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12. Cartan matrix and Dynkin diagrams

A very useful construct in dealing with semi-simple Lie algebras is the
Cartan matrix A, defined by Aij = 2α(i) · α(j)/α(j) · α(j), where {α(i)} are
the simple roots of the algebra. For a rank ℓ algebra, the Cartan matrix is
an ℓ × ℓ matrix, with all diagonal elements equal to 2 and all off-diagonal
elements zero or negative. It is generally not symmetric. (The numerator is
symmetric in i and j, but the denominator involves only j.)

From the previous discussion of the “magic formula”, it follows that the
non-diagonal elements of the Cartan matrix are limited to Aij = 0,−1,−2,−3.
From the Schwarz inequality (α(i) ·α(j))2 ≤ (α(i) ·α(i))(α(j) ·α(j)), and from the
linear independence of the simple roots (so that α(i) cannot be proportional to
α(j) for i 6= j), it may be concluded that the product of off-diagonal elements
placed symmetrically about the main diagonal is limited by AijAji < 4.

With the aid of the Cartan matrix, all the roots can be expressed in terms
of the simple roots. It is sufficient to determine the positive roots, from which
the negative roots can be obtained by an overall sign change. Every positive
root can be written, as proved before, in the form

∑

i kiα
(i), where {α(i)}

are the simple roots and the {ki} are non-negative integers. The quantity
k =

∑

i ki is called the level of the root. The simple roots belong to the first
level, k = 1, with one of the ki being unity and the rest zero. The other
positive roots can be built up by adding simple roots consecutively. This will
be referred to as the building-up process for roots.

For any element γ of root space, its Dynkin indices are defined as ∆i =
2γ · α(i)/α(i) · α(i), where the {α(i)} are the simple roots of the algebra. The
Dynkin indices of a root are integers and the positive root

∑

j kjα
(j) has

Dynkin indices ∆i =
∑

j kjAji, in terms of elements of the Cartan matrix.
(Note that the rows of the Cartan matrix are the Dynkin indices of the simple
roots.) Each time a simple root α(l) is added to the root

∑

j kjα
(j), the integer

kl increases by 1 and the lth row of the Cartan matrix is added to the row of
Dynkin indices to generate the Dynkin indices of the new root.

According to the “magic formula”, the Dynkin indices of a root are equal
to m−p, where m and p define the ends of a simple-root string containing that
root. If p > 0 for some simple root, a new root can be produced by adding
that simple root to the existing root. If p = 0 for some simple root, a new
root can not be generated in this way. But ∆i = mi − pi =⇒ pi = mi − ∆i,
where the index i indicates which simple root is being tested for addition to
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the existing root. Since the roots are being built up by systematically adding
simple roots, the value of mi for the simple root α(i) is known at each step,
by counting backwards.

[Note that at level k = 1, where all the roots are simple, roots can
be generated by subtracting the simple root α(i) from itself twice
(since both 0 and −α(i) are roots) but no roots can be generated
by subtracting a simple root from a different simple root (since the
difference of simple roots is not a root). So the row of m values for
the simple root α(i) at level 1 is {0, 0, . . . , 0, 2, 0, . . . , 0, 0}, where
the sole non-zero entry is a 2 in the ith position.]

The procedure can be summarised as follows. At each level, list the roots
already found, together with their Dynkin indices and m values. (Note that
each root has a row of ℓ Dynkin indices and a row of ℓ values of m, one
for each simple root.) Compute for each root the values of pi = mi − ∆i.
For each pi > 0, add the corresponding simple root to the existing root
to get a new root and add the corresponding row of the Cartan matrix to
the existing Dynkin indices to get the Dynkin indices of the new root so
generated. When all new roots at that level (one level above the starting
level) have been found, repeat the process at this new level. The building-up
process terminates when all pi = 0 for all roots at a given level.

[As an illustrative example, consider the Lie algebra G2, which

is a rank-2 algebra with the Cartan matrix A =

(

2 −3
−1 2

)

. At

level k = 1, the simple roots are represented by ∆ = (2,−3) for
α(1) and ∆ = (−1, 2) for α(2). From α(1), admissible roots are
obtained by subtracting α(1), to get the root 0, or 2α(1), to get
the root −α(1), but no admissible root is obtained by subtracting
α(2), since the difference of two simple roots is not a root. So
m = (2, 0) for α(1). Similarly, m = (0, 2) for α(2). Taking the
difference, p = (0, 3) for α(1) and p = (1, 0) for α(2). Since p2 > 0
for α(1), while p1 > 0 for α(2), level k = 2 roots can be obtained by
adding α(2) to α(1) or by adding α(1) to α(2). Both steps produce
the same positive root, α(1) +α(2), with ∆ = (1,−1), obtained by
adding the first row of A to ∆ for α(2) or the second row of A to
∆ for α(1). Admissible roots can be obtained from this sole level
2 root by subtracting α(1) or α(2) once each, so it has m = (1, 1).
Subtracting ∆ produces p = (0, 2), so a further positive root can
be found by adding α(2), since p2 > 0. At level k = 3 there is
thus the root α(1) + 2α(2), with ∆ = (0, 1), obtained by adding
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the second row of A to the previous ∆. Admissible roots can be
obtained from this one by subtracting α(2) twice, so m = (0, 2)
and p = (0, 1). It is possible to add α(2) yet again, since p2 > 0,
so level k = 4 has the root α(1) + 3α(2), with ∆ = (−1, 3), again
adding the second row of A to the previous ∆. Admissible roots
are found by subtracting α(2) three times, so now m = (0, 3),
leading to p = (1, 0), allowing the addition of α(1), since now p1 >
0. This produces the level k = 5 root 2α(1)+3α(2), with ∆ = (1, 0)
and m = (1, 0), so that p = (0, 0) and the process terminates.
The algebra G2 has six positive roots, six corresponding negative
roots and two zero roots, so is of dimension 14. Note that, at
each stage of the process of building up the positive roots, the
entries in p indicate how much further it is possible to progress
along the corresponding α(i)-strings.]

This example can be structured as follows.
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A =

(

2 −3
−1 2

)

k = 1 α(1) α(2)

m = (2, 0) m = (0, 2)
∆ = (2,−3) ∆ = (−1, 2)
p = (0, 3) p = (1, 0)

H
HHj

(2) �
���

(1)
k = 2 α(1) + α(2)

m = (1, 1)
∆ = (1,−1)
p = (0, 2)

H
HHj

(2)
k = 3 α(1) + 2α(2)

m = (0, 2)
∆ = (0, 1)
p = (0, 1)

H
HHj

(2)
k = 4 α(1) + 3α(2)

m = (0, 3)
∆ = (−1, 3)
p = (1, 0)

�
���

(1)
k = 5 2α(1) + 3α(2)

m = (1, 0)
∆ = (1, 0)
p = (0, 0)

The Cartan matrix also determines the Lie products (commutation re-
lations) of the algebra. For each simple root α(i), the auxiliary quantities
ei = Eα(i) , fi = 2E

−α(i)/(α(i) · α(i))gα(i),−α(i) and hi = 2Hα(i)/(α(i) · α(i)) are
defined. It is easily checked that these quantities obey the commutation
relations [ei, fj] = hiδij (where the factor δij arises because the difference
α(i) − α(j) of simple roots is not a root), [hi, ej] = Ajiej (using the result
[Hα, Eβ] = (α · β)Eβ) and [hi, fj] = −Ajifj .

Since all positive roots arise as combinations of the simple roots (again
determined by the Cartan matrix), the corresponding generators e and f can
be defined as commutators (like [ei, ej ], for instance) or multiple commutators
(like [[ei, ej], ej ], for instance) of the simple generators, and appropriate h’s

Introductory Algebra for Physicists Michael W. Kirson



12. Cartan matrix and Dynkin diagrams 5

can be defined by analogy with the above. Then the Cartan matrix again
fixes the further commutation relations, like [hi, [ej , ek]] = (Aji + Aki)[ej, ek],
where the Jacobi identity has been used. (Note that the same non-simple
root may be obtained by different multiple commutators. In this case, some
specific choice of the representative multiple commutator must be made.)

Negative roots will have generators determined by the parallel multiple
commutators of the negatives of the simple roots. In this sense, the algebra
is fixed by its Cartan matrix.

A very helpful pictorial representation of the Cartan matrix is supplied
by Dynkin diagrams. In such a diagram, each simple root is represented by a
small circle, the shorter roots by a filled circle, and the circles are numbered.
Circles numbered i and j are connected by AijAji straight lines. Using the
known limitations on the Cartan matrix elements Aij , the Cartan matrix can
be reconstructed from the Dynkin diagram.

Simple Lie algebras have connected Dynkin diagrams, while semi-simple
algebras have disconnected Dynkin diagrams, one piece for each of the simple
ideals whose direct sum is the semi-simple algebra. There exist only a limited
number of possible connected Dynkin diagrams, hence only a limited number
of simple Lie algebras.

[As an illustrative example, consider the algebra G2 discussed

above, with the Cartan matrix A =

(

2 −3
−1 2

)

. It has two sim-

ple roots, of different lengths. (The elements A12 6= A21 differ only
in their denominators, which are respectively the squared length
of simple root number 2 and the squared length of simple root
number 1. Since A12 is larger, simple root number 2 is shorter.)
The first is represented by an open circle, the second by a closed
circle. The two circles are connected by three straight lines. The
Dynkin diagram is

m }
1 2

.
]

In order to establish the set of permitted Dynkin diagrams, a set of vectors
{γi} ∈ H∗

0 is considered. The matrix of integers Mij = 2γi · γj/γj · γj is
defined and represented by a diagram of numbered circles, with circles i and j
connected by MijMji straight lines. The set of vectors is defined as allowable if
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it satisfies the three conditions: (i) the {γi} are linearly independent, i.e. the
determinant of M is non-zero; (ii) Mij ≤ 0 for i 6= j; (iii) MijMji = 0, 1, 2, 3.
The following sequence of results is then established.

1. Any subset of an allowable set is allowable.

[This follows immediately from the definition of an allowable
set.]

2. An allowable set has more circles than joined pairs.

[Define γ =
∑

i γi/
√

γi · γi. Since the {γi} are linearly inde-
pendent, γ 6= 0, so γ · γ > 0, which can be written

0 <
∑

i

(γi/
√

γi · γi) · (γi/
√

γi · γi)

+2
∑

i<j

γi · γj/
√

(γi · γi)(γj · γj)

= number of circles −
∑

i<j

√

MijMji =⇒

number of circles >
∑

i<j

√

MijMji

> number of joined pairs,

since MijMji ≥ 1 for a joined pair. (Note the sign change of
the off-diagonal sum, since γi · γj < 0 but MijMji > 0.)]

3. The diagram of an allowable set has no closed loops.

[The loop alone would constitute a subset of the allowable
set. But a loop has a number of circles less than or equal to
the number of joined pairs, so is not allowable, by result 2.
This would contradict result 1.]

4. Suppose the diagram of an allowable set contains a chain of single links.
Shrinking this chain to a single circle produces an allowable set.
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[Let the circles in the chain represent β1, β2, . . . , βn and define
β =

∑

i βi. Then β · β =
∑

i βi · βi + 2
∑

i<j βi · βj

= n(βi · βi) − (n − 1)(βi · βi) = βi · βi, using the fact that
single links imply vectors of equal length and Mij = −1 =⇒
2βi · βj = −βj · βj. If the chain is linked to the circle γ at
one end, then γ · β =

∑

i γ · βi = γ · β1 or γ · βn. If the
set containing the {βi} was allowable, then the set with β
replacing all the {βi} is equally allowable.]

5. For an allowable set, no more than three lines are attached to any circle.

[Suppose the circle γ0 is joined to γ1, γ2, . . . , γn. Then γi · γj = 0
for i, j 6= 0, since there are no closed loops, i.e. the {γi, i 6= 0}
are mutually orthogonal. Since γ0 is linearly independent of
the {γi}, its squared length is strictly greater than the sum of
the squares of its projections along the mutually orthogonal
γi’s, γ0 · γ0 >

∑

i(γ0 · γi/
√

γi · γi)
2, i.e.

∑

i M0iMi0 < 4.]

6. The only allowable triple line occurs in the two-circle diagram

m m

where the three lines join the two circles.

[This follows directly from the previous result.]

7. The diagram of an allowable set contains at most one circle connected
with three single lines and at most one double-line segment, but not
both.

[If this rule were violated, it would be possible, by shrinking
a chain to a point, to produce a vertex with more than three
lines.]

It follows from the last two results that there can be no more than
two different lengths of vectors in an allowable set. From now on, the
shorter vectors will be indicated by filled circles.

8. The matrices corresponding to the diagrams
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} } m m m

} } } m m

have vanishing determinants and are not allowable.

[ The matrix of the first diagram is

















2 −1 0 0 0
−1 2 −1 0 0
0 −2 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

















.

Summing the first and fifth columns, plus twice the second
and fourth columns, plus three times the third column pro-
duces a column of zeroes, hence a vanishing determinant.

The second diagram has the matrix

















2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −2 2 −1
0 0 0 −1 2

















.

Summing the first and fifth rows, twice the second and fourth
rows and three times the third row produces a row of zeroes,
hence a vanishing determinant.]

9. The only allowable diagrams containing a double line are

} } } } m. . . .

m m m m }. . . .

m m } }

[Any other diagram with a double line contains one of the
non-allowed diagrams of the previous step as a subset.]

10. The only allowed branched diagrams are
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m m m m m

m

m

. . . . . . . .

...

.

[The diagram can contain only one three-line vertex, no dou-
ble or triple lines and no loops.]

11. The diagram

m m m m m

m

m

has vanishing determinant and is not allowable.

[The associated matrix is



























2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 −1 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 0 0
0 0 −1 0 0 2 −1
0 0 0 0 0 −1 2



























.

Summing the first, fifth and seventh columns, plus twice the
second, fourth and sixth columns, plus three times the third
column produces a column of zeroes, hence a vanishing de-
terminant.]

12. The only allowable branched diagrams remaining are
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m m m m m

m

. . . . . . . .

[Any other branched diagram contains the previous non-allowable
diagram as a subset.]

13. Finally, the diagrams

m m m m m m m m

m

m m m m m m m

m

have vanishing determinants and are not allowable.

[Confirmed by direct evaluation of the determinants.]

The final classification of all allowable diagrams is:

An: m
1

m
2

m
3

m
n

. . . .

Bn: m
1

m
2

m
3

m
n − 1

}
n

. . . .

Cn: }
1

}
2

}
3

}
n − 1

m
n

. . . .
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Dn: m
1

m
2

m
3

m
n − 2

. . . . �
��

H
HH

m
n − 1

m
n

E6: m m m m m

m

E7: m m m m m m

m

E8: m m m m m m m

m

F4: m m } }

G2: m }

The above are all the allowable Dynkin diagrams which could be associ-
ated with simple Lie algebras. In fact, each one of these diagrams does have
a corresponding Lie algebra. The families of algebras denoted An,Bn, Cn,Dn

are known as the classical Lie algebras, while the remaining five algebras,
E6, E7, E8,F4,G2, are known as the exceptional Lie algebras. In every case,
the subscript in the designation of the Lie algebra is the rank of the algebra.

The classical Lie algebras denoted by appropriate Dynkin diagrams derive
from the complex extensions of certain matrix algebras.

• The Dynkin diagram of An is the Dynkin diagram of su(n + 1)
(in fact, of su(n + 1 − m, m) for any m ≤ n + 1);

• the Dynkin diagram of Bn is that of so(2n + 1)
(in fact, of so(2n + 1 − m, m) for any m ≤ 2n + 1);

• the Dynkin diagram of Cn is that of sp(2n); and

• the Dynkin diagram of Dn is that of so(2n)
(in fact, of so(2n − m, m) for any m ≤ 2n).
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Certain isomorphisms can be read off from the identity of corresponding
Dynkin diagrams.

[B2 and C2 have the same Dynkin diagram, and so(5) ∼= sp(4);
A3 and D3 have the same Dynkin diagram, and su(4) ∼= so(6);
similarly, su(2) ∼= so(3) ∼= sp(2). Note that the Dynkin diagram
for D2

h

h

2

1

is not connected, so D2 is semi-simple, not simple. It is a direct
sum B1 ⊕ B1 and so(4) ∼= so(3) ⊕ so(3).]
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