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Optogenetic Insights into Social Behavior Function
Ofer Yizhar

Cognitive and social deficits lie at the core of many neuropsychiatric diseases and are among the many behavioral symptoms not amenable to
pharmacological intervention. Despite significant advances in identifying genes potentially involved in the pathogenesis of complex psychiatric
conditions such as autism and schizophrenia, knowledge of the physiological functions that are affected (and are therefore potential targets for
clinical intervention) is scarce. In psychiatric disorders with a strong genetic component, animal models have provided important links between
disease-related genes and behavioral impairment. Social dysfunction, for instance, is commonly observed in transgenic rodent disease models.
However, the causal relationships between the behavioral and physiological abnormalities in these models are not well-understood. Optogenetic
techniques have evolved to provide a wide range of experimental paradigms in which neural circuit activity can be perturbed with high spatial and
temporal precision, enabling causal investigation of the function of defined physiological events in neuronal subgroups. With optogenetics,
researchers have begun to elucidate the basic neural mechanisms of social behaviors and of disease-relevant social and cognitive dysfunction. The
synthesis of optogenetic technology with genetic animal models will allow forward- and reverse-engineering approaches to investigating the
neural correlates of psychiatric disease. This review outlines the neural systems known to be involved in social behavior, illustrates how optogenetic
technology has been applied to analyze this circuitry, and imagines how it might be further developed in future studies to elucidate these complex

circuits both from a basic science perspective and in the context of psychiatric disease.
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A nimal social behavior serves a wide variety of goals. Even in its
simplest forms, social behavior is diverse and includes parental
care and attachment, pair bonding, mating, aggression, and

maintenance of interconnected communities. Although the motiva-
tions for social interactions might vary among species, the cognitive
challenges they pose are likely similar due to high levels of uncertainty
and the requirement for real-time generation, refinement, and selec-
tion of models for the ongoing actions of other individuals. One of the
key motivations for achieving a mechanistic understanding of social
behavior is that social dysfunction is a common symptom in many
psychiatric diseases. Although human social behavior is more complex
and nuanced than its rodent equivalent, laboratory animals such as the
mouse and rat display a wide range of social behaviors that can be
quantitatively measured with laboratory techniques (1). Behavioral
ests have been developed that allow fine-grained investigation of
ocial interactions in the laboratory setting, including reciprocal social
nteractions, social approach, social recognition memory, ultrasonic
ocalization, and more (1,2). Studying social behaviors in the labora-
ory setting enables testing of specific hypotheses and elucidating the

olecular and physiological principles that underlie specific behav-
oral phenotypes (3). With these methods, the neural circuits that sub-
erve social behaviors might begin to be systematically delineated.

During ongoing social interactions, a representation of the en-
ironment of an animal based on sensory input including olfactory,
isual, and tactile modalities must be synthesized and used to direct
ehavior on a moment-to-moment basis. Research into the neural
orrelates of social behavior has pointed to several systems that
rocess sensory information relevant to social interactions (4). In

he rodent, these systems can be broadly divided into two distinct
odules. The first is a subcortical social circuit that carries relevant

lfactory information to the amygdala, which modulates hypotha-
amic activity to regulate the behavioral responses of the animal. A
econd module consists of cortical regions thought to provide top-
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own control over the activity of subcortical areas. The cortical
nvolvement is of particular relevance to psychiatric disease, be-
ause human and animal studies have indicated that substantial
hanges in cortical physiology might occur in diseases such as
epression, autism, and schizophrenia. Several recent studies, re-
iewed in the following text, have applied optogenetic techniques
o study the role of specific subcortical circuits in aggression and
nxiety and to explore the role of the prefrontal cortex (PFC) in
ocial dysfunction. The growing range of optogenetic tools and
ssociated technologies will enable a deeper understanding of the
eural systems involved in social behavior and the neural correlates
f behavioral dysfunction.

ptogenetic Tools for Studying Social and Cognitive
ehaviors

Optogenetic technology can be readily integrated into social
nd cognitive behavioral studies, with a growing array of tools that
nable genetically defined, light-based control of neural circuit el-
ments (5– 8). In optogenetics, genetically encoded light-gated ion
hannels, pumps, and receptors are expressed in living cells. These
re then modulated with controlled illumination of the transduced
issue. Most commonly, this is achieved through stereotactic deliv-
ry of genetically modified viruses carrying a microbial opsin gene.
nce an opsin gene product is expressed in the target cell popula-

ion, its activity allows light-based control over cellular physiology
9). Microbial opsins are single-component light-gated ion conduc-
ance regulators (10) that, similar to the mammalian eye, use a
etinal cofactor that enables light sensation. The most widely used

icrobial opsins are channelrhodopsin-2 (ChR2), a light-gated de-
olarizing cation channel (11), and halorhodopsin (12,13), a light-
ated hyperpolarizing chloride pump. These two opsins have been
dapted to neuroscience in recent years to allow blue light-acti-
ated excitation (14) and yellow light-based inhibition (15,16) of
eural activity. Due to their high degree of temporal, spatial, and
enetic specificity, optogenetic tools can be used to probe neural
ircuit physiology, for example through mapping of local and long-
ange projections (17–20), or to examine plasticity in defined path-
ays (21–24). In behavioral studies, optogenetic tools might be
sed both to simulate disease-related circuit states and to counter-
alance disease-related physiology (25–27).

The optogenetic toolbox has evolved rapidly in recent years and
ow includes a wide range of tools for controlling neuronal func-
ion (reviewed by Mei and Zhang in this issue). In addition to the
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channelrhodopsin variants used to depolarize neurons and the
chloride and proton pumps used for light-based hyperpolarization,
optogenetic tools are available to control cellular biochemical sig-
naling pathways (28 –30), extending the range of possible experi-
ments beyond direct modulation of ionic conductance. In experi-
ments that require prolonged modulation over the activity of a
particular neuronal population with minimal light delivery, a set of
channelrhodopsin variants called step function opsins (SFOs) (31)

re used to stably alter neural activity in an on-off fashion with blue
ight to trigger the opsin on and yellow light to trigger it back to its
nactive state. Neurons expressing SFOs respond to a single blue
ight pulse with sustained depolarization due to the slow decay
nherent in SFO photocurrents (31). The stabilized step function
psin (SSFO), generated through combinatorial mutagenesis of the
hR2 sequence, is extremely light-sensitive and can be used to
odulate neural activity in behavioral experiments for prolonged

eriods (�30 min) without the need for attachment of optical hard-
are during the course of the experiment (25). This property is
articularly important when the subject is in direct contact with
thers, as in some social exploration tests. An additional benefit

hat stems from the increased light sensitivity of SFOs is that a larger
olume of brain tissue can be modulated, despite the substantial
ecay of light through brain tissue due to scattering and absorption

6,32,33). Channelrhodopsins with red-shifted action spectra pro-
ide another solution to the scattering problem, because both scat-
ering and absorption are lower for red-shifted light, therefore al-
owing for larger excitation volumes (6). C1V1, a red-shifted
hannelrhodopsin, is triggered on with yellow light and might be
sed either alone or in combination with the blue light-activated
hR2 by targeting expression of each gene to a different population
f neurons (10,25,34). Expression of C1V1 variants can also be com-
ined with a blue light-sensitive SFO, which would allow spectrally
nd temporally distinct modes of activation (25). With this growing
rray of optogenetic tools, neuronal function can be reliably con-
rolled in a wide range of experimental paradigms. With these

ethods, researchers have begun to dissect the various neural
ircuits involved in social behavior.

Subcortical Systems Involved in Social Behavior

The subcortical social circuit is a major pathway for sensory
information specific to social interactions, which directly feeds into
motivational and emotional circuits that directly modulate behav-
ioral states and regulate behavioral responses. Sensory neurons in
the vomeronasal organ (VNO) respond to nonvolatile chemical cues
and thus convey olfactory social information obtained through
direct contact between animals (35,36). Olfactory signals transmit-
ted in animal social behavior trigger the release of short nonapep-
tides of the vasopressin and oxytocin family, through a sensory
pathway that transmits information from the VNO to the hypothal-
amus (37). Chemical cues are processed in the VNO through direct
responses of neurons in the sensory epithelium. Sensory informa-
tion from the VNO is conveyed through direct projections to the
accessory olfactory bulb (38), in which cells were shown to respond
strongly to physical contact with conspecifics (39). Information
from the accessory olfactory bulb is then transmitted to the medial
amygdala (36,40,41), which sends efferent projections to wide-
spread brain regions, including the hypothalamus, the nucleus ac-
cumbens, and frontal cortical regions (42).

Hypothalamic neurons were shown to be strongly activated
during both mating and aggressive behavior (43,44). However, it
has not been clear whether these behaviors are mediated by dis-

tinct neuronal populations within the hypothalamus. A recent n

ww.sobp.org/journal
tudy addressed this question elegantly by targeting neurons in the
entrolateral aspect of the ventromedial hypothalamus, a region
hown to receive direct projections from the posteriodorsal medial
mygdala (42). Lin et al. (45) used single unit recordings in behaving
ice to show that neurons in ventromedial hypothalamus respond

o both male and female intruders before physical contact and are
trongly modulated during aggressive encounters. With virally de-
ivered ChR2, the authors show that activation of neurons in this
ypothalamic subregion can directly induce attack behaviors,
hereas electrical stimulation of the same region is ineffective in
roducing this behavioral effect. This is an important distinction,
ecause it emphasizes the fundamental differences between elec-

rical and optogenetic stimulation in the context of mapping the
ehavioral significance of defined neuronal populations. Optoge-
etic stimulation of virally transduced cell populations mostly mod-
lates neuronal cell bodies expressing the optogenetic proteins
nd spares nonexpressing fibers-of-passage (26). By contrast, such
xonal fibers are preferentially activated with electrical microstimu-

ation, triggering back-propagation of evoked action potentials to
istant somata projecting to the stimulated area (46). Because mul-

iple neuronal populations with diverse roles might be recruited in
his way, the anatomical specificity conferred by the combination of
iral spread and restricted illumination in optogenetic excitation
nables the specific dissection of anatomically defined neuronal
opulations, as exemplified in this study.

Excitation of channelrhodopsin in axonal terminals, through re-
ruitment of endogenous sodium and calcium channels, leads to
eurotransmitter release in the modulated axonal terminals (47).
timulation of ChR2-expressing axons therefore allows for activa-
ion of specific projection pathways in neural circuits. This approach
as applied in the dissection of amygdalar circuitry underlying
nconditioned anxiety (48), where specific projections from the
asolateral amygdala (BLA) to the central amygdala were stimu-

ated with ChR2. In this study, the authors identified a feed-forward
nhibitory neural circuit within the central amygdala that regulates
nxiety behavior. Activation of excitatory projections from the BLA

nto the centrolateral amygdala evoked feed-forward inhibitory
esponses in the centromedial nucleus, leading to an anxiolytic
ffect, whereas direct stimulation of BLA excitatory neuron somata
id not affect anxiety. Because amygdala nuclei are highly intercon-
ected (49), and given the direct projections from the medial
mygdala to the hypothalamus (42), it is likely that the activity of
hese individual subcortical circuits— controlling anxiety, aggres-
ion, and mating—integrates to control the engagement in social
ehavior and the progression of social encounters. Application of
ptogenetic technology to additional subsystems within the sub-
ortical social circuit is expected to yield valuable information with
egard to the role of these systems in mediating social behavior.

eocortical Control of Social Behavior and Its
ysfunction in Psychiatric Disorders

In the setting of active social interactions, both automatic and
olitional processes converge in guiding behavior on a moment-to-
oment basis. Top-down control through cortical modulation of

ehavioral responses has been proposed as a link between higher
ognitive processes and subcortical structures such as the
mygdala and hypothalamus (4). Despite the differences in the
ensory cues used and the complexity of human social behavior,
rimate (50) and human studies (51–53) have consistently shown

he amygdala to be a key player in social processing, providing a
ossible link between a more primitive, olfactory-based social cog-

ition in rodents and its human homologue. Amygdala activity is
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strongly modulated through top-down control by the PFC (50),
hich directly projects to the amygdala in both rodents and pri-
ates (54 –57). It is therefore likely that, through modulation of

mygdala activity, PFC neurons can exert a strong modulatory ef-
ect over social behaviors, integrating higher cognitive processing

ith innate behavioral responses.
The involvement of the PFC in regulation of amygdala activity

ight also provide an important link to disease states. Imaging
tudies have reported significant structural and functional changes
o the PFC in patients with major depression (58). In human patients
ith treatment-resistant depression, electrical stimulation to the

ubcallosal cingulate gyrus—a prefrontal hub containing many fi-
er tracts to and from the PFC (59)—was shown to be effective in
lleviating depressive symptoms (60,61). Consistently, postmortem
tudies in depression patients have shown reduced expression of
mmediate early genes in the PFC, indicating reduced neuronal
ctivity in this region that might contribute to disease symptoms
27). Covington et al. have now shown that in mice that are suscep-
ible to social defeat stress, similar reductions in the expression of
mmediate early genes occur within the medial prefrontal cortex
mPFC). In these experiments, mice are repeatedly exposed over a
0-day period to an aggressor mouse both in direct physical en-
ounters and indirectly through a perforated partition that allows
or sensory contact. After this period, some mice develop signs of
ocial defeat-related stress that manifests as anhedonia (measured
s a reduced preference for sucrose over water) and a low interac-
ion time in a social approach test. To test the hypothesis that
ncreased activity in the mPFC could rescue this pathological state,
ptogenetic stimulation was delivered to the mPFC in susceptible
ice and control subjects (27). Increased mPFC activity, achieved

hrough activation of ChR2 expressed in socially defeated mice,
estored normal social interaction and sucrose preference. The au-
hors mimicked a stimulation pattern associated with the antide-
ressant effects of deep brain stimulation (60) by delivering short
ursts of high-frequency light pulses to drive ChR2-expresing neu-

ons. By contrast, this same stimulation pattern did not lead to
ncreased social approach in control (nondefeated) mice, indicating
hat the effects of burst stimulation in PFC are specific to the depres-
ive-like state induced by the social defeat paradigm. These results
onfirm the clinical data implicating the importance of the mPFC in
egulation of depression-related social symptoms and provide a
tarting point for more detailed optogenetic characterization, pos-
ibly through projection-based targeting techniques (62), of the
iverse subcortical projections of the PFC in modulation of social
ehavior deficits. Such studies will provide important links between

he cortical and subcortical circuits involved in social behavior.
Cortical deficits have also been suggested to play important

oles in the pathophysiology of autism and schizophrenia, which
re both associated with severe social impairment and are among
he most debilitating psychiatric diseases (63,64). These disorders
hare many behavioral and biological commonalities, including the
pparent involvement of dysregulation of cortical excitation and

nhibition (65– 67). Changes in PFC function have been docu-
ented in human imaging and postmortem studies and are con-

idered key evidence to the etiology of autism and schizophrenia
68,69). These changes include altered expression of the neu-
otransmitter �-aminobutyric acid (70) and other inhibitory neuron

arkers (71–74), the most remarkable of which is parvalbumin, a
alcium-binding protein expressed in fast-spiking inhibitory in-
erneurons that are involved in the generation of �-band oscilla-
ions (69,75– 80). These observations have led to and supported a

ypothesis stating that changes in the balance between excitation i
nd inhibition (E/I balance) plays a central role in the pathogenesis
f autism and schizophrenia (65– 67,81– 85).

One widely used approach to studying candidate genes with
egard to disease etiology has been to introduce analogous muta-
ions to the mouse genome by transgenic manipulation (1,3,86 –
8). Indeed, many animal models of autism and schizophrenia dis-
lay deficits in social interaction (89 –104) and have enabled the
xamination of the neural systems involved. The E/I balance abnor-
alities have been reported in several mouse models of autism

99,105–107) and schizophrenia (79), supporting the link between
isease-related genes, E/I balance regulation, and behavioral im-
airment (67,108,109). Interestingly, although the molecular and
hysiological abnormalities induced by genetic or developmental
hanges in these models are quite distinct, many animal models of
utism and schizophrenia show similar impairments in social be-
avior. Whether these social deficits arise from similar neural circuit

mpairments has not been established. Direct support for this hy-
othesis comes from our recent optogenetic study in which the E/I
alance in PFC was directly modulated by expression of SSFO, in
xcitatory pyramidal neurons or in fast-spiking inhibitory interneu-
ons. This allowed light-controlled increases in excitatory or inhibi-
ory activity, respectively, within the transduced region. These re-
ults have indicated that increased excitation within the PFC leads
o behavioral dysfunction, whereas increased inhibition in the same
egion does not impair behavioral performance (25). As demon-
trated in this study, the use of step-function opsins in behavioral
tudies allows greater flexibility in the design of behavioral experi-

ents. The kinetic stability of SSFO allows persistent modulation of
eural activity throughout the course of many common behavioral
aradigms, and the superior light sensitivity of these opsins enables
inimally invasive light delivery methods in these experiments.

ummary

Optogenetic technology allows precise manipulation of intact
eural circuits in vitro and in vivo. Researchers can choose from a
ide range of optogenetic tools along with associated enabling

echnologies for targeting these proteins to particular cell types.
ombined with transgenic models of psychiatric disease, optoge-
etics will serve a unique role in functional dissection of the neural
ircuits subserving social and cognitive behaviors and aid in the
ormulation of refined hypotheses to guide future therapies. Study
f social behaviors under more naturalistic settings will necessitate

he development of novel methods for delivering light to the brain
ith minimal constraints on animal handling and movement. Tech-
iques for wireless light delivery and telemetric electrophysiologi-
al recordings will greatly enhance the scope of possible experi-
ents and allow the examination of sensitive social interactions
ith minimal intervention. One of the current limitations in apply-

ng optogenetic methods to the study of neural circuits is the spec-
ficity with which behaviorally relevant groups of neurons can be
hosen for modulation. Refined genetic methods for activity-based
nd connectivity-based expression of the optogenetic tools will
reatly increase the precision with which individual circuit ele-
ents can be explored. Combined with an expanding range of

nimal models of psychiatric disease, optogenetics can be used to
issect disease-related circuits and possibly inform novel treatment
trategies.
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