moscow 2006 (in Rus-
sian).

Sinai, Ya. G. private communications, 2009, 2010.

Sreenivasan, K.R. and Eyink, G, in 2006 found 1945 letter of Onsager to Lin
where the third moment is estimated (Rev. Mod. Phys. 78, 87).

Yaglom, A. M. Obukhov works on turbulence, in [48].

Yaglom, A. M., 1949, On a local structure of the temperature field in a turbulent
flow, Dokl. Akad. Nauk. SSSR 69, 743.

Yaglom, A. M., 1949, On acceleration field in a turbulent flow, Dokl. Akad.
Nauk. SSSR 67, 795.

Yaglom, A. M., A. N. Kolmogorov as a fluid mechanician and founder of a
school in turbulence research, Annual Rev. Fluid Mech. 1994. 26: 1-22

Zakharov V. 2009. http://www.ancientpurple.com/TPfC.html The Paradise for
clouds,

Zakharov, V., Lvov, V. and Falkovich, G. 1992. Kolmogorov spectra of turbulence
(Springer, Berlin)

Zakharov, V.E. 1965. Weak turbulence in a media with a decay spectrum, J.
Appl. Mech. Tech. Phys. 4, 22-24.



30 Bibliography

64. Zakharov, V.E. 1966, On a nonlinear theory of surface waves, PhD Thesis, Ac.
Sci. USSR Siberian Branch (in Russian).

65. Zakharov, V.E. and N. N. Filonenko, 1966. The energy spectrum for stochastic
oscillations of a fluid surface, Doclady Akad. Nauk SSSR, 170, 1292-1295;
English: Sov. Phys. Docl. 11 (1967), 881-884.

66. Zakharov, V.E. 1967 Weak-turbulence spectrum in a plasma without a magnetic
field, Sov. Phys. JETP 24, 455; 1972 bf35, 908.

67. Zakharov’s poem (fragment) translated by A. Shafarenko.



