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Toll-like receptors (TLRs) are widely expressed and play an essential role in the activation of
innate immune cells. However, certainTLRs are also expressed onT cells, andTLR ligands
can directly modulate T cell functions. Here, we discuss findings indicating that T cells
directly respond to Heat Shock Protein (HSP) 60, a self molecule, or to the HSP60-derived
peptide, p277, via a TLR2-dependent mechanism. HSP60 has been considered to be a
“danger signal” for the immune system because of its ability to induce pro-inflammatory
phenotypes in innate immune cells – in this case via TLR4 activation; nevertheless, TLR2
engagement by HSP60 on T cells can lead to resolution of inflammation by up-regulating
the suppression function of regulatory T cells and shifting the resulting cytokine secre-
tion balance toward a Th2 phenotype. Moreover, T cell TLR4 engagement by LPS leads
to up-regulation of suppressor of cytokine signaling 3 expression and consequently down-
regulatesT cell chemotaxis.Thus,TLR2 andTLR4 activation can contribute to both induction
and termination of effector immune responses by controlling the activities of both innate
and adaptive immune cells.

Keywords: HSP60,TLR2,TLR4, direct signaling,T cell inhibition, inflammation, LPS

TOLL-LIKE RECEPTORS FUNCTION IN INNATE AND
ADAPTIVE IMMUNE CELLS
A key issue in immunology is to understand how the immune sys-
tem is able to discriminate between self and non-self, inhibiting
autoimmune responses, but allowing effective immune responses
against microbial antigens (1, 2). One of the mechanisms evolved
by the immune system is expression of pathogen recognition
receptors, such as Toll-like receptors (TLRs) on immune cells that
encounter pathogen-associated molecular patterns (PAMPs) (3).
TLRs are a highly conserved class of receptors that are involved
in regulation of both innate and adaptive immunity. All TLR
belong to the type 1 trans-membrane glycoprotein receptor family
with molecular weights ranging between 90 and 115 kDa and con-
taining 16–28 extracellular leucine-rich repeat domains (4). The
intracellular C-terminal domain is known as the Toll/IL-1 recep-
tor domain, which shows homology with that of the IL-1 receptor.
This domain is required for the interaction and recruitment of
various adaptor molecules to activate the down-stream signal-
ing pathway, including the transcription factors NF-kB, AP-1, and
IRF (5).

Both humans and mice express TLR1-9; in addition humans,
but not mice, express TLR10 and mice exclusively express TLR11-
13 (6). TLR are expressed in two distinct cellular compartments
(7). In humans, TLR1, TLR2, TLR4, TLR5, and TLR6 are located
on the outer membrane and recognize mainly bacterial surface-
associated PAMPs like peptidoglycan and lipopeptides (TLR1, 2,
6), lipopolysaccharide (TLR4), and flagellin (TLR5). The other
human TLRs are expressed on the membrane of intracellular
endosomes, where they bind viral dsRNA (TLR3), ssRNA (TLR7

and 8) or unmethylated bacterial DNA (TLR9) (8). Also, as we
shall discuss below, endogenous host molecules can also function
as TLR ligands.

Toll-like receptors are widely expressed in innate immune cells,
such as macrophages, dendritic cells (DCs), but also in non-
immune cells, such as endothelial and epithelial cells (3, 6). In
DCs, TLR signaling triggers a maturation program that includes
up-regulation of MHC and co-stimulatory molecules, and expres-
sion of pro-inflammatory cytokines, such as TNF-a, IL-1, and
IL-6. This maturation of DCs significantly increases their ability
to prime naïve T cells (9).

More recent TLR expression profiling studies have revealed that
certain TLRs are expressed not only in innate immune cells but
also in various adaptive immune cells, such as B cells (10, 11),
CD4+ and CD8+ (12, 13), gd T cells (14), and the CD4+CD25+

regulatory T cell population (15–17); TLR ligands can directly
modulate the function of these adaptive immune cells. When
TLR4 signaling induces proliferation and cytokine secretion in
naïve mouse B cells (10); several natural and synthetic ligands,
including bacterial lipopeptides Pam3CSK4 (TLR1/TLR2), fla-
gellin (TLR5), and R-848 (TLR7/8) were found to co-stimulate
proliferation and cytokine secretion in human memory CD4+ T
cells (18, 19). In addition, the TLR3 ligand poly(I:C) and TLR2
ligands increase IFN-g and IL-6 secretion in TCR-stimulated gd

T cells (20, 21). Furthermore, TLR ligands have been reported to
promote the survival and modulate the suppressive capacity of
regulatory T cells (17, 22, 23). Thus, the involvement of TLR sig-
naling in modulation of immune response is not limited to innate
immune cells.
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TLR2 SIGNALING MEDIATES THE INNATE EFFECTS OF HSP60
ON T CELLS
Heat shock proteins (HSP) are highly conserved proteins induced
in response to cellular stress, such as heat shock or nutrient depri-
vation (24, 25), and function as an endogenous danger signal of
the immune system. Inside cells, HSP molecules assist the fold-
ing of newly synthesized proteins, participate in protein transport
across membranes and refold proteins denatured during cell stress
(26). However, HSPs, and in particular, HSP60 interests immunol-
ogists because, in addition to serving as a chaperone, extracellular
HSP60 could directly activate innate immune cells, including
macrophages and DCs (27, 28), through binding to various cell-
surface receptors such as CD14, CD40, TLRs and the scavenger
receptors CD36 and CD91. However, it was argued that many of
the reported pro-inflammatory effects that result from exposure of
cells to HSP60 are actually mediated through LPS or other micro-
bial compounds contaminating the HSP60 (29, 30). Nevertheless,
highly purified HSP60 was shown to be able trigger inflammatory
responses in vivo via TLR2 and TLR4 signaling (31). Indeed, it
is becoming clear that the self-HSP60 molecule and its synthetic
peptides are able to activate TLR signaling (32).

In addition to functioning as a danger signal to innate immune
cells, HSP60 also functions as an antigen in host defense and sig-
nals through “adaptive” immune receptors, such as T and B cell
receptors (33, 34). Autoimmunity to self-HSP60, moreover, does
not necessarily cause disease. The cord blood of newborn humans,
like the peripheral blood of adults, manifests a relatively high fre-
quency of T cells that can recognize HSP60 (35), and healthy
adults manifest T cell reactivity to HSP60 (36). In direct contrast
to the function of HSP60 as a danger signal and its involvement
in autoimmunity, HSP60 and the HSP60-derived peptide p277
were also found to arrest the destructive inflammation respon-
sible for development of autoimmune diseases such as adjuvant
arthritis and type 1 diabetes (37, 38). In a double-blind, Phase II
clinical trial the administration of p277 after the onset of clinical
diabetes preserved the endogenous levels of C-peptide (a marker
of insulin-producing capacity of the pancreas) and was associated
with lower requirements for exogenous insulin compared with
treatment with a placebo, revealing the arrest of inflammatory
b-cell destruction. Treatment with p277 was associated with an
enhanced Th2 response to HSP60 and p277 (39). Recently, a large
multi-center phase III trial of p277 (DiaPep277) has confirmed
the finding of the published phase II study (submitted for publi-
cation). Taken together, these results suggest that treatment with
HSP60 or its p277 peptide can lead to the induction of HSP60-
specific regulators, including anti-ergotypic regulators (40) that
can control the collective of pathogenic re-activities involved in
the progression of autoimmune diabetes.

The fact that both B and T cells also express TLRs on their
surface raised the question about the direct function of these recep-
tors in the regulatory effects of HSP60 on adaptive immune cells.
Indeed, recent studies in our laboratory demonstrated that TLR2,
but not TLR4 is involved in HSP60-mediated inhibition of T cell
chemotaxis via up-regulation of the suppressor of cytokine signal-
ing (SOCS)3 transcription factor (41). In addition, both human
and mouse T cells treated with soluble HSP60 or HSP60-derived
peptide undergo a signal transduction cascade, activate integrin
receptors and induce adhesion to fibronectin via TLR2-dependent

signaling (12). Since T cell chemotaxis is a highly coordinated
process, which includes the rapid and reversible adhesiveness to
extracellular matrix, the ability of HSP60 to induce T cell adhe-
sion via TLR2 may partially contribute to inhibition of T cell
chemotaxis.

The involvement of TLR2 in direct effects of HSP60 on T cell
function was confirmed in additional studies demonstrating that
HSP60 modulates the expression of Th1/Th2 transcription factors
(42). It was shown that HSP60 down-regulates expression of the
Th1-cell-promoting transcription factor T-bet, the transcription
factor NF-kB, and the intracellular-signaling molecule NFATp;
HSP60, in contrast, up-regulates the expression of the Th2-cell-
promoting transcription factor GATA-3. This leads, in turn, to
decreased secretion of TNF-a and IFN-g and enhanced secre-
tion of IL-10 (42). These innate effects of HSP60 were specifically
dependent on intact TLR2, but not TLR4 signaling. In contrast,
the ability of HSP60 to induce IL-10 and IL-6 secretion in mouse
B cells was largely mediated through TLR4 and MyD88 signaling
(10). Thus, HSP60 can directly modulate the adaptive immune
cell function via TLR2 and TLR4 signaling pathways, although a
direct interaction between HSP60 and these TLRs has not yet been
shown.

THE REGULATORY FACE OF DANGER SIGNALS
The involvement of CD4+CD25+ regulatory T cells (Tregs) in
HSP60-mediated suppression of T cell responses seems to be an
attractive explanation for the protective effect of the molecule
in vivo as was mentioned above. Indeed, the HSP60 molecule
can function as a co-stimulator of Tregs by way of an innate sig-
naling pathway that involves TLR2 (17). Treatment of Tregs with
HSP60, or its peptide p277 before anti-CD3 activation significantly
enhanced the ability of relatively low concentrations of the Tregs
to down-regulate CD4+CD25� or CD8+ target T cells, detected
as inhibition of target T cell proliferation and IFN-g and TNF-a
secretion. The enhancing effects of HSP60 co-stimulation on Tregs
involved innate signaling via TLR2, led to activation of PKC, PI-3
kinase, and p38, and were further enhanced by inhibiting ERK.
HSP60-treated Tregs suppressed target T cells both by cell-to-cell
contact and by secretion of TGF-b and IL-10. The down-regulated
target T cells manifested inhibited ERK, NF-kB, and T-bet (17).
The contribution of TLR2 signaling to the control of Treg sup-
pressive function still remains controversial and various results
have been obtained in different species using different ligands. In
rabbits, the engagement of TLR2 down-regulates the suppressive
ability of Tregs purified from conjunctiva, and leads to the induc-
tion of an HSV-specific effector T cell response in vivo (43). In
mice, the known exogenous agonist of TLR2, Pam3Cys was shown
to reverse Treg function in two studies (15, 16), but had no effect
on Foxp3 expression and suppressive activity in murine Tregs in
work reported by Chen et al. (44). Interestingly, all three studies
agreed on the ability of Pam3Cys to induce proliferation and pro-
mote murine Treg survival. Also, we found that relatively lower
concentrations of Pam3Cys as well as polysaccharide A (PSA) of
B. fragilis could augment Treg inhibition of cytokine secretion
by CD4+CD25� T cells via TLR2 signaling in humans (17) and
mice (22). In contrast, higher concentrations of Pam3Cys (1 and
5 µg/ml) were reported to down-regulate human Treg function,
but controversial data were obtained with regards to the ability
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of this TLR2 ligand to down-regulate Foxp3 expression in those
two studies (45, 46). Although the precise role of TLR2 signaling
in controlling Treg activity needs further characterization, HSP60
via TLR2 acts as a co-stimulator of Treg function.

LPS is known to be involved in activation of macrophages and B
cells via TLR4-dependent signaling (3, 6). Although TLR4 expres-
sion is detected in T cells (12, 17), LPS was reported not to affect
T cell cytokine secretion or proliferation or to activate regulatory
T cell function (16, 17, 19, 42, 47). However, certain aspects of
LPS-mediated effects on cytokine secretion in T cells via TLR4
in vitro did not fully correlate with the pattern seen in vivo: TLR4
signaling in CD4+ T cells was shown to be inhibitory in a sponta-
neous model of colitis (48), whereas Reynolds et al. demonstrated
that TLR4 signaling promoted the development of experimental
autoimmune encephalomyelitis (EAE) in mice (49). Interestingly,
the TLR-4-dependent inhibition of colitis was primarily medi-
ated through Th1, whereas the promotion of EAE involved mainly
the Th17 subset suggesting that further investigation is required
to clarify the molecular mechanism of TLR4-mediated regula-
tion of different T cell subsets in vivo. Consistent with the pro-
posed anti-inflammatory function of direct TLR4 signaling, we
demonstrated that LPS can up-regulate human T cell adherence
to fibronectin and down-regulate the ability of T cells to migrate
toward CXCL12 by way of STAT3-dependent induction of SOCS3
expression in vitro (50). This response to LPS was mediated specif-
ically via TLR4, but not TLR2 signaling and required the presence
of functional MyD88 (50). Thus, LPS, through TLR4 signaling
can affect directly the pro-inflammatory T cell function and lead
to termination of effector immune responses.

THE BOTTOM LINE
About two decades ago, Janeway hypothesized that regulation of T
cells by APCs must be controlled by receptors with specificity for
microbial products; indeed, a class of innate receptors restricted
to the recognition of non-self antigens was proposed to medi-
ate the ability of the immune system to discriminate between self
and pathogens (51). The function of TLR family appeared to fit
this hypothesis, and the results of several studies supported the
idea that TLRs do play an important role in controlling adap-
tive immune responses (3). Although TLRs have classically been
studied on innate immune cells, recent reports have demonstrated
their expression on adaptive immune cells, T and B cells in both
mice and humans. Here we have discussed that the endogenous
self-protein HSP60 as well as bacterial components, such as LPS
directly signal to T cells and induce adhesion, SOCS3 expression
that consequently leads to down-regulation of T cell migration via
TLR2 and TLR4 respectively (Figure 1A) (12, 41, 50). Interestingly,
although LPS-induced signaling through TLR4 had no effect on

FIGURE 1 | Signaling viaTLR2 andTLR4 directly down-regulatesT cell
effector function. (A) HSP60 via TLR2 and LPS via TLR4 induce T cell
adhesion and down-regulate T cell chemotaxis in SOCS3-dependent
mechanism. (B) TLR2 signaling induced by several endogenous and
pathogen-derived ligands shifts cytokine profile toward Th2-like phenotype
and up-regulates the suppressive function of Tregs.

cytokine secretion in T cells (19, 42, 47), TLR2 signaling induced by
both HSP60 and bacterial components, such as Pam3Cys and PSA,
resulted in the down-regulation of Th1 and up-regulation of Th2-
like responses, and the induction of Treg function (Figure 1B) (17,
22, 42). The difference between TLR-mediated effects of HSP60
and LPS on T cells may result from different levels of sensitivity: T
cells are extremely sensitive to HSP60 and respond to concentra-
tions in the 0.1–1 ng/ml range (12, 17, 41, 42); the effects of LPS
on T cell adhesion and migration require concentrations of about
100 ng/ml (50). Thus, the involvement of different TLRs, TLR2 for
HSP60 vs. TLR4 for LPS as well as different degrees of sensitivity
contribute to variation between effects of those TLR ligands on T
cell function: notably, TLR2 signaling is involved in direct effects
of both endogenous signals (HSP60 and HSP60-derived peptide)
and pathogen-derived ligands (Pam3Cys and PSA). In summary,
these findings suggest that direct TLR2 and TLR4 signaling in T
cells can modulate decisions dictated by antigen-presenting cells
and shift the immune response from a damaging to a healing type.
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