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predecessors) were generated by automatically linking an image 
patch of 27 × 27 pixels covering the mass-centered body of the cell 
to every time point of a manual cell track (Fig. 1b,c, Supplementary 
Note 1). We annotated the lineage commitment when the respec-
tive lineage marker was detectable in the fluorescence channel 
(CD16/32 for the GM and GATA1-mCherry for the MegE lineage) 
and assigned all tracked cells to one of three categories: (i) “anno-
tated” cells with clear expression of the marker within the cell life-
time, (ii) “latent” cells with no immediate expression of the marker 
but expression in a subsequent generation, and (iii) “unknown” 
cells with no expression of the marker in current or subsequent 
generations (Supplementary Fig. 2a–c). Our data set comprised  
150 genealogies from 3 independent experiments with a total of 
5,922 single cells (Supplementary Fig. 2d–f). Each cell was imaged 
~400 times, resulting in more than 2,400,000 image patches.

We used these millions of image patches to build a classifier that 
predicts the lineage choice of a stem cell’s progeny toward either the 
GM or the MegE lineage. To efficiently leverage the information in 
our data set, we built on recent advances in deep neural networks 
for image classification. We combine a convolutional neural net-
work (CNN) with a recurrent neural network (RNN) architecture 
to automatically extract local image features and exploit the temporal 
information of the single-cell tracks (Fig. 1d,e). Specifically, three 
connected convolutional layers extract image features, resulting in 
increasingly global representations of the image patches. As a CNN 
allows no direct inclusion of features other than pixel information, 
we introduced a concatenation layer combining the highest-level 
spatial features with cell displacement, which was followed by a 
fully connected layer that can be interpreted as patch features. To 
train the CNN, this layer is connected to output nodes, resulting 
in a lineage score for each patch. Lineage scores of 0 or 1 indicate a 
strong similarity to cell patches from either the MegE or GM lineage, 
respectively. Next, in order to classify individual cells as committed 
to either lineage, we used the patch features as input for the RNN. To 
model long-range temporal dependencies in the data without suffer-
ing from the vanishing-gradient problem7, we used a bidirectional 
long short-term memory (LSTM) architecture8,9 (Fig. 1e).

After filtering out of all unknown cells (containing both uncom-
mitted cells and committed cells for which the markers had not yet 
switched on at the end of the experiments), the data set to train and 
evaluate our method consisted of 4,402 single cells (~1,700,000 image 
patches) with onset of the annotated or latent marker (34% MegE 
and 66% GM, Supplementary Fig. 2e,f). To assess the generalization 
power of our model to reliably predict a cell’s choice of putative line-
age in independent experiments, we trained our CNN–RNN on two 
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Long-term, high-throughput time-lapse microscopy is a power-
ful tool for studying the differentiation processes of single cells in 
unprecedented temporal resolution1. A high frequency of bright-
field imaging (typically on the scale of a few minutes) ensures that 
moving single cells and cell divisions can be accurately tracked 
and used for the construction of cellular genealogies. Additionally, 
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allows the quantification of molecular lineage markers3,4. However, 
molecular lineage markers are only available for specific cell types 
that are often already differentiated5,6, hindering the early identi-
fication of differentiating cells.

Therefore, we set out to exploit the information in the abun-
dant brightfield images of time-lapse experiments for prospective 
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time-lapse experiments of primary murine hematopoietic stem and 
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experiments and tested the resulting model on the third experiment; 
we repeated this procedure three times in a round-robin fashion  
(Fig. 1f) and evaluated the performance of the trained model by the 
area under the curve (AUC) of the receiver operating characteristic 
and F1 score (Supplementary Fig. 3). Our method achieved high 
AUCs of 0.87 ± 0.01 (mean ± s.d., n = 3 rounds) on annotated cells, 
indicating that morphology and displacement suffice to detect the 
lineage choice of HSPCs. Interestingly, the reported AUCs for latent 
cells were also high (0.79 ± 0.02, mean ± s.d., n = 3 rounds), suggest-
ing that latent cells are morphologically different before expression of 
an identifiable marker. We investigated this finding further by ana-
lyzing AUCs for every generation separately (Fig. 1g). AUCs stayed 
at comparable and robust levels from one to three generations before 
an annotated marker onset (0.84 ± 0.07, 0.86 ± 0.04 and 0.78 ± 0.05, 
respectively, mean ± s.d., n = 3 rounds). At four and five generations 

before the marker onset, the decline and variance of AUCs (0.74 ± 0.19  
and 0.82 ± 0.19, respectively, mean ± s.d., n = 3) suggested that the 
differences in morphology and displacement were no longer suffi-
cient to differentiate GM- and MegE-committed cells. We achieved 
similar performance when using our classifier on data from geneti-
cally nonmodified mice (Online Methods and Supplementary  
Fig. 4). To assess the performance of our CNN–RNN on cells in 
which tracking is stopped before cell cycle completion (for exam-
ple, in an ‘online-prediction’ scenario where the lineage score is 
calculated while the experiment runs), we computed AUCs on the 
basis of only a subset of brightfield patches. While single patches 
are insufficient for correct prediction, AUCs over 0.75 were reached 
when using the first ~25% of time points in the cell cycle from latent 
(three, two and one generation before marker onset; Fig. 1h) and 
annotated (Fig. 1i) cells.

Round:

3

2

1

Experi-
ment

1

Experi-
ment

2

TrainingTest

TestTraining

Experi-
ment

3

Training TrainingTest

Megakaryocytic/
erythroid
lineage  (MegE)

Granulocytic/
monocytic
lineage (GM)

Hematopoietic
stem cell

PU.1mid

GATA1–

CD16/32–

PU.1high

GATA1–

CD16/32+

PU.1low

GATA1+

CD16/32–

Lineage decision

Brightfield

CD16/32

Time (h after experiment start)
0 10 20 30 40 50 60 70 80 90 100

AnnotatedLatent

Time (generation before/after marker onset)

110

–6 –5 –4 –3 –2 –1 0 +1 +2

C
el

l s
iz

e
 (

×
10

2  µ
m

2 ) 3

2

1

Brightfield

GATA1-mCherry

Time (h after experiment start)

AnnotatedLatent

–6 –5 –4 –3 –2 –1 +10 +2

0 10 20 30 40 50 60 70 80 90 100 110

3

2

1

Time (generation before or after
marker identification)

A
U

C

Round 1
Round 2
Round 3

AnnotatedLatent

0.4

0.5

0.6

0.7

0.8

0.9

0.1

–4 –3 –2–5 0 1 2–1

Patch
lineage
score

Displacement
Single

image patch
27 × 27 px

Patch
features

5 × 5 2 × 22 × 2 2 × 23 × 34 × 4

t – 1

t

t + 1

Hidden
layer

Cell
lineage
score

RNN
RNN

CNN

CNN

Patch
featuresCell

patches

Cell
lineage
score

C
el

l s
iz

e
 (

×
10

2  µ
m

2 )

Time (generation before or after marker onset)

a

b

c

Convolution

Time
Tim

e

d

e

f g

Latent Annotated

0 50 100
0.4

0.6

0.8

1

Fraction of cell cycle (%)
A

U
C

A
U

C

0 50 100
Fraction of cell cycle (%)

0.4

0.6

0.8

1

Round 1
Round 2
Round 3

h i

 Max
pooling

Convolution  Max
pooling

Convolution  Max
pooling

Figure 1 | Prediction of hematopoietic lineage choice up to three generations before molecular marker annotation using deep neural networks.  
(a) Hematopoietic stem cells (gray) can differentiate and are annotated as committed toward the granulocytic/monocytic (GM, blue) lineage via detection 
of CD16/32 or toward the megakaryocytic/erythroid lineage (MegE, red) via detection of GATA1-mCherry expression. These conventional markers appear after 
the lineage decision of the cell (gray box). (b,c) Exemplary image patches of a branch of single cells committing to either GM (b, upper row) or MegE  
(c, upper row) lineage (scale bars, 10 µm). Cells with no marker expression are “latent”, and cells with marker expression are “annotated” (b,c, middle row). 
The graphs in the lower rows show cell size. (d) A schematic of the convolutional neural network (CNN) calculating a patch lineage score for each image 
patch (see Online Methods for details). (e) To account for temporal dependencies, we feed the CNN-derived patch features of a cell (yellow) in a recurrent 
neural network (RNN). The nodes in the hidden layer are connected to output nodes, as well as all other hidden nodes across time (left); this temporal 
dependency is further illustrated in an unrolled representation of the RNN (right), where yellow squares represent the patch-feature vectors at a specific time 
point, and forward and backward arrows reflect the bidirectional architecture of the RNN. (f) Schematic of round-robin training and testing. (g) Area under 
the receiver operating characteristics curve (AUC; 1.0 = perfect classification, 0.5 = random guessing) determines the performance of the trained models. 
Annotated cells (generations 0, +1, +2) and latent cells up to three generations before marker onset (generations −3, −2, −1) show AUCs higher than 0.77  
(n = 3 rounds, 4,204 single cells in total). (h,i) AUCs when only (contiguous) subsets of image patches are used to compute the cell lineage score.  
AUCs over 0.75 were reached when using the first ~25% of time points in the cell cycle from latent (h) and annotated cells (i), respectively.
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The combination of single-cell transcriptomic profiling10 with our 
approach would, in principle, allow comparison of the expression  
patterns of early committed cells after stratification in accordance 
with their lineage score to identify differentially expressed regulators. 
As the usefulness of our approach for such an experiment is hard to 
assess from the AUCs, we evaluated our method with the expres-
sion of PU.1, a transcription factor that is tagged with enhanced 
yellow fluorescent protein (eYFP) in our cells (Online Methods).  
As expected6,11, PU.1–eYPF was upregulated in GM-annotated cells 
(Fig. 2a), was downregulated in MegE-annotated cells (Fig. 2b), 
and showed intermediate expression in cells without expression of 
annotated markers (Fig. 2c). If our proposed method was capable of 
reliably predicting a cell’s early lineage choice, we should be able to 
stratify all cells in silico into either GM- or MegE-committed cells at 
every time point of a hypothetical experiment. These groups, in turn, 
are expected to differentially express PU.1–eYFP. Thus, we classified 
every latent and unknown cell into one of two groups by analyzing 
whether each cell’s lineage score was above (GM) or below (MegE) 
a threshold of 0.5 (Fig. 2d, Supplementary Fig. 5a,b). We found the 
two groups to differentially express PU.1–eYFP from two generations 
after the experiment start and onwards (P < 0.01 in generation 2,  
P < 0.001 in generations 3–8, unpaired Wilcoxon rank-sum test,  
Fig. 2d) with at least 89 cells per generation (Fig. 2e). As only 2 ± 1%  
(mean ± s.d., n = 3 rounds) of GM and 15 ± 8% (mean ± s.d., n = 3  
rounds) of MegE marker onsets were annotated earlier than four 
generations after experiment start, our method is clearly superior to 
lineage identification on the basis of traditional molecular markers 
in that particular time window (Supplementary Fig. 5c).

Different automated methods have been used for single-cell 
classification12–15. We compared the performance of our CNN–
RNN method to that of several other approaches. To this end, 
we trained a random forest model and a support vector machine 
(SVM) with a set of 87 morphological features and displacement. 
In addition, we evaluated the algorithmic information theoretic 
prediction (AITP)15, a method designed to predict the differen-
tiation fate of retinal progenitor cells using a set of six movement 
and size features, as well as a conditional random field (CRF) 
approach based on scale-invariant feature transform (SIFT) fea-
tures13,16. Finally, we quantified the performance of two CNN 
models, in which we averaged patch-wise lineage scores to obtain 
cell-specific predictions (Supplementary Fig. 6). We evaluated 
all methods in terms of AUC; in addition, to quantify perform-
ance in terms of precision and recall, we further compared the  
F1 scores of all methods. While our CNN–RNN outperformed the 
SVM on annotated cells and was on par with SVM on latent cells, 
we found the AUCs for the random forest method to be similar 
on both sets (Supplementary Fig. 7a). However, the CNN–RNN 
achieved considerably higher F1 scores than the random forest, 
AITP and CRF-based approaches (Supplementary Fig. 7b), 
indicating that these methods were more poorly calibrated than 
CNN–RNN. Using a RNN to model cell dynamics rather than 
using simple averaging in the CNN approach yielded a slight but 
consistent increase in predictive power (in terms of F1 score). 
This suggests that the CNN–RNN approach yields more robust 
results when applied to new experiments that were not part of the 
training procedure.
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concentration in a branch with annotated GM marker onset. a.u., arbitrary unit. (b) Decrease of PU.1–eYFP concentration in a branch with annotated 
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The computation of hand-crafted features can be time-consuming  
and biased as appropriate features have to be chosen carefully 
for every new data set. Instead, our CNN–RNN takes only raw 
brightfield image patches as input, rendering the explicit compu-
tation of features obsolete. However, knowing which interpret-
able features are most important for lineage prediction could 
support the design of novel experiments to study hematopoi-
etic differentiation2. Since the features implicitly derived within 
the CNN are difficult to extract and interpret, we evaluated  
the feature importance reported by the trained random forest 
model17. We found that multiple features—most importantly dis-
placement and simple morphological features (maximal and mean  
pixel intensity and cell size)—are required for correct random 
forest classification (Supplementary Fig. 8). To investigate the 
relevance of the displacement feature, we retrained our CNN–
RNN model omitting displacement, resulting in a somewhat 
lower predictive power for latent cells (from 0.79 ± 0.02 to 0.76 ±  
0.04); this result illustrates that displacement is used by the  
network. Moreover, we found slight differences in the dis-
placement and cell diameter of GM- vs. MegE-predicted cells 
(Supplementary Fig. 9).

Previously, computational image analysis has been used to pre-
dict the fate of retinal progenitor cells from rats15 and to identify 
characteristic features of two populations of progenitor cells in 
the cerebral cortex18. In the hematopoietic system, long cell-
cycle times and trailing cellular projections19, as well as reduced 
proliferation and increased asynchronous divisions20, have been 
identified as key features of HSPC self-renewal via time-lapse 
microscopy. Our method allows users to prospectively discrimi-
nate between two different lineages arising from hematopoietic 
progenitors and performs robustly on multiple independent time-
lapse experiments. For a single cell, this prediction relies on a 
sequence of brightfield images and the combination of multiple 
features—single images and single features do not suffice. The 
brightfield-based prediction frees fluorescence channels that are 
currently used for lineage marker annotation. Moreover, the dif-
ferential expression of PU.1–eYFP implies that our method can 
be used to identify important regulators of lineage choice when 
combined with single-cell profiling. While parameterizing deep 
neural networks requires large quantities of training data, the 
application of this approach matches the large amount of labeled 
image data that emerges from the diligent and careful annotation 
of time-lapse microscopy movies4,6 and can be used for train-
ing the networks. Compared to other machine learning meth-
ods, our CNN–RNN method predicts fast and robustly for new 
experiments not used for training. While it is independent of a 
cell-type-specific, curated set of features and requires no high-
level feature calculation, the interpretation of the derived features 
is challenging and an active field of research. Our approach is 
versatile and well-suited to analyze differentiation processes in 
biological systems where robustness is pivotal, suitable feature 
sets are unknown or fast prediction is required.

Methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Generation of knock-in mice. The generation of knock-in mouse 
lines with reading frames for yellow (enhanced yellow fluorescent 
protein; eYFP) and red (mCherry) fluorescent proteins knocked 
into the gene loci for PU.1 and Gata1, respectively, has previ-
ously been described6. The resulting PU.1eYFP and GATA1mCherry  
mice were mated to create male PU.1eYFPGATA1mCherry mice with 
no discernible phenotype6.

Purification of primary murine hematopoietic stem and  
progenitor cells. Femurs, tibiae and ilia were removed from  
mice aged 12–14 weeks, and bone marrow was extracted. HSPCs 
were sorted to both a technical purity of >95% and an expected 
functional purity of at least 40–60% by flow cytometry21,22. 
Directly after sorting, cells were incubated with CD16/32 Alexa 
Fluor 647 antibody and seeded on a plastic slide (µ-slide VI 
coated with Fibronectin, Integrated BioDiagnostics GmbH, 
Munich, Germany) with physically separated channels in serum-
free medium (StemSpan SFEM, StemCell Technologies) supplied 
with cytokines that only promote differentiation toward myeloid 
cells. Animal experiments were approved by veterinary office  
of Canton Basel-Stadt, Switzerland and Regierung von 
Oberbayern, Germany.

Long-term time-lapse microscopy data. For each experiment, 
channels of a plastic slide were subdivided into 72–78 overlapping 
fields of view. Each field of view corresponds to a 1388 × 1040 pixel 
image that was saved in 8-bit png format. Images were acquired 
using Axio Observer Z1 microscopes (Zeiss), equipped with a 
0.63× TV-adaptor (Zeiss), an AxioCamHRm camera (Zeiss) and 
a 10× fluar objective (Zeiss). Microscopes were surrounded by an 
incubator to keep a constant temperature of 37 °C, and cells were 
maintained in 5% CO2. Each field of view was imaged in intervals 
of 60–120 s (brightfield channel), 25–40 min (PU.1–eYFP and 
GATA1–mCherry channels) and 120–240 min (CD16/32 chan-
nel) for up to 8 d (Supplementary Fig. 1). Automatic focusing 
was achieved using a hardware autofocus (Zeiss), which was set 
to 18 µm below the optimal focal plane to acquire slightly blurred 
images that are optimal for cell detection23.

Time-lapse experiments from PU.1eYFPGATA1mCherry mice  
(3 experiments, 150 genealogies, 5,922 cells, 2,477,784 cell patches, 
Supplementary Fig. 2) and non-genetically modified C57BL/6J mice 
(1 experiment, 29 genealogies, 266 cells, 157,384 cell patches) were 
used in this study, comprising a total size of ~1TB of disc space.

Single-cell tracking and annotation of lineage commitment. 
Single cells and their progeny were manually followed over 
time using the tTt software24 (Supplementary Figs. 1 and 2 and 
Supplementary Video 1). Next, we combined automated segmen-
tation with cell tracks by linking image patches centered on the 
cell’s center of mass to the nearest track coordinate. To that end, we 
extended our previously developed automated image processing 
pipeline that identifies and segments single cells with high accuracy 
in time-lapse brightfield microscopy25 (Supplementary Video 2). 
For a detailed description of tracking, identification and segmenta-
tion, see Supplementary Note 1 and Supplementary Figure 10.

Lineage commitment was initially annotated by experts 
by visual inspection of the fluorescence signal of CD16/32  
(for the GM lineage) and GATA1-mCherry (for the MegE lineage).  

We amended these annotations by automatically quantifying the 
concentration of CD16/32 and GATA1-mCherry using a self-writ-
ten user interface (see Supplementary Fig. 11). Galleries of cells 
with marker expression are shown in Supplementary Figure 12.  
For the genetically non-modified mice, we used CD16/32 (for the 
GM lineage) and a large morphology (for the MegE lineage due 
to the absence of GATA1-mCherry).

Deep neural networks. We combined a convolutional neural net-
work (CNN) that extracts shape-based features, with a recurrent 
neural network (RNN) architecture that models the dynamics 
of the cells.

For the CNN, we extended a model from the LeNet family26 
by combining three convolutional layers (20 filters with kernel 
size 5, 60 filters with kernel size 4, and 100 filters with kernel 
size 3) with two fully connected layers (500 and 50 nodes).  
The last hidden layer that is fully connected (yellow nodes in Fig. 1d)  
can be interpreted as patch-specific features. Each convolu-
tional layer is followed by a nonlinear activation function. We 
chose Rectified Linear Units (ReLU), which have been shown 
to introduce nonlinearities without suffering from the vanish-
ing gradient problem27. In addition, we used max-pooling layers, 
which reduce variance and increase translational invariance by 
computing the maximum value of a feature over a region28, and 
dropout layers following the fully connected layer to avoid over-
fitting. Here, we largely follow Ciresan et al.29, where it is shown 
that this combination of layers results in fast training times and 
good performance on a variety of image classification data sets.  
We further use the recently proposed batch normalization strategy 
to normalize outputs after each layer30. Finally, in order to be able to  
account for non-image-based features, we introduce a concatena-
tion layer that combines spatial features with cell displacement 
(white nodes in Fig. 1d).

We used a softmax loss function and trained the network using 
stochastic gradient descend with stratified batches of 128 images. 
We initialized all weights in the network using the Xavier algo-
rithm, which automatically determines the scale of the initializa-
tion based on the number of input and output nodes31. We used 
standard values for the base rate of learning (0.01), momentum 
(0.9) and the learning rate policy (stepwise policy decreasing the 
learning rate every 10,000 iterations32).

We then passed the output of the first layer that was fully con-
nected together with the displacement feature (which we interpret 
as patch features extracted by the CNN) to a bidirectional long 
short-term memory (LSTM) recurrent neural network (Fig. 1e). 
Specifically, we trained a LSTM RNN with 20 hidden nodes using 
the rprop algorithm33 with cross-entropy loss function, taking 
the mean across all time points. We trained the RNN for up to  
15 epochs with standard positive update parameter of 1.2 and 
negative update parameter of 0.5.

In order to avoid over-fitting, we divided the training data into 
a training set and a validation set, and we optimized the weights 
of both the CNN and the LSTM RNN until the performance on 
the validation set started to degrade (early stopping). All images 
were normalized to mean zero and unit variance to normalize for 
possible batch effects.

Quantification of morphodynamics and fluorescence signals. 
On every extracted image patch (27 × 27 px around the cell’s 
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center of mass), 87 features (14 basic measurements as pro-
vided by MATLAB regionprops method, 27 Zernike moments34,  
3 Ray features35, 13 Haralick texture features36, 2 Gabor wave-
let features37, 5 Tamura features38 and histograms of oriented 
Gradients39 with 27 bins) were computed. If a fluorescence 
image was available, the fluorescence concentration was quanti-
fied by summing up all pixels within the segmented cell in the 
background-corrected fluorescence image and dividing by cell 
size. Quantification errors (clumped cells, dirt, falsely identi-
fied as cell, cells lost due to border contact and over-segmented 
cell fragments) were detected by fitting a B-spline to the cell size 
over time. We then discarded those time points with residue  
differences beyond the 98th or below the 2nd percentile of all  
time points. We computed cell displacement si,t for cell i at time 
point t as the root mean squared displacement between the frame 
t and t −1 divided by the time difference between the frames, 

s x y
x x y y

T Ti t
i t i t i t i t

t t
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1
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where x and y are the spatial coordinates, and Tt is the absolute 
time after experiment start for frame t. We computed s(x,y) for all 
pairs of adjacent frames for every cell using the track coordinates 
for the full cell trajectory.

Feature-based classification. A random forest classifier was 
trained with 200 trees (default parameters) and evaluated by  
out-of-bag prediction. We chose BudgetedSVMs40 with the Pegasos 
algorithm and a radial basis function kernel as a support vector 
machine (SVM) framework that was able to deal with the millions 
of single image patches in our data set. We used a grid search with 
fivefold cross-validation for every train-test combination to deter-
mine optimal hyperparameters. The best-performing model was 
then used for predicting the testset. Note that the hyperparameters 
for SVM had to be determined for every train-test run individually. 
We trained both methods with a set of 87 morphological features 
and cell displacement (see above). We applied the same train-test 
procedure for model evaluation as for the CNN.

AITP was trained as described15, using a set of 6 features for 
each cell (movement, net movement, movement direction, area 
and eccentricity of fitted convex hull). As AITP was not able to 
process the full data set in a single run, we generated three subsets 
(n = 400 cells per subset) for every train-test round, which we 
evaluated separately. We used the averaged evaluation results for 
comparison. As the used version of AITP reported class labels 
and no prediction scores, we used the macro-averaged F1 score 
for performance evaluation. It is worth noting that in contrast to 
all other methods, AITP inherently uses the full cell trajectory for 
training and prediction.

Recently, conditional random field (CRF) based models have 
been proposed for sequence labeling in the context of mitosis 
sequence detection13,14. We adapted the approach of Liu et al.13 
and trained a CRF using SIFT features for our cells41. The CRF 
was implemented using the pystruct library42.

Evaluation of model performance. Performance of the trained 
classification models was determined by receiver-operator  
characteristics and macro-averaged F1 score.

The receiver-operator characteristic is a function that evalu-
ates the change in true positive (TP) rate with respect to the false 
positive (FP) rate of a predicted class label in accordance to all 
possible thresholds of a classification score that can be interpreted 
as probabilities (as is the case for random forest, SVM and CNN). 
The area under the curve (AUC) falls in the interval of [0,1]  
(1 = perfect classification, 0.5 = random guessing) and gives  
an impression of the general performance of the classifier.

The F1 score combines precision and recall in a single score 

F
TP

TP FP FN
F1 12

2
0 1=

+ +
∈* , [ , ],

where FN is the false negative rate. A perfect classifier would 
reach a score of 1 and a random classifier would reach a score of 
0.5. To account for the classification performance of both classes, 
the F1 score can be calculated for each class and then averaged 
resulting in the macro-averaged F1 score 
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for all class labels C. To determine class membership (i.e., com-
mitment of a cell to GM or MegE lineage) a threshold of 0.5 for 
the cell lineage score was used for all models.

Implementation. Single-cell identification and quantification 
was implemented using MATLAB (R2014a). Code from ref. 43. 
was used to compute histograms of oriented gradients. All quan-
tifications were parallelized on single-cell level and processed on 
a computation cluster (sun grid engine version 6.2u5). The aver-
age node architecture was equal to an Intel Xeon 2 GHz, 4 GB 
RAM running a 64-bit linux-based operating system. Random 
forest classification was conducted with the python-based scikit-
learn package (v 0.15). The support vector machine was trained 
using the code provided with the original publication40. AITP was 
trained using the latest version (April 1st, 2014) from the website 
of the authors after slight adaptation of input/output functionality 
to fit our data. To implement the CNN, we used the caffe frame-
work32 and trained it on a standard PC equipped with an Intel 
Core i7-4770 CPU, 32 GB working memory and a 6 GB Geforce 
GTX Titan Black graphics card. The RNN was implemented in 
Theano44 and trained on that same machine. SIFT features were 
calculated using VLFeat41, and the CRF was implemented using 
the pystruct library42.

Data availability. Data and code for cell detection and neu-
ral network training and cell fate prediction is available as 
Supplementary Software; updated versions are available via 
https://github.com/QSCD/HematoFatePrediction. Source data 
files for Figures 1 and 2 are available online.
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