Perforin-Positive Dendritic Cells Exhibit an Immuno-regulatory Role in Metabolic Syndrome and Autoimmunity

Highlights

- Mice lacking perforin+ DCs gain weight and exhibit features of metabolic syndrome
- The onset of this phenotype can be accelerated upon feeding with high-fat diet
- The phenotype can be completely prevented by T cell depletion in vivo
- Similar impact on T cells by perf-DCs was found in a model of multiple sclerosis

In Brief

Perforin-positive dendritic cells (perf-DCs) represent a minor subpopulation of myeloid DCs. Based on selective ablation of perf-DCs in radiation chimera, Reisner and colleagues demonstrate that these cells control inflammatory T cells in steady state and play a regulatory role in metabolic syndrome and in experimental autoimmune encephalomyelitis.

Graphical Abstract

Perf-DCs regulate self-reactive clones. In the absence of Perf-DCs self reactive cells expand uncontrollably and lead to multi-organ damage.

Steady state

Obesity and other autoimmune disorders

Authors

Yael Zlotnikov-Klionsky, Bar Nathansohn-Levi, Elias Shezen, ..., Oren Yifa, Anna Aronovich, Yair Reisner

Correspondence

yair.reisner@weizmann.ac.il

October 20, 2015 ©2015 Elsevier Inc.

http://dx.doi.org/10.1016/j.immuni.2015.08.015
Perforin-Positive Dendritic Cells Exhibit an Immuno-regulatory Role in Metabolic Syndrome and Autoimmunity

Yael Zlotnikov-Klionsky,1,2 Bar Nathansohn-Levi,1,2 Elias Shezen,1 Chava Rosen,1 Sivan Kagan,1 Liat Bar-On,1 Steffen Jung,1 Eric Shifrut,1 Shlomit Reich-Zeliger,1 Nir Friedman,1 Rina Aharoni,1 Ruth Amon,1 Oren Yifa,1 Anna Aronovich,1 and Yair Reisner1,*

1Department of Immunology, Weizmann Institute of Science, Herzl St 1, Rehovot 76100, Israel
2Co-first author
*Correspondence: yair.reisner@weizmann.ac.il
http://dx.doi.org/10.1016/j.immuni.2015.08.015

SUMMARY

Emerging evidence suggests that immunological mechanisms underlie metabolic control of adipose tissue. Here, we have shown the regulatory impact of a rare subpopulation of dendritic cells, rich in perforin-containing granules (perf-DCs). Using bone marrow transplantation to generate animals selectively lacking perf-DCs, we found that these chimeras progressively gained weight and exhibited features of metabolic syndrome. This phenotype was associated with an altered repertoire of T cells residing in adipose tissue and could be completely prevented by T cell depletion in vivo. A similar impact of perf-DCs on inflammatory T cells was also found in a well-defined model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Thus, perf-DCs probably represent a regulatory cell subpopulation critical for protection from metabolic syndrome and autoimmunity.

INTRODUCTION

Studies of cellular mechanisms involved in maintenance of peripheral immune tolerance have largely focused on T regulatory (Treg) cells, but other key cellular mediators such as B regulatory (Breg) cells, myeloid suppressor cells (MDSCs), and various types of dendritic cells (DCs) have been implicated, as well. DCs have a tolerogenic capacity in their immature state (Dhodapkar et al., 2001; Fu et al., 1996; Jonuleit et al., 2000; Lutz et al., 2000; Tiao et al., 2005; Trinité et al., 2005). However, this rather simplistic dichotomy between mature and immature DCs has been challenged by the demonstration that fully mature DCs can also induce tolerance under appropriate conditions (Lu et al., 1997; Süss and Shortman, 1996; Waithman et al., 2007; Yu et al., 2009).

We have recently described the generation of a highly defined population of DCs from Lin-Scal+cKit+ (LSK) hematopoietic progenitors (Zangi et al., 2012). These DCs express perforin and granzyme A in discrete granules and are therefore termed “perf-DCs” (Zangi et al., 2012). Perf-DCs are able to selectively kill cognate T cell receptor (TCR) transgenic CD8+ T cells that recognize their peptide-MHC, through a unique perforin and granzyme A-based killing mechanism, regulated through toll-like receptor-7 (TLR7) and triggering receptor expressed on myeloid cells-1 (TREM-1) signaling (Zangi et al., 2012). We demonstrated by immune histological staining that perf-DCs comprise about 2%-4% of the CD11c-positive cells within the lymph nodes and spleen and that the abundance of these cells is markedly enhanced upon in vivo administration of granulocyte macrophage colony stimulating factor (GM-CSF) (Zangi et al., 2012).

Perforin-positive myeloid DCs have also been reported within the human classical DC population (Stary et al., 2007). These initial findings, based exclusively on ex vivo studies, indicated a potential tolerogenic role for perf-DCs; however, the relevance of this cell population to tolerance maintenance in the steady state in vivo remained unresolved.

To address this question, we used bone marrow transplantation to generate chimeric mice, in which perforin expression is selectively impaired in CD11c-positive DCs. We found that, within 5 months, these mice developed many features of metabolic syndrome, suggesting that perf-DCs represent an important regulatory population that might control inflammatory processes in the adipose tissue (AT). Our results are in line with the emerging intriguing cross-talk between the immune system and the endocrine AT (Hotamisligil et al., 1993; Weisberg et al., 2003; Xu et al., 2003). Specifically, these studies suggest that AT dysfunction and metabolic imbalances in obesity are associated with low-grade systemic inflammation.

The antigens that drive AT-specific T cell selection and expansion resulting in the observed AT inflammation are not yet known. We therefore investigated the regulatory role of perf-DCs in a more defined model of autoimmunity, namely experimental autoimmune encephalomyelitis (EAE). In line with our hypothesis that perf-DCs have immuno-regulatory activity, mice lacking these cells were substantially more prone to induction of EAE, exhibiting significantly elevated autoimmune T cell clones compared to their WT counterparts. Collectively, we demonstrate that perf-DCs mediate a key role in steady-state protection from development of metabolic syndrome, as well as in the control of EAE.
RESULTS

Characterization of Perf-DCs in Radiation Chimeras

As previously described (Zangi et al., 2012), perf-DCs represent a minor subpopulation (~4%) within the CD11c+ population in the spleen of WT C57BL/6 mice (Figure S1A). This rare subpopulation of perf-DCs is markedly enhanced upon in vivo administration of GM-CSF (Zangi et al., 2012), and to a lesser extent, upon treatment with Flt3L (data not shown). Furthermore, as shown in Figure S1B, perforin is expressed in CD11c+MHC-IIhi DCs but not in CD11cint macrophages identified by their F4/80 expression and by their inability to effectively stimulate T cells.

To evaluate the functional role of perf-DCs in the steady state in vivo, we generated mice that selectively lack perforin expression in CD11c+ DCs. Chronic selective ablation of these cells can be attained in transgenic mice expressing the diphtheria toxin (DTx) A subunit (DTA) under control of a CD11c promoter (CD11cCre:R26-STOP-DTA mice [Birnberg et al., 2008]). Of note, most macrophages, NK cells, and pDCs, expressing low to intermediate CD11c, are spared in these mice (Birnberg et al., 2008). To induce a restricted perforin deficiency within the CD11chi DC population, we generated bone marrow (BM) chimeras using a 1:1 mixture of Prf1−/− BM (Kagi et al., 1994) and BM of mice expressing diphtheria toxin alpha chain (DTA) in CD11c+ cells (Itgax-DTA mice) (Birnberg et al., 2008). Based on the reported properties of the Itgax-DTA mice (Birnberg et al., 2008), cells other than CD11c+ DCs will be derived in the resulting chimeras (Itgax-DTA-Prf1−/−), from both types of donor BM (and hence 50% will express perforin). In contrast, due to the DTA-mediated ablation of perforin-proficient cells, the CD11c+ population will be exclusively derived from the Prf1−/− donor and therefore lack perforin. These chimeras should thereby allow us to determine whether the absence of perf-DCs leads to a particular autoimmune phenotype, similarly to that found in mice lacking other immune regulatory cells (Sakaguchi, 2000). In parallel, we generated control BM chimeras by transplantation of a 1:1 mixture of Prf1−/− mice and BM from Itgax-DTA-negative littermates (WT-Prf1−/− mice). Histological evaluation via ImageJ software of cDCs isolated from spleens of Itgax-DTA-Prf1−/− chimeras confirmed absence of perforin-expressing DCs (0.09% ± 0.19%), whereas in WT-Prf1−/− chimera the expression of perf-DCs was reduced to 2.4% ± 1.9% from 4.1% ± 1% found in WT mice (data not shown).

Confirming our ablation strategy, CD11c+MHC-IIhi cDCs (Figure 1A), although reaching the same steady-state expression as in the WT-Prf1−/− chimera (Figure 1B), were exclusively derived from the CD45.2+ Prf1−/− donor (Figure 1C). Likewise,

Figure 1. Characterization of Donor Type Origin in Immune Cells of WT-Prf1−/− and Itgax-DTA-Prf1−/− Chimeras

(A) Flow cytometry analysis of CD11c+ cells from spleen of Itgax-DTA-Prf1−/− chimeric mice and WT-Prf1−/− controls. The CD11c+ cells could be divided into CD11chic (cDCs) and CD11cmhi sub-populations.

(B) cDC expression in the spleen of Itgax-DTA-Prf1−/− and WT-Prf1−/− chimeras. Error bars represent mean ± SD.

(C) The cells defined in (A) were further stained for perforin. Numbers indicate percent of CD11c+ cells in the various populations (mean ± SD, n ≥ 5).

(D and E) Donor origin as defined by flow cytometry analysis of CD45.1 and CD45.2 of BM pre-DCs (D), B cells, NK cells, pDCs, T cells, and neutrophils (E) from Itgax-DTA-Prf1−/− chimeric mice and WT-Prf1−/− controls 2 months after transplant. These percentages indicate the frequencies of each subpopulation out of the entire lymphocyte in the organ (spleen or BM).

See also Table S1 and Figure S1.
BM pre-DCs largely originated from the CD45.2- Prf1-/- donor (Figure 1D). In contrast, WT-Prf1-/- chimeras exhibited CD11c+ cells that were equally derived from both BM donors (Figure 1D). Notably, T cells, B cells, neutrophils, pDCs, NK cells, and macrophages in the spleen of Itgax-Prf1-/- chimeras were equally derived from both BM donors (Figure 1E, Table S1). These results establish that Itgax-Prf1-/- chimeras, in which all CD11c+ DCs are derived from Prf1-/- donors, and thus do not express perforin, offer a robust model for studying the role of perf-DCs in the steady state.

Perf-DC-Deficient Chimeras Develop Metabolic Syndrome

After the generation of Itgax-Prf1-/- chimeras, these mice were followed for a prolonged period to assess the development of a potential pathological phenotype that might be associated with the lack of perf-DCs. Itgax-Prf1-/- chimeric mice spontaneously gained significantly more weight compared to their WT-Prf1-/- counterparts, starting at ~5 months after transplant (Figures 2A and 2B). A similar difference was found when comparing the animals to an additional control group in which recipient mice received mixed BM from WT and Itgax-Prf1 donors (Itgax-Prf1 WT) (Figure S2). The increased weight gain observed in Itgax-Prf1-/- mice prompted us to test whether this phenomenon was accompanied by metabolic alterations. Indeed, we detected dyslipidemia in the Itgax-Prf1-/- mice, manifested by elevated serum cholesterol and triglycerides in comparison to those exhibited by the controls (Figure 2C). In addition, the percent of total body fat, as measured by body composition MRI, was significantly elevated in Itgax-Prf1-/- mice compared to both control groups.

Figure 2. Itgax-Prf1-/- Mice Develop a Condition Resembling Metabolic Syndrome at 6 Months after Transplant

(A) Body weight of chimeric mice 6 months after transplant. Data pooled from three independent experiments (n ≥ 18).
(B) Kinetics of weight gain in Itgax-Prf1-/- (gray curve) and WT-Prf1-/- (black curve) mice. Error bars represent mean ± SD.
(C) Blood chemistry profile of the chimeric mice (mean ± SD, n ≥ 6, *p < 0.05, **p < 0.001).
(D and E) Serum leptin (D) and TNF-α (E) amounts in the Itgax-Prf1-/- and control WT-Prf1-/- chimeras (mean ± SD, n ≥ 5).
(F) Percent body fat measured via EchoMRI. Error bars represent mean ± SD. *p < 0.05, **p < 0.001 (open bar, Itgax-Prf1-/-; closed bar, WT-Prf1-/-).

Data are representative of three (A-D) or two (E and F) independent experiments. See also Figure S2.
CD4+ and CD8+ T Cells Are Required for Development of Metabolic Syndrome in Itgax-DTA-Prf1−/− Chimeras

To define candidate effector cells that might be controlled by perf-DCs, we initially analyzed immune cell populations in collagenase-digested stromal vascular fractions (SVF) from epididymal adipose tissue, as previously described (Brake et al., 2006). WT-Prf1−/− and Itgax-DTA-Prf1−/− chimeras exhibited similar distributions of four subpopulations—CD11c+CD11bhi (I), CD11c−CD11bint (II), CD11c+CD11b− (III), and CD11c−CD11b− (IV) cells in the AT—similar to the ones described above for the spleen. Although these subpopulations residing in the AT might differ in function and origin from the splenic cells bearing the same phenotypes, no significant difference in the frequencies of the CD11c+ DCs was found between the two types of chimera (Figure S3). However, as shown in Figures 4A and 4B, AT of Itgax-DTA-Prf1−/− mice displayed significantly more CD4+ and CD8+ T cells compared to WT-Prf1−/− chimeras at 6 months after transplant, the time of disease onset, although no differences were found in neutrophil or macrophage numbers (Figure S3), nor in B or Treg cells (Figures 4C and 4D).

Because immune cell composition differed mainly in the T cell compartment, we further investigated the potential roles of CD4+ and CD8+ T cells by ablating these cell subpopulations prior to disease onset in the Itgax-DTA-Prf1−/− chimera. Because a developing inflammatory response was detected within the AT tissue based on cell composition (i.e., expansion of CD4+ and CD8+ T cells) and serum markers (leptin, TNF-α, IL-1β) starting at 5 months after transplant, we administered weekly i.p. injections of anti-CD4 antibodies, anti-CD8 antibodies, or both, starting 1 month prior to development of the earliest inflammatory signs (4th month after BM transplant). This treatment resulted in more than 95% depletion of the target population(s) in the spleen, LNs, and peripheral blood, with no changes in other cell populations (data not shown). More importantly, though, we found that Itgax-DTA-Prf1−/− mice treated with anti-CD4 antibodies, anti-CD8 antibodies, or a combination of them did not gain weight, similar to the WT-Prf1−/− controls (Figure 4E). Likewise, serum leptin was found to be elevated only in the group of Itgax-DTA-Prf1−/− mice not treated with antibody (Figure 4F). This observed role of both CD4+ and CD8+ T cells is consistent with potential triggering of the AT pathology by effector CD8+ T cells requiring initial help from CD4+ T cells.

Because alterations in central regulatory functions are probably involved in the metabolic changes observed, and recent data demonstrate changes in inflammatory status in the hypothalamus that might be important in body weight regulation, we evaluated the expression of interleukin-6 (IL-6) and IL-1β in the hypothalamus of Itgax-DTA-Prf1−/− and control WT-Prf1−/− chimeric mice before (4 months after transplant) and after (9 months after transplant) disease onset. We found that these cytokines were indeed elevated in Itgax-DTA-Prf1−/− chimera, albeit only after disease onset. Thus, although there was no significant difference at 4 months, by 9 months after transplantation over, the visceral AT of Itgax-DTA-Prf1−/− chimeras contained more “crown-like” structures (CLSs), which are formed when macrophages within inflamed AT cluster around dead adipocytes (Figures 3C–3E; Cildir et al., 2013).
TCR repertoire from AT tissue of absence of regulatory perf-DCs. To address this possibility, It is possible that autoimmune T cells are poorly controlled in the inflammatory process in AT. IL-6 was four times higher in Itgax-DTA-Prf1−/− mice compared to WT-Prf1−/− mice (p < 0.01), and IL-1β was six times higher in Itgax-DTA-Prf1−/− mice compared to WT-Prf1−/− mice (p < 0.05), indicating that these changes might be induced as a result of the inflammatory process in AT.

The T Cell Repertoire Is Modified within the Adipose Tissue of Itgax-DTA-Prf1−/− Chimeras

It is possible that autoimmune T cells are poorly controlled in the absence of regulatory perf-DCs. To address this possibility, the TCR repertoire from AT tissue of Itgax-DTA-Prf1−/− and WT-Prf1−/− chimeras at 6 months after transplant was analyzed by high-throughput TCR sequencing (Ndifon et al., 2012). We sequenced the TCRβ CDR3 region of T cells and compared the repertoire found in spleen, visceral AT (VAT), and subcutaneous AT (SC-AT) of Itgax-DTA-Prf1−/− and WT-Prf1−/− chimeras.

As a measure of the composition of the TCR repertoire, we evaluated the degree of skewing in the frequencies of observed TCR sequences. A more diverse repertoire consists of sequences that are found at similar frequencies, whereas in a skewed repertoire, a small number of sequences are dominant and are found at higher frequencies. The skewing of a repertoire can be evaluated by the increased deviation of its Lorentz curve from the diagonal. We first compared the repertoires of T cells resident within AT to the repertoire found in the spleen of WT-Prf1−/− animals. Consistent with previous observations of a restricted TCR repertoire within AT (Feuerer et al., 2009; Winer et al., 2009; Yang et al., 2010), we observed greater skewing in the repertoires of T cells derived from VAT and SC-AT compared with splenic T cells of WT-Prf1−/− mice (Figure 5A). We also identified specific Vβ segments that were enriched in the repertoires derived from AT compared with the splenic repertoire. Next, we compared the TCR repertoires between WT-Prf1−/− and Itgax-DTA-Prf1−/− chimeras. Although there was no difference in the spleens of these chimeras, the TCR repertoire observed in the AT tissues derived from Itgax-DTA-Prf1−/− mice was less skewed than that of the WT-Prf1−/− mice (Figure 5A). Thus, the TCR repertoire in AT of the WT-Prf1−/− chimera is dominated by expansion of a small number of clonotypes, whereas the Itgax-DTA-Prf1−/− AT repertoire contains a greater number of distinct T cell clones with intermediate expression. To identify signature TCR sequences that distinguish the two types of chimera, we used an ordination method, similar to principal-component analysis (Yeung and Ruzzo, 2001), termed redundancy analysis (RDA) (Sadys et al., 2015). This method attempts to explain the variance in the data, constrained by the grouping of samples, by fitting a linear model that maximizes the variance between groups. With RDA,
we selected TCR sequences with the highest contribution to the separation between the experimental groups, resulting in a list of signature sequences that were highly expressed in one group but not in the other. This analysis separated repertoires of Itgax-DTA-Prf1−/− versus WT-Prf1−/− mice along the first RDA axis (RDA1), and between most spleen samples versus VAT samples along RDA2 (Figure 5B). Next, we identified CDR3 sequences that were most highly enriched in repertoires of Itgax-DTA-Prf1−/− mice compared with WT-Prf1−/−, by RDA analysis. Figure 5C shows 16 CDR3β amino acid sequences with the lowest (negative) weights on RDA1, which were enriched in Itgax-DTA-Prf1−/− mice compared with WT-Prf1−/− mice. Several TCRβ sequences were consistently upregulated across Itgax-DTA-Prf1−/− animals, suggesting their potential role in the observed phenotype. Of note, many of these TCRs are encoded by different nucleotide sequences in different animals (Figure S4), an indication of clonal selection driven by TCR specificity. These TCR sequences, which exist in the Itgax-DTA-Prf1−/− but not in the WT-Prf1−/− animals, might be mechanistically related to the metabolic phenotype, though further studies are required to identify the specificity of the TCRs that distinguish the two types of chimeras.

Itgax-DTA-Prf1−/− Chimeras Develop Enhanced Obesity in Response to a High-Fat Diet

To learn how mice lacking perf-DCs respond to excess adiposity, we used a classical model of obesity, in which mice are chronically fed a high-fat diet (HFD). When fed HFD, normal WT C57BL/6 mice develop glucose intolerance and insulin resistance by the 12th week, with elevated pro-inflammatory cytokines and adipokines. Itgax-DTA-Prf1−/− mice have a tendency to spontaneously develop these symptoms, so we followed the dynamics of metabolic and functional changes at early time points. As can be seen in Figures 6A and 6B, Itgax-DTA-Prf1−/− mice gained weight much earlier than WT-Prf1−/− chimeras when fed HFD, with higher percentage of body fat, increased liver weight, and epididymal fat pad weight (Figures 6C–6E).

Furthermore, serum leptin was significantly higher as early as 1 month after initiation of HFD. At 1.5 months from initiation of HFD, WT-Prf1−/− mice gained weight much earlier than WT-Prf1−/− mice relative to control WT-Prf1−/− animals, starting at 1 month from initiation of HFD (Figure 6F), and liver TGs were also markedly higher (Figures 6I–6K). Thus, the increased susceptibility to diet-induced obesity could offer an additional, more rapid model for investigating the impact of perf-DCs on different immune cell subpopulations.

As in the normal-fat diet, we also found that larger numbers of both CD8+ and CD4+ T cells infiltrated the VAT in Itgax-DTA-Prf1−/− mice fed with HFD compared to controls (Figure S5). Although there was no significant elevation of macrophages within the VAT of the Itgax-DTA-Prf1−/− chimera (Figure S5), we found by RT-PCR a significant shift toward a gene expression profile typical of inflammatory M1 macrophages (Figure 6J), which is consistent with further studies being required to identify the specificity of the TCRs that distinguish the two types of chimeras.
with increased inflammatory properties of macrophages in the AT of obese mice (Lumeng et al., 2007a; Weisberg et al., 2003).

It is possible that activation of T and NK cells upon onset of inflammation or initiation of HFD might induce upregulation of CD11c, and thereby of DT to a degree sufficient to cause the deletion of these populations. Clearly, such deletion would not be apparent in analysis of cell populations in the naive mice, de eluding potential changes in the level of Prf1

DTA-/- mice. As shown in Figures S6 and S7 and Table S1, the relative abundance of the various cell types found in naive mice remained unaltered after the inflammatory onset. These findings are in line with previous observation, showing that T cells from Itgax-DTA-Prf1-/- mice respond normally to antigen challenge and are not deleted upon activation (Birnberg et al., 2008).

Figure 6. Itgax-DTA-Prf1--/- Chimeras Are More Prone to HFD-Induced Inflammation

(A and B) 2 months after chimerism induction, Itgax-DTA-Prf1--/- (gray) and WT-Prf1--/- (black) chimeras were maintained on HFD and monitored for weight change (numbers in A and percent in B) over 90 days.

(C–E) Percent of body fat (C), liver weight (D), and epididymal fat pad weight (E) in Itgax-DTA-Prf1--/- (white) and WT-Prf1--/- (black) chimeras maintained for 6 weeks on HFD (mean ± SD; *p < 0.05; **p < 0.01).

(F–H) Amounts of leptin (F), IL-1β (G), and TNF-α (H) were tested in sera of Itgax-DTA-Prf1--/- (white) and WT-Prf1--/- (black) chimeras maintained on high and low fat. Blood was drawn at different time points, as indicated (mean ± SD; *p < 0.05, **p < 0.001, n ≥ 5).

(i) Serum cholesterol and TG in chimeric mice fed HFD (mean ± SD, n ≥ 5).

(J) Gene expression profile of M1 versus M2 genes determined by RT-PCR in VAT of Itgax-DTA-Prf1--/- (white) and WT-Prf1--/- (black) chimeras maintained on HFD for 2 months (mean ± SD; *p < 0.05; **p < 0.01).

(K) Liver triglycerides in Itgax-DTA-Prf1--/- (white) and WT-Prf1--/- (black) chimeras maintained for 6 weeks on HFD (mean ± SD, n ≥ 4).

(L) Serum insulin in Itgax-DTA-Prf1--/- (white) and WT-Prf1--/- (black) chimeras maintained for 6 weeks on HFD (mean ± SD, n ≥ 4).

Data are representative of three (A–F) or two (G–L) independent experiments. See also Figures S5–S7.

Perf-DCs Exhibit a Major Regulatory Role in EAE

We showed that selective deletion of perforin in the rare subpopulation of perf-DCs leads to a distinct metabolic phenotype and that this phenotype can be prevented by T cell depletion in vivo. This strongly indicates a role for perf-DCs in the control of T-cell-mediated inflammatory processes. However, although we found a skewed TCR repertoire exhibited by AT T cells in Itgax-DTA-Prf1--/- chimeras, the identity of antigens eliciting this inflammatory response are not known. To further investigate the regulatory role of perf-DCs, we evaluated whether perf-DCs might also exhibit a regulatory role in a well-defined mouse model for autoimmunity, in which the pathological antigen is known. We therefore examined whether Itgax-DTA-Prf1--/- chimeras are more susceptible to development of EAE, a T-cell-mediated disorder widely used as a model of multiple sclerosis (Aharoni, 2013). In this mouse model, MOG-induced EAE results in a chronic persistent disease course.

MOG administration in Itgax-DTA-Prf1--/- mice resulted in a greater clinical severity of the disease with earlier onset and higher disease score (Figures 7A and 7B). Moreover, lymph node cells from Itgax-DTA-Prf1--/- mice showed more antigen-specific proliferation of CD4+ T cells, both during the peak of the disease at day 14 and during the chronic stage at day 30. This specificity is clearly illustrated when comparing the marked

Immunity 43, 1–12, October 20, 2015 ©2015 Elsevier Inc.
enhancement of anti-MOG CD4+ T cells to that exhibited by T cells directed against PPD or MBP (Figure 7C) or of CD8+ T cells directed against MOG (Figure 7D). MOG-specific IFN-γ and IL-17A-positive T cells were also found in the central nervous system (CNS) 14 days after immunization (Figure 7E). These results demonstrate the immune-regulatory role of perf-DCs and the ability of these cells to inhibit detrimental expansion of antigen-specific autoimmune clones in the context of EAE.

DISCUSSION

We have shown here that DCs expressing perforin represent a subpopulation of regulatory DCs with a steady-state role in prevention of inflammatory processes within the AT and in the CNS. The intriguing relationship between metabolism and the immune system has received increasing attention over the past few years (Schipper et al., 2012). AT is now recognized as a true endocrine organ that plays a fundamental role in controlling whole-body glucose and lipid homeostasis (Guilherme et al., 2008). Previous studies have identified various immune cells as metabolic controllers with pathogenic or regulatory potential (Chawla et al., 2011; Elgazar-Carmon et al., 2008; Feuerer et al., 2009; Kang et al., 2008; Liu et al., 2009; Lumeng et al., 2007a, 2007b; Nguyen et al., 2007; Nishimura et al., 2013; Odegaard et al., 2007; Osborn and Olefsky, 2012; Talukdar et al., 2012; Wu et al., 2011). Three T lymphocyte subsets might play distinct roles in AT immune homeostasis: CD8+ T cells (Nishimura et al., 2009), IFN-γ+CD4+ T (Th1) cells (Rocha et al., 2008; Winer et al., 2009), and Foxp3+ regulatory T (Treg) cells (Eller et al., 2011; Feuerer et al., 2009; Ilan et al., 2010). In particular, the infiltration of CD8+ T cells to the AT has been shown to precede macrophage influx and M1 polarization in the obese AT (Nishimura et al., 2009; Rausch et al., 2008), and CD8+ T cells are involved in macrophage recruitment and polarization in obesity (Nishimura et al., 2009). Furthermore, as also shown here, depletion of CD8+ T cells in obese mice improved insulin sensitivity, whereas adoptive transfer of CD8+ T cells induces insulin resistance in CD8-deficient mice (Nishimura et al., 2009).

A major drawback of most of these studies is the reliance on HFD, which does not accurately represent normal steady-state conditions in the AT. Our study showed the major impact of a unique DC subpopulation on AT inflammatory processes in the context of normal dietary conditions. The HFD regimen is associated with further acceleration of disease onset in Itgax-DTA-Prf1−/− chimeras that lack perf-DCs and are susceptible to AT
inflammation. Our observations of differences in TCRβ repertoires of WT-Prf1−/− versus Itgax-DTA-Prf1−/− mice in both adipose tissues tested (VAT and SC-AT), but not in the spleen, suggest that specific T cells are missing from the adipose tissue of WT-Prf1−/− animals, potentially due to their deletion by regulatory perf-DCs. The possibility that the phenotype might be mediated by antigen-specific T cells that escape regulation in the absence of perf-DCs is supported by the observation that the inflammatory AT phenotype can be completely prevented by T cell depletion using either anti-CD4 or anti-CD8 antibodies. As expected from previous studies in mice fed HFD (De Souza et al., 2005), this inflammatory process is also accompanied by late increase in IL-6 and IL-1B expression in the hypothalamus. However, the late onset of this process in Itgax-DTA-Prf1−/− chimeras indicates that it might be induced by the phenotype rather than cause it.

In our chimeric mouse model, the T cell compartment must reconstitute itself after transfer of BM to irradiated recipients. Such reconstitution is slow, requiring about 2 months in mice. Thus, we expect a delay in the replenishment of fat-resident T cells at least of that magnitude, and possibly even longer, due to slower traffic of T cells into the fat tissue. Only when sufficient numbers of self-reactive T cells accumulate in the fat tissue are inflammatory processes initiated.

Considering that DTA mice tend to develop a myeloproliferative disorder at old age, it could be argued that such a pathological process might be somehow associated with the phenotype observed in our Itgax-DTA-Prf1−/− chimeras, which also develops late after transplantation. However, we did not detect in our chimeric mice any sign of myeloproliferative disorder, in line with Birnberg et al. (2008), who showed in their original paper that this phenotype did not develop in BM chimera established by combining BM from DTA mice with BM from WT mice.

The Itgax promoter is also active in cells other than DCs, including some NK cells, macrophages, and pDCs, although the specific Itgax promoter fragment used for the Itgax-cre transgenic mice is inactive in certain cells (CD11c−/−moDCs, CD11c−/−pDCs, and NK cells) that transcribe their endogenous Itgax alleles (Bar-On and Jung, 2010). Nevertheless, we extensively evaluated the possibility that our observed phenotype might be associated with ablation of these cells in our Itgax-DTA-Prf1−/− chimeras. Thus we studied in our Itgax-DTA-Prf1−/− and WT-Prf1−/− chimeras the expression of markers associated with NK cells (NK1.1, NKp46, and CD49b(DX5)), macrophages (F4/80), and pDCs (PDCA-1), and we confirmed the previous suggestion of Bar-On and Jung (2010) that these cells, which express intermediate or low CD11c, are not ablated by DTA. Thus, they are equally derived in the Itgax-DTA-Prf1−/− chima from both BM donors.

These results are in line with our previous work on perf-DCs generated in vitro from hematopoietic stem cells (HSCs), negating the possibility of overlap between these cells and the so-called natural killer dendritic cells (NKDCs) or interferon-producing killer dendritic cells (IKDCs), previously reported to exhibit dual NK and DC properties (Chan et al., 2006; Pillarsetty et al., 2005; Taleb et al., 2006) or activated NK cells (Bblasius et al., 2007; Vosshenrich et al., 2007), as we demonstrated that perf-DCs do not express markers typically associated with NK cells, such as NK1.1, DX5, and NKP46, and are negative for B220, which is expressed by IKDCs.

It could be argued that if indeed ablation of perf-DCs is critical for our observed phenotype, one would expect that Prf1−/− mice, in which the mutation is expressed in every cell, would be similarly susceptible to obesity. However, in such mice both parts of the equation are impacted. Thus, not only perf-DCs, but also perforin-positive effector T cells or NK cells critical for inflammation, are missing, and therefore it is hard to predict the overall outcome. In fact, in parallel to the submission of our manuscript, a new study was published suggesting that Prf1−/− mice exhibit enhanced obesity and some metabolic disturbances (Revelo et al., 2015). However, we observed only minor weight gain with no increase in cholesterol or TG, and no changes in the ability to handle glucose and insulin challenges compared to WT mice (not shown).

Taken together, our results suggest that under physiological conditions, perf-DCs probably induce deletion of specific self-reactive T cells, potentially through presentation of tissue-specific self-antigens. In the case of adipose tissue, this leads to deletion of tissue-resident T cells that have inflammatory capacity, thereby contributing to immune tolerance. Thus, the appearance of metabolic syndrome upon specific ablation of perf-DCs in our experiments appears to be a consequence of reduced deletion of those harmful T cells, resulting in adipose inflammation. Furthermore, our results strongly suggest that in the steady state, a unique population of perf-DCs attenuates the severity of EAE by specifically controlling CD4+ T cells that produce IL-17 and IFN-γ upon activation by their cognate antigen.

The results shown in the present study collectively demonstrate that perf-DCs exhibit an essential role in regulating the delicate balance between immune cells and the fat tissue, and consequently, the entire cascade leading to metabolic syndrome and its associated type 2 diabetes. Thus, we suggest that future therapies could operate by shifting the homeostatic balance of perf-DC abundance and that of other immune cell populations, and their activation state. This might be attained either by inhibiting their ecological competitors or by giving them a growth or accumulation advantage. Our insights regarding the role of perf-DCs might offer opportunities for new rational therapeutics, directed not only at controlling aberrant T cell clones, but also at addressing the regulatory possibilities offered by perf-DCs.

Perforin deficiency within the myeloid DC population results in enhanced susceptibility to EAE. Therefore, perf-DCs might represent, in addition to Treg cells, a regulatory cell population, critical for protection from autoimmunity and AT inflammatory processes. Further studies of these regulatory cells in normal human subjects and in patients is required to establish the translational value of our findings, which could potentially lead to important therapeutic approaches.

EXPERIMENTAL PROCEDURES

Animals

Mice were 6- to 12-week-old females or males of the following strains: C57BL/6, Itgax-DTA, and Prf1−/− (Weizmann Institute Animal Breeding Center). BM chimeras were generated by exposure of C57BL/6 WT mice to a single dose of 950 rad total body irradiation. The following day, the mice received 5 × 106 mixed BM cells i.v., as indicated. Animals were maintained under conditions approved by the Institutional Animal Care and Use Committee at the Weizmann Institute of Science. In some experiments, mice were maintained on high-fat diet as detailed in the Supplemental Experimental Procedures.
Metabolic Studies
Itgax-DTA-Prf1−/− and WT-Prf1−/− chimeric mice were weighed regularly. Tests for glucose and insulin tolerance, glucose, triglycerides, total cholesterol, high-density lipoprotein (HDL), and cytokine serum levels (measured by ELISA kits) are detailed in the Supplemental Experimental Procedures. Body composition analysis was performed by EchoMRI Analyzer (EchoMRI).

Fat-Associated SVF Cell Isolation
VAT and inguinal SC pads were mashed into small pieces, and single-cell suspensions were prepared by collagenase digestion, as detailed in the Supplemental Experimental Procedures.

Histology, Immunohistochemistry, and Cytofluorometric Analysis
Tissue samples from spinal cord and visceral adipose tissue were fixed, processed, and embedded in paraffin. Sections of 5 μm were stained with hematoxylin and eosin (H&E). Fat cell area on H&E-stained slides was measured with ImageJ software as detailed in the Supplemental Experimental Procedures. Staining of perforin to identify perf-DCs is described in the Supplemental Experimental Procedures. In brief, splenic DCs from WT and Prf1−/− mice were isolated by two-stage magnetic sorting and were spun onto glass slides and fixed with 4% PFA. The cells were then blocked first with 5% horse serum were isolated and stained with 5 μM CFSE (CellTrace CFSE Cell Proliferation Kit, Invitrogen) for 15 min. Proliferation in response to different stimuli was quantified by flow cytometry.

Depletion of CD4+ and CD8+ T Cell Populations
Anti-CD4 or -CD8 depleting antibodies were administered i.p. weekly, as detailed in the Supplemental Experimental Procedures.

RNA Extraction, Quantitative RT-PCR for AT, and TCRβ Sequencing
Total RNA was extracted from spleen, visceral adipose tissue, and subcutaneous adipose tissue of DTA-PKO and WT-PKO mice. The TCRβ sequencing procedure and computational analysis are detailed in the Supplemental Experimental Procedures.

EAE Induction and Evaluation
Chronic EAE was induced in C57BL/6 chimeric mice by injecting a peptide consisting of amino acids 35–55 of myelin oligodendrocyte glycoprotein (MOG) as detailed in the Supplemental Experimental Procedures. Mice were examined daily and EAE was scored as follows: 0, no disease; 1, limp tail; 2, hind limb paralysis; 3, paralysis of all limbs; 4, moribund condition; and 5, death.

CFSE Proliferation Assay of CD4+ and CD8+ T Cells
Isolated lymph node cells from chimeric mice 14 or 30 days after EAE induction were isolated and stained with 5 μM CFSE (CellTrace CFSE Cell Proliferation Kit, Invitrogen) for 15 min. Proliferation in response to different stimuli was assessed, as detailed in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION
Supplemental Information includes seven figures, two tables, and Supplemental Experimental Procedures and can be found with this article online at http://dx.doi.org/10.1016/j.immuni.2015.08.015.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS
The authors wish to thank Dr. Eran Elinav for reviewing the manuscript and Dr. Hagit Shapiro, Dr. Yael Kuperman, and Dr. Michael Tsoroy for professional advice. Y.R. holds the Henry Drake Professorial Chair in Transplantation Immunology. This work was supported in part by grants from BIRAX (Britain-Israel Research and Academic Exchange) Regenerative Medicine Initiative and ISF (no. 1348/14) and from Roberto and Renata Ruhman.

Received: October 20, 2014
Revised: May 27, 2015
Accepted: August 14, 2015
Published: September 15, 2015

REFERENCES

Perforin-Positive Dendritic Cells Exhibit an Immuno-regulatory Role in Metabolic Syndrome and Autoimmunity

Figure S1. Characterization of CD11chigh and CD11cint and their perforin expression in WT-Prf1-/- and Itgax-DTA-Prf1-/- chimera (referring to figure 1). (a) Immunostaining of perforin in CD11c+ DCs isolated by magnetic beads from the spleen of WT or Prf1-/- mice, as described in Methods. Due to some non-specific staining experienced with isotype control antibodies (marked by arrow), cells were initially treated with isotype control (Green) and subsequently with perforin-specific antibody (Red). Nuclei are stained by Hoechst in Blue, scale bars 50\(\mu\)m. Inset in the left image shows staining of a Perf-DC under higher magnification, scale bars 20\(\mu\)m. (b) FACS analysis of CD11c+ cells from spleen of Itgax-DTA-Prf1-/- chimeric mice and WT-Prf1-/- controls. The CD11c+ cells could be divided into four sub-populations: CD11chighCD11bint(I), CD11chighCD11blow (II), CD11cintCD11bhigh (III), CD11cintCD11bint (IV). (c) Expression levels of F4/80 were determined in four populations of splenic CD11c+ cells by FACS. (d) Proliferation of CFSE labeled Balb/c T cells stimulated for 3 days against C57BL/6 CD11chigh and CD11cint cells, and measured by FACS analysis for CFSE dilution as an indicator of cell division. The bars indicate mean CFSE value ± SD. (e) Differential expression of perforin as determined by RT-PCR (Avg±SD; n=3) in DC sub-populations I-IV isolated from Itgax-DTA-Prf1-/- (red) or WT-Prf1-/- (black) spleen cells by FACS.
Figure S2. Control Itgax-DTA-WT mice do not exhibit metabolic abnormalities (referring to figure 2). Itgax-DTA-Prf1/- (red), WT-Prf1/- (black) or Itgax-DTA-WT (gray) chimeric mice were compared for different metabolic parameters, including: (a) Body weight of chimeric mice 6 months after transplant. (b) Percent body fat measured using Echo-MRI. (c) Serum leptin levels (Avg±S.D, N≥5, *p < 0.05, ***p < 0.001). (d) Glucose homeostasis as determined by glucose-tolerance test, demonstrating impaired glucose tolerance. Mice (n=5 per group) were injected i.p. with 2 gr glucose/kg body weight (Avg±S.D).
Figure S3. FACS determination of myeloid cell subpopulations in SVF from VAT of Itgax-DTA-Prf1-/- and WT-Prf1-/- chimera (referring to figure 4). Collagenase digested SVF from VAT of Itgax-DTA-Prf1-/- (red bars) and WT-Prf1-/- (black bars) mice was stained and analyzed by FACS. (a) Leukocyte gates were defined based on forward and side scatter. Non-viable and non-lymphoid cells were excluded using 7AAD and CD45 staining, respectively. Macrophages were defined based on CD11b and F4/80 expression, DCs were defined as CD11chigh and MHC-IIhigh, and neutrophils were CD11cF4/80-CD11bLy6G+ (b) Box plots summarizing the number of cells per gram fat (Center lines show Mean; Box limits indicate the 25th and 75th percentile, whiskers indicate the minimal and maximal values, ** p<0.01).
Figure S4. Frequency and TCR nucleotide sequence composition for T cell clonotypes that are up-regulated in Itgax-DTA-Prf1-/- relative to WT-Prf1-/- (referring to figure 5). Each panel shows the observed frequencies of a specific TCR clonotype, as defined by the amino-acid (AA) sequence of its TCRβ CDR3 region (sequence at the top of each panel). These four clonotypes were identified by RDA analysis as having higher levels in Itgax-DTA-Prf1-/- relative to WT-Prf1-/-, see Fig.5 in the main text. Colors represent distinct nucleotide (nt) sequences coding for the AA sequence indicated at the top of each panel (see detailed legend for the bottom-left panel). In most cases a dominant nt clonotype is present in all tissues from the same animal. This suggests that following clonal expansion, this clonotype populates both fat and splenic tissues. Moreover, in many cases (e.g. CGARGQNTGQLYF), we observe heterogeneity across Itgax-DTA-Prf1-/- mice in terms of the dominant nt sequence for the same AA clonotype, where in each mouse a different nt
sequence is dominant. These findings suggest that those clones, which are enriched in the \textit{Itgax}-DTA-Prf1/- and are absent (or found at very low frequencies) in WT-Prf1/-, were subject to TCR-specific positive selection (VAT = Visceral adipose tissue, SPL = Spleen, SC = Sub-cutaneous fat).

Figure S5. Frequency and total cell numbers of different SVF cell subpopulations isolated from VAT of \textit{Itgax}-DTA-Prf1/- and WT-Prf1/- mice maintained on HFD for 8 weeks (referring to figure 6). Cells were identified by FACS analysis of SVF fractions from 6-8 mice; percent gated cell frequencies are indicated for T cells (a) and macrophages (d). Absolute numbers (in thousands) of CD4 and CD8 T cells and macrophages per gram of fat tissue (b, c and e), respectively, are shown (All data are presented as Avg±SD, *\(P < 0.05\), **\(P < 0.01\), ***\(P < 0.001\)). \textit{Itgax}-DTA-Prf1/- (red) and WT-Prf1/- (Black).
Figure S6. Donor type origin of B cell, neutrophils, NK cells and DCs from spleen of *Itgax-DTA-Prf1-/-*(gray filled histogram) and *WT-Prf1-/-*(unfilled histogram) chimera (referring to figure 6). (a) B cells from spleen defined by staining of MHC-II and CD19 (b) neutrophils defined by staining of CD11b and Ly6G. The cells were defined before and after onset of pathology. Cells were stained for CD45.1 to identify cell origin from *Itgax-DTA* or littermate controls, or from CD45.2 expressed by *Prf1-/-* donors. Numbers indicate percent of CD45.1 cells in the various populations (Ave±SD). (c) NK cells from spleen were pre-gated for Lin- (Ter119−CD3−CD19−Gr1−) and further defined by various markers including NK1.1, NKp46 and CD49b (DX5). cDCs were defined by staining for MHC-II and CD11c. (d) Cells from chimera fed with a regular diet were stained for CD45.1, 6 months after transplantation to identify cell origin from *Itgax-DTA* or littermate control hosts, versus CD45.2 expressed by *Prf1-/-* donors. (e) Cells from chimera fed with HFD were stained for CD45.1, 2 months after transplantation to identify cell origin from *Itgax-
DTA or littermate controls, or from CD45.2 expressed by Prf1-/ donors. Representative FACS data WT-Prf1-/ (black), Itgax-DTA-Prf1-/ (gray) is shown. N≥4 mice from a single experiment on NCD and HFD. Numbers indicate percent of CD45.1 cells in the various populations (Ave±SD).

Figure S7 (referring to figure 6). Donor type origin of VAT cells from Itgax-DTA-Prf1-/ and WT-Prf1-/ chimeric mice fed with normal diet at early (2 months) or late (7 months) time points post transplant, or with HFD (8 weeks after HFD). Different leukocyte types were defined as indicated in Figs.S3 and were further stained for CD45.1 to identify cell origin from Itgax-DTA or littermate controls, or from CD45.2 expressed by Prf1-/ donors.
<table>
<thead>
<tr>
<th>Cell type</th>
<th>Gate</th>
<th>% Cells</th>
<th>% Chimerism</th>
<th>% Cells</th>
<th>% Chimerism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve T cell</td>
<td>CD8+, CD44-, CD62L+</td>
<td>4.8±2.1</td>
<td>47.9±7.5</td>
<td>6.2±2.8</td>
<td>44.7±5.8</td>
</tr>
<tr>
<td></td>
<td>CD4+, CD44-, CD62L+</td>
<td>4±2</td>
<td>43.9±6.6</td>
<td>5.5±2.3</td>
<td>40.8±6.6</td>
</tr>
<tr>
<td>TCM</td>
<td>CD8+, CD44+, CD62L+</td>
<td>6.8±1.1</td>
<td>44.1±2.8</td>
<td>10.2±3.3</td>
<td>40.3±3.8</td>
</tr>
<tr>
<td></td>
<td>CD4+, CD44+, CD62L+</td>
<td>2.2±0.8</td>
<td>54.9±5.3</td>
<td>2.5±0.4</td>
<td>54.8±5.3</td>
</tr>
<tr>
<td>Effector T cell</td>
<td>CD8+, CD44+, CD62L+</td>
<td>35.6±2.2</td>
<td>46.3±6</td>
<td>34.1±4.5</td>
<td>45±4.1</td>
</tr>
<tr>
<td></td>
<td>CD4+, CD44+, CD62L+</td>
<td>41.7±4.3</td>
<td>52.9±6.8</td>
<td>41.4±3.1</td>
<td>53.4±3.9</td>
</tr>
<tr>
<td>Treg cell</td>
<td>CD3+, CD4+, CD25+, FoxP3+</td>
<td>2.63±0.14</td>
<td>54.65±11.14</td>
<td>2.2±1.05</td>
<td>62.7±3.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Gate</th>
<th>% Cells</th>
<th>% Chimerism</th>
<th>% Cells</th>
<th>% Chimerism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve T cell</td>
<td>CD8+, CD44-, CD62L+</td>
<td>5.7±3.2</td>
<td>44.7±4.4</td>
<td>9.3±2.7</td>
<td>41.7±1.7</td>
</tr>
<tr>
<td></td>
<td>CD4+, CD44-, CD62L+</td>
<td>7.9±2.9</td>
<td>42.8±3.5</td>
<td>11.35±3.3</td>
<td>36.3±4.2</td>
</tr>
<tr>
<td>TCM</td>
<td>CD8+, CD44+, CD62L+</td>
<td>3.4±2.5</td>
<td>41.9±2</td>
<td>5.2±3.2</td>
<td>42.7±0.8</td>
</tr>
<tr>
<td></td>
<td>CD4+, CD44+, CD62L+</td>
<td>1.1±0.7</td>
<td>49.9±6.9</td>
<td>2.5±1.5</td>
<td>46.9±2.5</td>
</tr>
<tr>
<td>Effector T cell</td>
<td>CD8+, CD44+, CD62L+</td>
<td>20.3±1.5</td>
<td>37.5±2.1</td>
<td>20±0.8</td>
<td>36.5±0.9</td>
</tr>
<tr>
<td></td>
<td>CD4+, CD44+, CD62L+</td>
<td>38±1.7</td>
<td>45.9±4.2</td>
<td>39.2±2.2</td>
<td>43.4±1.3</td>
</tr>
<tr>
<td>Treg cell</td>
<td>CD3+, CD4+, CD25+, FoxP3+</td>
<td>2.78±1.2</td>
<td>34.6±7.3</td>
<td>2.02±0.04</td>
<td>42.6±5.8</td>
</tr>
</tbody>
</table>

Table S1: T cell analysis of spleen cells from *Itgax*-DTA-*Prf1/-/-* vs WT-*Prf1/-/-* mice fed NCD or HFD (Ave±SD; N≥5) (referring to figure 1). T cell subsets from spleen of *Itgax*-DTA-*Prf1/-/-* or WT-*Prf1/-/-* mice fed either NCD for 7 months, or HFD for 8 weeks were defined by various markers including CD3, CD8, CD4, CD44, CD62L, CD25 and Foxp3, and analyzed by FACS. T cell subsets from chimera were also stained for CD45.1 to identify cell origin from *Itgax* -DTA or littermate control hosts, versus CD45.2 expressed by *Prf1/-/-* donors.
Supplemental Experimental Procedures:

Diets. For excessive caloric intake experiments, mice were maintained on high-fat diet (HFD, D12492, 60 Kcal%fat, Research Diets), the control group was fed either a standard chow diet or low fat sucrose-matched diet (D12450J, 10 Kcal % fat, Research Diets).

Metabolic studies. Itgax-DTA-Prf1/- and WT-Prf1/- chimeric mice were weighed regularly. For glucose tolerance tests, fasted (16 h) mice were given 1 g glucose per kg body weight; for insulin tolerance test, 0.75 U per kg body weight human insulin was used (NovoNordisk, Denmark). Glucose, triglycerides, total cholesterol and high density lipoprotein (HDL) levels were measured in mouse serum by SpotChem EZ Chemistry Analyzer (Arkray, Japan). Serum cytokine concentrations were detected using ELISA kits (TNF-α, IL-6 and IL-1b from eBioscience, leptin from ENZO). Body composition analysis was performed using EchoMRI Analyzer (EchoMRI LLC, USA)

Cytofluorometric analysis. Flow cytometry was performed using a FACS-CantoII (BD Biosciences) and the analysis was done by FlowJo (Tree Star, Inc.) software. Single cell suspensions were stained with anti-CD8α, CD4, CD3, MHC-II (IA/IE), CD45, CD11c, CD11b, Ly6G, Gr-1, B220, CD19, F4/80, CD45.1, CD25, Foxp3, TNF-α, IL-17a, or IFN-γ conjugated to FITC, PE, PerCp, APC, APC-Cy7, PE-Cy7, Pacific Blue, or Brilliant Violet 711 (Biolegend).

Fat-associated SVF cell isolation. Anesthetized mice (Ketamine-Xylazine) were systemically perfused with PBS, VAT and inguinal SC pads were removed (avoiding lymph nodes), mashed into small pieces (~1-2 mm) and digested with collagenase II (Sigma, 1 mg/ml in DMEM for 20 min at 37 °C, with vigorous agitation). The digests were then pelleted and filtered through 100 µm filters. The cells were washed with PBS, incubated for 5 min in erythrocyte-lysing buffer (ACK), and finally resuspended in PBS supplemented with 2% FBS. The nonspecific staining was blocked by antibody against FC receptor (Biolegend), and then the isolated cells were labeled with either monoclonal antibody or isotype control antibody (Biolegend). 7AAD was used to exclude dead cells.

Histology and immunohistochemistry. Tissue samples from spinal cord were fixed in 4% PFA, processed and embedded in paraffin. Sections of 6 µm were stained with hematoxylin and eosin (H&E). Tissue samples from visceral adipose tissue were fixed in 4% PFA, processed and embedded in paraffin. Sections of 5 µm were stained with hematoxylin and eosin (H&E). Fat cell area on H&E stained slides was measured using Image J software, quantifying two different tissue sections per mouse (at least 3 mice with at least 100 fat cells in each image). In addition, sections were stained with MAC-2 antibody (Cedarlane); MAC-2 positive CLS per field were counted manually in a blinded manner and used as a measure of adipose tissue CLS content. For staining of perforin in Perf-DC, splenic DCs from WT and Prf1/- mice were isolated by two stage magnetic sorting (first negative depletion of CD3, Ter119, Gr-1, B220 positive cells and then positive selection of CD11c+ cells) and were spun onto glass slides and fixed with 4% PFA. The cells were then blocked first with 5% horse serum and 0.2% Triton for 5 min, and subsequently with 100% horse serum for 1 hour. Isotype blocking was done with rat IgG2a overnight in 25% horse serum and 0.1% Triton at 4°C
followed by secondary anti-RatCy2 or anti–Rat DyLight594 (Jackson) antibody to visualize the non-specific binding. Specific rat anti–perforin Ab (Clone CB5.4, Abcam) was applied overnight in 25% horse serum and 0.1% Triton at 4°C followed by secondary anti-rat DyLight 594 or anti-rat AMCA(Jackson) antibody. The nuclei were stained with Hoechst blue or yellow stain. Cytotoxic T-lymphocytes (CTL) from C57BL/6 WT and Prf1/-/- were prepared as described4 and used as positive and negative controls, respectively, for perforin staining. 14 perforin positive cells from total of 375 DCs were counted in 6 fields of WT sample, 11 out of 431 cells in 6 fields of WT- Prf1/-/- and 1 out of 1053 in 5 fields of Itgax-DTA-Prf1/--. The calculation was done using ImageJ software.

For CD4 and CD8 staining anti-mouse CD4-FITC (clone GK1.5) and anti-mouse CD8-FITC (53-6.7) were used (Biolegend).

Depletion of CD4 and CD8 T cell populations. Anti-CD4 (hybridoma GK1.5) or CD8 (hybridoma 53-6.72) (BioXcell) depleting antibodies were given IP weekly at a dose of 3µg/gram body weight to chimeric mice starting 4 months post-transplant before the appearance of metabolic syndrome symptoms. The control mice received weekly IP injections of PBS.

cDNA Library Preparation for TCRβ Sequencing. Total RNA was extracted from spleen, visceral adipose tissue and subcutaneous adipose tissue of Itgax-DTA- Prf1/-/- and WT- Prf1/-/- mice. RNA was extracted using an RNeasy Mini Kit (Qiagen) and reverse-transcribed with SuperScript II reverse transcriptase (Invitrogen) using a primer specific for the TCRβ constant region linked to the Solexa 3’ adapter (Cβ-3’adp). cDNA was then used as a template for high fidelity PCR amplification (Phusion; Finnzymes) using a pool of 23 Vβ-specific primers, divided into five primer groups, to minimize potential for cross-hybridization. Each Vβ primer was linked to a restriction-site sequence for the ACUI restriction enzyme (New England BioLabs). PCR reactions were performed in duplicate, and PCR products were then pooled and cleaned using the QIAquick PCR Purification Kit (Qiagen), followed by enzymatic digestion, in accordance with the ACUI protocol (New England BioLabs). The ACUI enzyme was used to cleave the 14 bp downstream of its binding site, enabling positioning of the Illumina sequencing primer in close proximity to the junction region and ensuring sequencing of the entire variable CDR3 region. Digestion produced a 2-bp overhang for the ligation of the Illumina 5’ adapter, which was linked to a 3-bp barcode sequence at its 3’ end. Overnight ligation was performed using T4 ligase (Fermentas) at 16°C in accordance with the manufacturer’s protocol. A second round of PCR amplification was performed (24 cycles), using primers for the 5’ and 3’ Illumina adapters. Final PCR products were run on an agarose gel (2%), and purified using the Wizard SV Gel and PCR Clean-Up System (Promega). Final library concentrations were measured using a NanoDrop spectrophotometer. The libraries were sequenced using an Illumina Genome Analyzer II.

Computational Analysis of TCRβ Sequencing Data. For preprocessing of the data, we used the Smith–Waterman alignment algorithm (1) to assign to each sequencing read its variable (Vβ) and joining (Jβ) gene, using germ-line Vβ/Jβ gene segment sequences downloaded from the IMGT database (2). Reads that were not assigned to either a Vβ or Jβ, and other erroneous reads were discarded. We then clustered the library-derived reads using a version of the quality threshold clustering algorithm (3) to correct for nucleotide
copying errors (up to two errors for each read). The clustering procedure identified unique CDR3β clonotypes, defined as the most prevalent read found in each cluster. The clonotype sequences were then translated, and those clonotypes that lacked a stop codon in-frame with the V/D/J sequences were considered for further analysis. This analysis computed statistics of V/D/J use, statistical properties of the number of deletions and insertions of nucleotides at both VD and DJ junctions, as well as distributions of CDR3 lengths. The analysis was done using the R statistical software package (R Development Core Team; www.r-project.org). Frequencies of Vβ and Jβ segment use were measured for all samples in each treatment group. Correlation coefficients were calculated, based on the sample mean of combined Vβ and Jβ use in each group, using MATLAB (Mathworks). Hierarchical clustering was performed, based on combined Vβ and Jβ use, in all groups (clustergram; MATLAB).

RNA Extraction and Quantitative RT-PCR for AT. Total RNA from fat pads was extracted with the RNeasy lipid tissue mini kit (Qiagen, Germantown, MD) and analyzed with Nanodrop©. RNA (100 ng) was reverse-transcribed with qScript cDNA Synthesis Kit (Quanta Biosciences). SYBR Green system (Roche) was used for real-time PCR amplification. Data were normalized based on TBP expression as housekeeping gene, using appropriate primers (see Table S2).

EAE induction and evaluation. Chronic EAE was induced in C57BL/6 chimeric mice by injecting a peptide consisting of amino acids 35–55 of myelin oligodendrocyte glycoprotein (MOG), synthesis by Genscript (Piscataway, NJ, USA). Mice were injected subcutaneously at the flank, with 200 μl emulsion containing 200μg of the encephalitogenic peptide in incomplete Freund's adjuvant enriched with 5 mg/ml heat-inactivated Mycobacterium tuberculosis (Sigma, St. Louis, MO, USA). Mice were examined daily. EAE was scored as follows: 0—no disease, 1—limp tail, 2—hind limb paralysis, 3—paralysis of all limbs, 4—moribund condition, and 5—death.

CFSE proliferation assay of CD4 and CD8 T cells. Isolated lymph node cells from chimeric mice 14 or 30 days after EAE induction were isolated and stained with 5μM CFSE (CellTrace CFSE Cell Proliferation Kit, Invitrogen) for 15 min. After staining, 0.5 x 10^6 cells were incubated in full RPMI medium supplemented with 10% FCS for 4 days in the presence of either MOG, PPD (adjuvant related peptide) or MBP (unrelated encephalitogenic peptide) peptides. The cells were then harvested and analyzed by flow cytometry for CFSE staining in conjunction with either CD4 or CD8 staining to examine the proliferation status based on CFSE dilution.

Statistical analysis. The results are expressed as means ± SD or S.E.M, as indicated in each figure legend. The statistical significance of differences between two groups was determined using Student’s t-tests; values of p < 0.05 were considered significant.
Table S2: Primers used for RT-PCR

<table>
<thead>
<tr>
<th>Reference Gene</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBP</td>
<td>CACGGACAACCTGCGTTGA</td>
<td>CTAGTCTGGATTTTACGGT</td>
</tr>
<tr>
<td>mL32</td>
<td>TTAAGCGAAACTGCGGAAAC</td>
<td>TTGGTGCTCCCATAACCGAT</td>
</tr>
</tbody>
</table>

Detected Genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccl2 (MCP1)</td>
<td>TTAAGGATCTGGATTTACGGT</td>
<td>GCAAAACCTGCGTTGA</td>
</tr>
<tr>
<td>ccl8 (MCP2)</td>
<td>TCTACGCAGTCAGTTTNGC</td>
<td>GCAAAACCTGCGTTGA</td>
</tr>
<tr>
<td>ccl5 (RANTES)</td>
<td>GCTGCTTTTCGCTTCCTCC</td>
<td>CCAAGTGTGAGCTACGGT</td>
</tr>
<tr>
<td>cxcl10</td>
<td>GGGCCACGTATATTTCGGAAGC</td>
<td>GGGCCGTAGTTTACGCT</td>
</tr>
<tr>
<td>cxcl13</td>
<td>GGGCCGTAACCTCGCATCTCA</td>
<td>GGGCCGTAACCTCGCATCTCA</td>
</tr>
<tr>
<td>Nos2</td>
<td>GTTCTCAGCCCAACAATAAGA</td>
<td>GTTCTCAGCCCAACAATAAGA</td>
</tr>
<tr>
<td>mgl1</td>
<td>GCTGACAGCTGGAGGATATTCC</td>
<td>TCCCTCTTCCTCCACTGTC</td>
</tr>
<tr>
<td>mgl2</td>
<td>AGGGTCAGACAGTGGAGGATATTCC</td>
<td>TCCCTCTTCCTCCACTGTC</td>
</tr>
<tr>
<td>retnla (Fizz1)</td>
<td>CCCTTTCAGCTGTAGGAATGTA</td>
<td>GCTGGAACGGCCCTTACCGCAT</td>
</tr>
<tr>
<td>Prf1</td>
<td>GCGTCTCCAGTGAAATAACAG</td>
<td>TACTTCAGGTCGTACG</td>
</tr>
<tr>
<td>Cd206</td>
<td>CAAGGAAGGTTGAGGATATTCC</td>
<td>CTTTCAGTTCCTTTCAGG</td>
</tr>
<tr>
<td>GzmA</td>
<td>TGCTGCCCAGTGAAACATG</td>
<td>GGTAGGTGAAGGATAGC</td>
</tr>
</tbody>
</table>

Supplemental references

