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One’s present repertoire of antibodies encodes the history of one’s
past immunological experience. Can the present autoantibody
repertoire be consulted to predict resistance or susceptibility to the
future development of an autoimmune disease? Here, we devel-
oped an antigen microarray chip and used bioinformatic analysis to
study a model of type 1 diabetes developing in nonobese diabetic
male mice in which the disease was accelerated and synchronized
by exposing the mice to cyclophosphamide at 4 weeks of age. We
obtained sera from 19 individual mice, treated the mice to induce
cyclophosphamide-accelerated diabetes (CAD), and found, as ex-
pected, that 9 mice became severely diabetic, whereas 10 mice
permanently resisted diabetes. We again obtained serum from
each mouse after CAD induction. We then analyzed, by using
rank-order and superparamagnetic clustering, the patterns of an-
tibodies in individual mice to 266 different antigens spotted on the
chip. A selected panel of 27 different antigens (10% of the array)
revealed a pattern of IgG antibody reactivity in the pre-CAD sera
that discriminated between the mice resistant or susceptible to
CAD with 100% sensitivity and 82% specificity (P � 0.017). Sur-
prisingly, the set of IgG antibodies that was informative before
CAD induction did not separate the resistant and susceptible
groups after the onset of CAD; new antigens became critical for
post-CAD repertoire discrimination. Thus, at least for a model
disease, present antibody repertoires can predict future disease,
predictive and diagnostic repertoires can differ, and decisive in-
formation about immune system behavior can be mined by bioin-
formatic technology. Repertoires matter.

Autoimmune diseases are marked by abundant autoantibod-
ies and by vigorously responding T cells targeted to selected

self-antigens (1). Immunology has tended to focus on such
blatant reactivities (2) and has paid relatively less attention to the
autoimmunity detectable to nonclassical self-antigens and to the
low levels of global autoreactivity detected in healthy subjects
(3–6). An important question is whether bioinformatic analysis
of the global autoantibody repertoire can predict if a subject will
resist or develop an autoimmune disease before the disease is
actually induced by an environmental insult. Can the analysis of
immune repertoires contribute to predictive medicine? The
present study uses microarray technology and bioinformatic
analysis to address that question in an animal model of type 1
diabetes.

Male mice of the nonobese diabetic (NOD) strain spontaneously
develop type 1 diabetes at a relatively low incidence and late age
compared with female NOD mice (7). In our colony, 80–90% of
female mice become diabetic by the age of �6 months of age
compared with �40–50% of male mice at 9 months of age (8).
However, the onset of diabetes can be significantly accelerated and
synchronized by exposing NOD mice to cyclophosphamide (9).
Cyclophosphamide-accelerated diabetes (CAD) is thought to occur
through the selective toxicity of cyclophosphamide for regulatory T

cells that otherwise inhibit the disease process (8, 9). The CAD
model of type 1 diabetes thus provides an opportunity to test
whether the global autoantibody repertoire might reflect resistance
or susceptibility to CAD in still healthy mice, before the cyclophos-
phamide insult is administered.

We obtained sera from male NOD mice at the age of 1 month,
well before the onset of the spontaneous autoimmune reaction
that, once initiated, destroys the beta cells. We then treated the
mice with cyclophosphamide and obtained a second sample,
after those mice susceptible to diabetes had developed the
disease. In this way, we could test the pre- and post-CAD sera
from both susceptible and resistant mice. Recently, microarray
antigen chips have been used to detect high-titer autoantibodies
to known antigens in autoimmune diseases (10, 11). However,
rather than focusing only on known self-antigens, we here
profiled individual immune systems by their global patterns of
autoantibodies free of bias for high-titer reactivities to particular
self-antigens. We developed a microarray antigen chip (F.J.Q.,
G.E., I. Tsafrir, D. Tsafrir, E.D., and I.R.C., unpublished work)
by covalently spotting 266 different antigens to the coated
surface of glass slides, incubated these antigen chips with the sera
of the individual mice obtained before and after CAD induction,
and detected the amounts of antibodies binding to the different
antigen spots by laser illumination. Because type 1 diabetes is
caused by autoimmune T cells (12), we focused the repertoire
analysis on the IgG antibodies, whose presence implies T cell
reactivity.

Materials and Methods
Mice. Male NOD mice were raised and maintained under patho-
gen-free conditions in the Animal Breeding Center of The
Weizmann Institute of Science. The experiments were carried
out under the supervision and guidelines of the Animal Welfare
Committee. The mice were 4 weeks old at the start of the
experiments. Nineteen mice were studied individually.

CAD. Diabetes onset was accelerated and synchronized as de-
scribed (9) by two i.p. injections of 200 mg�kg cyclophosphamide
(Sigma, Rehovot, Israel), given at 4 weeks of age, and again, 1
week later. In our colony, this treatment of NOD males leads to
an incidence of diabetes of �50% (8). The mice developing
diabetes go on to die unless they are treated with insulin; those
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males that do not develop diabetes within 1 month after two
injections of cyclophosphamide do not become diabetic later in
life (data not shown). Fig. 1 is a schematic representation of the
protocol.

Diabetes. Blood glucose was measured weekly. A mouse was
considered diabetic when its blood glucose concentration was
�13 mM on two consecutive examinations, and they were tested
by using a Beckman glucose analyzer II (Beckman Instruments,
Brea, CA). Of the 19 mice treated with cyclophosphamide, 9
developed diabetes, and 10 remained healthy throughout a
2-month period of observation.

Sera. Serum samples were collected 1 day before the first
injection of cyclophosphamide and 1 month after the second
injection. Blood was taken from the lateral tail vein, allowed to
clot at room temperature, and after centrifugation, the sera were
stored at �20°C.

Antigens. The 266 antigens spotted on the microarray chips in
these studies include proteins, synthetic peptides from the
sequences of key proteins, nucleotides, and phospholipids, and
are enumerated in Table 2, which is published as supporting
information on the PNAS web site.

Antigen Microarray Chips. Antigens diluted in PBS were placed in
384-well plates at a concentration of 1 �g��l. We used a robotic
MicroGrid arrayer with solid spotting pins of 0.2 mm in diameter
(BioRobotics, Cambridge, U.K.) to spot the antigens onto
ArrayIt SuperEpoxi microarray substrate slides (TeleChem,
Sunnyvale, CA). Each antigen was spotted in two to eight
replicates. The spotted microarrays were stored at 4°C. The chips
were washed with PBS, blocked for 1 h at 37°C with 1% BSA, and
incubated overnight at 4°C with a 1:5 dilution of the test serum
in blocking buffer under a coverslip. The arrays were then
washed and incubated for 45 min at 37°C with a 1:500 dilution
of a goat anti-mouse IgG Cy3-conjugated antibody, purchased
from Jackson ImmunoResearch (West Grove, PA). The arrays
were washed again, spin-dried, and scanned with a ScanArray
4000X scanner (GSI Luminomics, Billerica, MA). The results
were recorded as TIFF files.

Image and Data Processing. The pixels that comprised each spot in
the TIFF files and the local background were identified by using
histogram segmentation. The intensity of each spot and its local
background were calculated as the mean of the corresponding
pixel intensities. None of the spots containing antigens showed
saturation. Technically faulty spots were identified by visual
inspection and were removed from the data set. For each spot,
the local background intensity was subtracted from the spot
intensity. Spots with negative intensities were removed from the

data set. A log-base-2 transformation of the intensities resulted
in reasonably constant variability at all intensity levels. The log
intensity of each antigen was calculated as the mean of the log
intensities of the replicates on each slide. The coefficient of
variability between replicates on each array was �30%.

To remove overall differences in intensities between arrays,
the mean log intensity of each antigen on each array was scaled
by subtracting the median of the mean log intensities of all
antigens on the array. The scaled mean log intensity of an antigen
is denoted the reactivity of the antigen.

The processed data set consists of a matrix of IgG reactivities,
consisting of 266 rows and 38 columns (two samples for each of
19 mice). Each column contains the reactivities measured on a
given array and each row contains the reactivities measured for
a given antigen over all arrays.

Additionally, the reactivity for each antigen measured before
and after cyclophosphamide treatment in each mouse was
combined into a log ratio by subtracting the reactivity before
treatment from the reactivity after treatment. This combination
yielded a matrix of ratios with 266 rows and 19 columns.

Data Analysis. We based the clustering of antigens and samples on
the superparamagnetic clustering (SPC) algorithm (13) because
it provides an inherent mechanism for identifying robust and
stable clusters. The algorithm can be understood by an analogy
to physics: as a parameter T (the temperature) is increased, the
system undergoes phase transitions (for example, it melts). In
our case, T is increased from 0 (all objects form one cluster) to
Tmax (each object forms a separate cluster). The breakup of
larger clusters into smaller subclusters is governed by the struc-
ture of the data: similar objects tend to stay together over a large
increase in T, whereas less similar objects break apart more
easily. The range of Ts for which a given cluster remains
unchanged, denoted by �T, is used as a stability measure for the
cluster. As the measure of similarity between objects, we used
the Euclidean distance for both samples and antigens. Because
the antigen reactivities (or ratios) were first row-centered and
normalized before being clustered, their squared distance is
proportional to 1 � r, where r is the correlation coefficient. The
correlation coefficient captures similarity in shape and the
Euclidean distance captures similarity in magnitude.

To determine subsets of the 266 antigens that would separate
the sick and healthy mice, we used the Wilcoxon rank-sum test
(14). This test is nonparametric; it is robust to outliers. We test
one antigen at a time, replacing the reactivities (or ratios) with
ranks according to their magnitude: 1 for the smallest, 2 for the
second smallest, and so on. The P values found by using this
method were �0.01; however, no single antigen was found to
significantly discriminate between the two groups when the
Bonferroni correction (15) or the false discovery rate method
(16) were applied. This finding means that the signal produced
by any single antigen is unable to separate the sick mice from the
healthy. Separability might be achieved, if at all, by using
reactivity (or ratio) profiles defined over several antigens. To
capture a collective effect of several antigens, we selected the 27
antigens (10% of the 266 antigens in the study) with the lowest
P values, and investigated how good they were collectively at
separating sick from healthy mice, and which antigens showed
correlated behavior over the samples, by applying two-way SPC.
This application gives an unsupervised clustering of the subset of
antigens and of the samples. The clusters of samples found by
using this method were evaluated for their stability �T, speci-
ficity, and sensitivity. Specificity is the proportion of sick mice in
the ‘‘sick cluster,’’ sensitivity is the proportion of the sick mice
in the sick cluster compared with all of the sick mice in the study.

Statistical Significance. To obtain a measure of the significance of
the separation between sick and healthy mice by using the

Fig. 1. The experimental protocol. The numbers refer to the age (in weeks)
of the mice. The black vertical lines at weeks 4 and 9 indicate serum sample
collection. The gray vertical lines at weeks 4 and 5 indicate cyclophosphamide
injection. The gray box at week 6 shows when the CAD-susceptible mice
developed diabetes, and the gray box between weeks 11 and 13 shows the
time of death of the untreated diabetic mice.

14616 � www.pnas.org�cgi�doi�10.1073�pnas.0404848101 Quintana et al.



method outlined above, we performed the following test: From
the group of healthy mice, we picked five of the samples at
random, and similarly, for the group of sick mice, we randomly
picked four of the samples. These nine samples were labeled as
‘‘type A.’’ The remaining samples were labeled as ‘‘type B.’’ We
hypothesized that there should be no clear separation between
these randomized types: we used the Wilcoxon rank-sum test to
identify the 27 antigens that differentiated best groups A and B.
Next, we clustered the mice in the space of these 27 antigens, and
looked for stable, specific, and sensitive clusters, by using SPC.
We performed the test 1,000 times on different randomized
groups and recorded the stability, specificity, and sensitivity of
the resulting clusters. The proportion of random clusters man-
ifesting these features to the same or to a better degree than the
actual cluster establishes the P value of the actual cluster.

Results
Selection of Informative Antigens for Pre-CAD Mice. We have pre-
viously reported that coupled two-way clustering (CTWC) could
be used to successfully separate human subjects already diabetic
from healthy persons (17). In the CAD mouse study performed
here, however, only a few of the clusters of coregulated antigens
using the CTWC technique separated between the sick and the
healthy mice before CAD, and then only for a subset of the mice.
We therefore took a different approach. Based on the sera taken
before cyclophosphamide treatment, Table 1, list I tabulates the
27 antigens that separated best between the sera of the 10 mice
that later resisted the induction of CAD, and of the 9 mice that
later developed CAD (by using the Wilcoxon rank-sum test and
taking the 10% with lowest P values).

Fig. 2 Left shows the two-way SPC of these antigens. The mice
susceptible to future CAD induction are denoted by the filled
rectangles at the top of the clustering box; the mice resistant to
future CAD induction are denoted by the empty rectangles. The
27 antigens are clustered at the rows and are identified by
number (see Table 1). It can be seen that all 9 mice that were
found later to be susceptible to CAD could be separated from
8 of the 10 mice that were later found to resist CAD; before
cyclophosphamide, the CAD-susceptible mice manifested rela-
tively elevated IgG reactivity to the top 19 antigens in Fig. 2 Left,
whereas the CAD-resistant mice manifested relatively elevated
IgG reactivity to the remaining eight antigens. The clustering
separation was significant (P � 0.017; only 17 of 1,000 randomly
generated groups showed results comparable with the actual
data set). Thus, mice susceptible to CAD could be distinguished
by their patterns of IgG serum antibodies from mice resistant to
CAD, even before cyclophosphamide was administered to the
mice.

Selection of Informative Antigens for Post-CAD Mice. We then used
the 27 antigens effective in pre-CAD clustering to analyze the
patterns of IgG antibodies developing in the diabetic and healthy
mice post-CAD. Surprisingly, these 27 antigens failed to dis-
criminate between the two groups of mice; the obvious pre-CAD
clusters seen in Fig. 2 Left dispersed when the same antigens
were used to cluster the post-CAD sera; compare Fig. 2 Right and
Left. For this reason, we tested whether other sets of antigens
might be more informative post-CAD. The 27 antigens listed in
Table 1, list II, was generated by performing the Wilcoxon
rank-sum test on the reactivities measured post-CAD. A third set
of 27 antigens was generated by performing the Wilcoxon
rank-sum test on the ratios by which each antigen changed
post-CAD�pre-CAD. The ratios provide information on reac-
tivity changes toward the antigen. These antigens are shown in
Table 1, list III.

Figs. 3 and 4 show that the list II and list III antigens could
indeed separate between the healthy and diabetic mice post-
CAD: specificity up to 82% and sensitivity up to 100% (P �

0.065). Thus, the IgG repertoires of the pre- and post-CAD
groups of healthy and sick mice could be clustered, but the
informative patterns of reactivity required modified sets of
antigens to develop discriminating patterns.

It can be seen that some of the antigens from the set of
pre-CAD antigens (Table 1, list I) were also present in the
post-CAD set (Table 1, list II), or in the set of antigens
determined from the pre-CAD�post-CAD ratios (Table 1, list
III). For example, three of the pre-CAD antigen reactivities were
also prominent post-CAD (antigens 17, 18, and 26; Table 1, list
I). The shared and distinct antigens are shown as a Venn diagram
for the overlap between lists I, II, and III in Fig. 5. List III in
Table 1 (ratio difference) can be seen to have generated a set of
antigens most shared (dark rectangles) between pre-CAD sera
(list I) and post-CAD sera (list II); see Table 1 and Fig. 5.

Discussion
The antigen microarray chip described in this paper required
much preliminary work to obtain consistent results, including
determination of a workable surface coating for the glass,
reagent concentrations and incubation times, size of spots,
distances between spots, washing protocols, laser activation and
reading, and other technical issues (F.J.Q., G.E., I. Tsafrir, D.
Tsafrir, E.D., and I.R.C., unpublished work). Patterns of IgM
antibodies were analyzed before and after CAD.

Here, we show that the patterns of IgG antibodies expressed
pre-CAD in male NOD mice can mark susceptibility or resis-
tance to CAD induced later. We also found patterns of IgG
antibodies characteristic of healthy or diabetic mice post-CAD,
but these patterns required sets of antigens that differed from the
informative pre-CAD set (see Table 1). Thus, IgG reactivities to
some antigens may mark future susceptibility to CAD, but not
CAD itself, once the disease emerges, and conversely, some IgG
reactivities may mark the disease but not the susceptibility.
Hence, prediction of future disease (this paper) and diagnosis of
present disease (this paper and refs. 10 and 11) can depend on
different data sets of information, at least in the CAD model.
The reasons for this divergence need to be investigated, but the
divergence itself may be explained by the likelihood that the IgG
antibodies we measured are not themselves the causal agents, but
are only indirect, surrogate markers for the autoimmune T cells
that directly regulate or mediate the diabetic process. This
observation should alert us to the possibility of a similar diver-
gence between the prediction and the diagnosis of human
diseases.

Another notable finding was that health, both pre- and
post-CAD, was associated with relatively high IgG autoreactivity
to self-antigens, to which the susceptible mice were low IgG
responders (Figs. 2 and 4 and Table 1). Thus, some types of active
autoimmunity may actually protect against autoimmune disease
(18–20). This finding is compatible with the idea that autoim-
munity of certain specificities is not only compatible with health,
but is essential for health (21, 22).

Individual mice of the highly inbred NOD strain would seem
to bear very similar, if not identical genomic DNA, yet almost
half the male mice resist CAD as well as they resist slowly
progressive spontaneous diabetes. In humans also, type 1 dia-
betes develops in persons bearing certain alleles, predominantly
alleles of HLA immune response genes (23), but most individuals
who have inherited these susceptibility alleles will never develop
the disease. Indeed, identical twins develop type 1 diabetes with
a concordance rate of �50%, despite having inherited identical
genomic DNA (24). Thus, environmental factors would appear
to determine whether the diabetic potential inherent in one’s
genome becomes realized as type 1 diabetes (25, 26). Because
type 1 diabetes, including the CAD variant in NOD mice, is an
autoimmune disease (7, 9, 12), it is very likely that resistance or
susceptibility to the disease emerges from the interaction of the
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Table 1. Discriminating sets of antigens

Class Antigen No.

Antigen lists

I II III

HSP HSP60�p16 21 H S
HSP60�p22 17 H S S
HSP60�p30 55 S
HSP60�p34 36 S S
HSP60�p35 59 H
HSP60p277 26 H H
GroEL�p1 18 H H
GroEL�p7 9 H
GroEL�p10 35 H
GroEL�p11 31 H H
GroEL�p15 47 H
GroEL�p16 51 H
GroEL�p18 44 H
GroEL�p23 37 H H
GroEL�p25 53 H
GroEL�p28 56 H
HSP70�p4 48 S
HSP70�p6 46 S S
HSP70�p8 10 S H
HSP70�p9 32 S
HSP70�p13 7 H S
HSP70�p12 38 H
HSP70�p17 22 S
HSP70�p22 28 S S
HSP70�p23 49 H
HSP70�p24 14 H
HSP70�p30 15 S
HSP71 19 H

Tissue antigens Glucagon 12 S H
GAD�p34 29 S S
C-peptide 41 S
MOBP�p78–89 40 S S
MOG mouse 24 H
Cartilage Extract 52 S
Vimentin 57 H
VEGF 8 S

Immune receptors TCR �-chain�pMed12 30 S
TCR �-chain�pN12 43 S S
IL-2R �-chain�p2 34 S
IL-2R �-chain�p1 45 S

Enzymes Acid phosphatase 3 H
Aldolase 33 S
Collagenase 39 H
GSTase 50 H
Holotransferase 27 H S

Hormones �-MSH 2 S H
BNP 20 S
DAP 11 S
Gliadin 23 H
Somatostatin 54 H
Vasopresin 6 S H
VIP 13 S H

Plasma Plasmin 42 S
HDL 5 S
LDL 1 S H
Human serum albumin 58 S
Methylated BSA 4 S

Other antigens KLH 25 H S
PS4 16 H

The numbers refer to the antigens shown in Figs. 2–5. The letters indicate the group in which the reactivity to the antigen (or
pre-CAD�post-CAD ratio) was relatively the highest. S, the sick group of mice; H, the healthy group of mice. Antigens with neither H nor
S were not used in the separations. Antigen list I refers to the 27 antigens pre-CAD selected by rank-sum from those remaining healthy
(H) and those later developing diabetes (S) after cyclophosphamide. Antigen list II refers to the 27 antigens selected by rank-sum for the
healthy and sick groups post-CAD. Antigen list III refers to the 27 antigens selected by rank-sum from the pre-CAD�post-CAD ratios. GAD,
glutamic acid decarboxylase; MOBP, myelin-associated oligodendrocytic basic protein; MOG, myelin oligodendrocyte glycoprotein;
VEGF, vascular endothelial growth factor; TCR, T cell receptor; GSTase, galactosyltransferase; MSH, melanocyte-stimulating hormone;
BNP, brain natriuretic peptide; DAB, diabetes-associated peptide amide; VIP, vasointestinal peptide; HDL, high-density lipoprotein; LDL,
low-density lipoprotein; KLH, keyhole lympet hemocyanin.
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individual’s immune system with the environment, downstream
of a permissive germ-line genetic endowment. Indeed, only the
changing environment can be blamed for the alarming increase
in the incidence of type 1 diabetes noted in the past few decades;
significant changes in the frequencies of human genes have not
occurred in the interim in affected populations (27). Thus, type
1 diabetes emerges from the impact of the environment on the
structure and function of the immune system in a way that
transforms naturally benign autoimmunity into an autoimmune
disease affecting the insulin-producing beta cells (22). Various
environmental factors can probably act to induce type 1 diabetes
in susceptible individuals; the CAD model is one example.

However, environmental factors can also prevent the devel-
opment of type 1 diabetes. Stimulation of the NOD mouse
immune system by infection (28–30), by vaccination with micro-
bial antigens (31), or by treatment with ligands that activate
innate immune receptors (32–34), can prevent diabetes. Thus,
the cumulative experience of the immune system (including, for
example, positive autoimmunity to antigens such as the lower 8
antigens in Fig. 2 Left) can determine the organization of its
component molecules and cells regarding self-antigens, and this
internal structuring can, in turn, help one resist the accidental
induction of an autoimmune disease. Type 1 diabetes appears in
very young people (12, 35), so critical aspects of autoimmune
organization must occur fairly early in one’s lifetime. The results
of this bioinformatic study would suggest that, in addition to
individual differences in immune repertoires, some organized
patterns of IgG autoantibodies are shared by groups of individ-
uals, at least among NOD mice.

The bioinformatic analysis described here relates to two
separate, but linked issues: predictive medicine by means of

functional immunomics and the biological meaning of the au-
toimmune repertoire.

Functional immunomics may be defined as the functional state
of the immune system inscribed in its global patterns of immune
molecules and cells. Functional immunomics, even that limited
to part of the IgG autoantibody repertoire as we show here, can
help anticipate disease before it emerges, and anticipation is an
important first step in predictive medicine.

Beyond its potential usefulness for predictive medicine, func-
tional immunomics may teach us some things about the biology
of immune system organization. Note that the list of informative
antigens (Table 1) does not contain insulin, a well studied
self-antigen in diabetes (12). A peptide of glutamic acid decar-
boxylase, used clinically to diagnose type 1 diabetes in humans
(2, 36, 37), was only informative after CAD was induced (Table
1, list II). The immune system is a complex system, and reac-
tivities of seemingly minor magnitude can play major roles in
complex system behavior (22, 38). Measuring autoantibodies to
a few known antigens only (10, 11), may not provide the same
information as can a global pattern.

The present study investigated patterns of antibodies, but not
their function in the disease process. Nevertheless, the list of
informative antigens may be connected to other observations
regarding the pathophysiology of type 1 diabetes. Six of the eight
antigens to which relatively high IgG reactivity is associated with
resistance to CAD are peptides derived from heat shock proteins
(HSPs): peptides p277, 22, and 16 of HSP60, peptides 1 and 7
from the sequence of GroEl (the HSP60 molecule of Escherichia
coli), and peptide 13 of HSP70. Indeed, the three antigens
associated with health both before and after CAD are p277,
peptide 22 of HSP60, and peptide 1 of GroEl (see Fig. 5 and
Table 1). Vaccination with HSP60�p277 can arrest type 1

Fig. 2. Reactivity matrices of 27 antigens separate diabetic and healthy mice before CAD induction. The rows are antigens and the columns are the mouse sera.
Each antigen is identified by the number shown between the two reactivity matrices (see Table 1). (Left) Two-way SPC of the antigens and the serum samples
pre-CAD. The length of a branch connecting to a cluster represents the stability of the cluster and filled boxes denote mice that later developed CAD. Open boxes
denote mice that resisted CAD. (Right) SPC of the serum samples post-CAD. Filled boxes denote mice that developed CAD. Open boxes denote healthy mice that
resisted CAD. The antigens used in the two images are the same and are presented in the same order.
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diabetes in NOD mice (18, 39), and has been shown to arrest the
destruction of insulin-producing beta cells in a clinical trial in
humans (40).

It is worthy of note that peptide p277 of HSP60 was first
discovered as a dominant epitope for T cells (18). The natural
IgG reactivity of CAD-resistant mice to this ‘‘T cell peptide’’
demonstrates that some autoantibodies do ref lect elements of
the T cell repertoire. Indeed, prevention of spontaneous
diabetes in NOD mice by stimulating innate Toll-like receptors
with CpG oligonucleotide was found to spontaneously activate
the production of IgG antibodies to peptide p277 (34). We
have found that vaccination with HSP60 can inhibit CAD,
apparently by modifying the cytokine profile of autoimmune
effector T cells (19). HSP60 vaccination can also induce
regulatory T cells effective in models of autoimmune arthritis
(20, 41). Thus, the association of resistance to CAD with
natural IgG antibodies to HSP60 peptides suggests that me-
dicinal vaccination with HSP60 or its peptides may work by
strengthening regulatory networks that arise naturally through
immune experience with endogenous (or cross-reactive bac-
terial) HSPs. Autoimmunity to HSP60 peptides like p277 is
built into the healthy immune system (22).

The 19 antigens targeted by IgG antibodies in the CAD-
susceptible mice are also interesting biologically. Three peptides
of HSP70 are included, and T cell autoimmunity to HSP70 has
been described in human type 1 diabetes patients (42). Gliadin
is an antigen associated with celiac disease, and celiac patients
have been reported to have an increased incidence of type 1
diabetes (43). myelin oligodendrocyte glycoprotein (MOG) is a
molecule present in myelin, and T cell autoimmunity to MOG
can induce experimental autoimmune encephalomyelitis in
NOD mice (44). Glucagon is produced by alpha cells in the
pancreatic islets adjacent to the beta cells that produce insulin,
but no studies of autoimmunity glucagon have been yet reported

in type 1 diabetes. Accelerated atherosclerosis is a serious
complication of type 1 diabetes (45) and is assumed to arise as
a complication of poor glucose homeostasis in poorly controlled
diabetes (46). Autoimmunity to low-density lipoprotein (LDL)
and high-density lipoprotein (HDL), however, has been pro-
posed to be a factor in atherosclerosis in general (45). The
finding of heightened IgG autoimmunity to LDL and HDL in the
mice susceptible to CAD suggests the possibility that LDL and
HDL autoimmunity might actually be part of the collective of
autoimmune reactions responsible for the primary development
of type 1 diabetes. If this finding is true, then the vascular

Fig. 3. Two-way SPC of 27 antigens that separate sick and healthy mice
post-CAD. Filled boxes denote diabetic mice, and open boxes denote healthy
mice.

Fig. 4. Two-way SPC of 27 antigens that separate the sick and healthy mouse
samples by using the pre- and post-CAD ratios. Filled boxes denote mice
susceptible to CAD, and open boxes denote mice resistant to CAD.

Fig. 5. Venn diagram showing antigens shared by the three lists of 27
antigens: list I, pre-CAD; list II, post-CAD; list III, sick and healthy mice by ratio.
See Table 1.
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‘‘complications’’ of type 1 diabetes may be a primary and early
event in the disease process and not merely a phenomenon
secondary to poor metabolic control. VEGF and vasopressin are
also molecules that function in blood vessel formation and the
physiology of blood flow (47, 48). The increase in IgG antibodies
to certain antigens post-CAD is also intriguing. For now, it is
important to note that a bioinformatic analysis can, by itself,
raise new questions for further biological research; arrays of
antigens open new windows for viewing natural autoimmunity,
autoimmune disease, and the links between them.

The demonstration of patterns of autoantibody reactive with
key self-molecules and the association of such reactivity with
health challenges basic assumptions of the classical clonal selec-
tion theory (CST) of adaptive immunity (49). According to the
CST, autoimmune repertoires should not exist in healthy indi-
viduals. The present findings are more compatible with a cog-
nitive paradigm of immunity (22, 50, 51).

The core of organized autoimmune repertoires within the
immune system has been termed the immunological homuncu-
lus, the immune system’s internal representation of the body
under its care (50, 51). The mammalian immune system, in

addition to its well studied role in defending the body against
foreign invaders, is now understood to be heavily involved in
maintaining the integrity of the body from within; immune
system cells and molecules, which comprise the inflammatory
response, are key factors in wound healing, neuroprotection,
connective tissue formation, angiogenesis, tissue morphology
and regeneration, and waste disposal (5, 21, 22). To dispense
reparative inflammation at the right sites and occasions, the
immune system has to assess the state of the body on the fly. In
this respect, the immune system acts as it were the body’s
onboard bioinformatic computer. If so, predictive medicine
would do well to mine this immune information, as this study
suggests it might.
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