Cell Stem Cell

Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance

Graphical Abstract

Highlights

- Light and dark onset induce BM NE and TNF bursts, which transiently upregulate ROS in HSPCs
- NE and TNF ROS bursts induce functionally distinct 11 a.m. and 11 p.m. HSPC peaks
- 11 a.m. peaks of NE induce vascular permeability and HSPC differentiation and egress
- 11 p.m. peaks of melatonin increase CD150+ expression and HSC retention and self-renewal

Authors
Karin Golan, Anju Kumari, Orit Kollet, ..., John E. Dick, Regina P. Markus, Tsvee Lapidot

Correspondence
tsvee.lapidot@weizmann.ac.il

In Brief
Golan et al. report that daily onsets of light and dark induce NE and TNF bursts that induce two different peaks of BM HSPC activity. Light-induced NE promotes HSPC differentiation and egress, replenishing mature blood cells. Dark-induced TNF promotes melatonin-dependent renewal of CD150+ HSCs and their long-term repopulation potential.

Golan et al., 2018, Cell Stem Cell 23, 1–14
October 4, 2018 © 2018 Elsevier Inc.
https://doi.org/10.1016/j.stem.2018.08.002
Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance

1Immunology Department, Weizmann Institute of Science, Rehovot, Israel
2Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel
3Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
4Biological Regulation Department, Weizmann Institute of Science, Rehovot, Israel
5Physiology Department, University of São Paulo, São Paulo, Brazil
6Physiology Department, Pomeranian Medical University, Szczecin, Poland
7Forensic Medicine Department, Pomeranian Medical University, Szczecin, Poland
8Haematology Department, University of Cambridge, Cambridge, UK
9Oncology Research Unit, Oncology Hospital, National Medical Center Century XXI, IMSS, Mexico City, Mexico
10Regenerative Medicine Department, University of Warsaw, Warsaw, Poland
11State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
12Stem Cell Institute, University of Louisville, Louisville, KY, USA
13Lead Contact
*Correspondence: tsvee.lapidot@weizmann.ac.il

https://doi.org/10.1016/j.stem.2018.08.002

SUMMARY

Hematopoietic stem and progenitor cells (HSPCs) tightly couple maintenance of the bone marrow (BM) reservoir, including undifferentiated long-term repopulating hematopoietic stem cells (LT-HSCs), with intensive daily production of mature leukocytes and blood replenishment. We found two daily peaks of BM HSPC activity that are initiated by onset of light and darkness providing this coupling. Both peaks follow transient elevation of BM norepinephrine and TNF secretion, which temporarily increase HSPC reactive oxygen species (ROS) levels. Light-induced norepinephrine and TNF secretion augments HSPC differentiation and increases vascular permeability to replenish the blood. In contrast, darkness-induced TNF increases melatonin secretion to drive renewal of HSPCs and LT-HSC potential through modulating surface CD150 and c-Kit expression, increasing COX-2/αSMA+ macrophages, diminishing vascular permeability, and reducing HSPC ROS levels. These findings reveal that light- and darkness-induced daily bursts of norepinephrine, TNF, and melatonin within the BM are essential for synchronized mature blood cell production and HSPC pool repopulation.

INTRODUCTION

Bone marrow (BM)-resident hematopoietic stem and progenitor cells (HSPCs) intensively produce and replenish the blood daily with new mature blood and immune cells with a finite lifespan while preserving the pool of undifferentiated stem cells, including long-term repopulating hematopoietic stem cells (LT-HSCs). Shifting between these dual HSPC functions is regulated by signals originating from various cell types residing in the BM microenvironment and by external light and dark cycles (Mendelson and Frenette, 2014; Yu and Scadden, 2016). These signals activate HSPCs, regulating their metabolism and function. Increased reactive oxygen species (ROS) are major regulators of HSPC migration and development (Ludin et al., 2012, 2014). Light and dark cycles are translated by neural and hormonal cues, including sympathetic output and melatonin, and are implicated in bone turnover (Fu et al., 2005; Simmons and Nichols, 1966), host immunity and inflammation (Curtis et al., 2014; Man et al., 2016; Borniger et al., 2017), and neutrophil clearance (Casanova-Acebes et al., 2013).

HSPC egress from the BM to the blood is regulated by elevated morning norepinephrine (NE) release by the nervous system in response to daylight and reduced BM CXCL12 levels (Lucas et al., 2008; Méndez-Ferrer et al., 2008). HSPC egress is also regulated daily by corticosterone (Kollet et al., 2013) and complement activation (Borkowska et al., 2016). The balance between BM CXCL12 and blood sphingosine 1-phosphate (S1P) dynamically regulates HSPC
recruitment to the circulation versus their BM retention (Golan et al., 2013).

Tumor necrosis factor (TNF) is a major inflammatory cytokine that is mostly secreted by activated leukocytes in a daily rhythm manner (Arjona and Sarkar, 2005; Bissonnette et al., 1995). TNF also regulates HSPCs, which functionally express its receptors (Dybedal et al., 2001; Pronk et al., 2011; Rezzoug et al., 2008). The darkness hormone melatonin is synthesized by the pineal gland and by BM cells (Conti et al., 2000; Mias et al., 2008; Tan et al., 1999), exerting anti-oxidative and immunomodulatory functions (Carrillo-Vico et al., 2013).

To reveal how the BM HSPC reservoir is maintained, we examined the kinetics of daily light and dark cues and revealed the major players involved. We identified two major daily BM HSPC peaks (morning and night) with different functions. The morning peak increased HSPC proliferation, differentiation, egress, and blood replenishment, whereas the night peak mediated HSPC maintenance and replenishment of the BM stem cell pool.

RESULTS

Light- and Dark-Mediated BM HSPC Proliferation Peaks Are Driven by TNF and ROS Elevations

To understand how the daily 11 a.m. HSPC release peak (Méndez-Ferrer et al., 2008) leads to BM stem cell reservoir replenishment, we measured BM HSPC levels along 24 hr (Figure 1A). We

Figure 1. Light and Darkness Cues Induce Two Peaks of BM HSPC Proliferation via TNF and ROS Production
(A) Illustration of the daylight and darkness zeitgeber time and its equivalent hours of the day.
(B) BM CFU-C at different time points of the day (n = 8).
(C) Percentage of quiescent G0 stage BM CD34- LSK cells (n = 5).
(D) Numbers of BM CD34- LSK cells per femur (n = 8).
(E and F) Representative fluorescence-activated cell sorting (FACS) analysis of ROShigh within CD34- LSK cells (E) and summarized data (F, n = 7) of the percentage of ROShigh CD34- LSK cells in the BM. Shown is one representative experiment out of four.
(G and H) Schematic illustrations of the NAC administration protocol (G). Also shown are the numbers of BM CD34- LSK cells per femur in control and NAC-treated mice in the morning (H, n = 4) and at night (H, n = 4).
(I and J) FACS analysis (I) of BM ROShigh CD34- LSK cells and the summarized data (J, n = 4) 4 hr following TNF administration.
(K) BM TNF levels at different time points of the day (n = 6).
Error bars, mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; Student’s two-tailed unpaired t test (B–D, F, H, and K).
identified two major BM HSPC peaks, at 11 a.m. and 11 p.m., preceded by reduced levels at 7 a.m. and 7 p.m. (Figure 1B), accompanied by lower levels of quiescent \(G_0\) HSPCs, implicating cell proliferation (Figure 1C). Examination of primitive BM CD34$^+$ Lin$^-$Sca$^-$c-KIt$^+$ (LSK) HSPCs at 4-hr intervals confirmed similar daily waves (Figure 1D). Because activated HSPCs have a higher ROS content than quiescent HSPCs (Itkin et al., 2016; Ludin et al., 2014; Takizawa et al., 2017), we traced HSPCs have a higher ROS content than quiescent HSPCs (Itkin et al., 2016; Ludin et al., 2014; Takizawa et al., 2017), we traced ROS elevation promotes their proliferation, inducing small HSPC subsets to cycle at 11 a.m. and 11 p.m. Mouse treatment with a ROS scavenger, N-acetyl cysteine (NAC), following initiation or termination of light led to reduced BM CD34$^+$ LSK cell levels (Figures 1G and 1H). We looked for factors that may elevate ROS levels. BM-resident HSPCs are regulated by inflammatory cytokines activating stress signals (Schuettpelz and Link, 2013; Trumpp et al., 2010), among them TNF, which is also implicated in their activation (Cabezas-Wallscheid et al., 2017). Mice treated with TNF to activate their HSPCs had elevated levels of ROS$^{NO}\$CD34$^+$ LSK cells in the BM 4 hr later (Figures 1I and 1J). Tracking BM TNF levels revealed two daily peaks, a higher one at 7 a.m. and a modest one at 7 p.m. (Figure 1K), suggesting light- and dark-induced TACE involvement in BM HSPC regulation.

TNF Bursts Are Essential for BM HSPC Peaks

We tested the levels of the TNF-converting enzyme (TACE), which cleaves TNF from the plasma membrane of cells to its active form (Black et al., 1997). TACE levels fluctuated both on BM HSPCs (Figure 2A) and on monocytes (Figure S1A). We found two peaks of TACE elevations specific for HSPC, corresponding to the 7 a.m. and 7 p.m. BM TNF peaks. Next we administered a TACE inhibitor (Sagi et al., 2015) to mice after initiation or termination of light and found reduced BM HSPC peaks (Figures 2B and 2C). We further utilized a genetic model of TNF knockout (KO) mice and also treated wild-type (WT) mice with a TNF antagonist. No oscillations were observed in BM colony forming unit cells (CFU-C) of TNF KO mice compared with WT mice (Figure 2D). Moreover, both peaks of BM HSPC documented in WT mice at 11 a.m. and 11 p.m. were decreased in these mice (Figures 2E–2H). Antagonizing TNF during the morning revealed higher levels of BM HSPCs in their quiescent phase of the cell cycle at 11 a.m. (Figure S1B). Interestingly, TNF deficiency also prevented the daily ROS peaks in BM HSPCs (Figure 2I), suggesting that TNF bursts are crucial for HSPC ROS oscillations. We established chimeric mice with WT hematopoietic cells transplanted into TNF KO mice and vice versa and found that the hematopoietic but not stromal compartment is responsible for TNF secretion and HSPC ROS regulation at 7 a.m. (Figures 2J and 2K). TNF activates nuclear factor \(\kappa\)B (NF-\(\kappa\)B) signaling cascades (Morgan and Liu, 2011), which regulate HSPCs: in particular, p65 (canonical pathway) is essential for HSC function (Stein and Baldwin, 2013), whereas RelB (non-canonical pathway) regulates HSC development (Zhao et al., 2012). We found higher levels of phosphorylated p65 and RelB molecules in HSPCs at 7 a.m. compared with 7 p.m. (Figures 2L and 2M). Utilizing TNF KO mice or TNF antagonist treatment led to reduced p65 and RelB phosphorylation at 7 a.m. and 7 p.m. in BM HSPCs (Figures 2L and 2M). Altogether, this suggests that TNF signaling is important for the two major BM HSPC peaks.

Light and Darkness Onset Induce Transient TNF Bursts via NE Upregulation

To determine whether light and dark signals modulate TNF levels, we scored cytokine concentration. Profound transient changes in TNF levels were observed 1 hr after transferring mice from light to darkness in both BM and plasma, which were back to basal levels following 2 hr (Figures 3A and S1C). A similar trend was documented upon transferring mice from darkness to light (Figures 3B and S1D). Because NE signaling regulates BM HSC egress at 11 a.m. (Méndez-Ferrer et al., 2008), we monitored its levels and found that BM NE peaked at 7 a.m. and, to a lower extent, at 7 p.m., similar to the TNF bursts (Figures 3C and S1E). Blockage of \(\beta_2\)- or \(\beta_3\)-adrenomceptors (\(\beta_2\)ARs or \(\beta_3\)ARs) following light initiation showed that a \(\beta_2\)AR but not \(\beta_3\)AR antagonist TACE levels on BM HSPCs and monocytes, decreasing TNF levels at 7 a.m. (Figures 3D–3G and S1F). Accordingly, mice deficient in \(\beta_2\)AR (\(\beta_2\)AR\$^{−/−}\$) or both \(\beta_2\)AR and \(\beta_3\)AR (\(\beta_2\)AR\$^{−/−}/\beta_3\)AR\$^{−/−}\$), but not \(\beta_3\)AR only, had reduced BM TNF levels at 7 a.m. (Figure 3H). Moreover, inhibition of \(\beta_2\)AR reduced TACE levels on BM HSPCs and monocytes and also decreased TNF levels at 7 p.m. (Figures 3I–3L). Both NE and TNF induce ROS elevation in cells. Therefore, we treated mice with NAC to scavenge ROS following initiation or termination of light and found reduced TACE levels on BM HSPCs and monocytes as well as decreased BM TNF levels at 7 a.m. and 7 p.m. (Figures 3D–3G and 3I–3L). Further studying the cross-talk between NE and TNF revealed higher basal NE levels in TNF KO mice and WT mice treated with the TNF antagonist (Figure S1G), suggesting a negative feedback loop. We administered NE at an HSPC-mobilizing dose (Dar et al., 2011) and found that TNF KO mice were unable to mobilize HSPCs (Figure S1I) despite high sensitivity to PBS injections, which elevated circulating white blood cells (WBCs) (Figure S1H). These results suggest that, upon light induction or termination, stress reactions activate the sympathetic nervous system to increase TACE on BM HSPCs and monocytes via NE and \(\beta_2\)AR, leading to BM TNF elevations, which induce both HSPC peaks.

The Morning HSPC Peak Regulates Differentiation and Egress, whereas the Night Peak Regulates Retention

To learn the two HSPC peaks function, we examined the short- and long-term (LT) HSPC repopulation potential. BM cells harvested at 11 a.m. and 11 p.m. were transplanted in competitive repopulation assays (Figure 4A). Despite high BM HSPC content at 11 a.m. (Figures 1B and 1D), these cells had inferior short- and long-term repopulation activity compared with 11 p.m. BM HSPCs (Figures 4B and 4C). Importantly primitive BM CD150$^+$ CD34$^+$ LSK LT-HSCs peaked only at 11 p.m. (Figures 4D, 4E, and S2A), accompanied by reduced c-Kit expression (Figure S2B), which is associated with increased HSC serial repopulation potential (Grinenko et al., 2014). These results reveal that the two major HSPC peaks are phenotypically and functionally different.
Figure 2. TNF Is Essential for HSPC BM Peak Induction
(A) BM TACE level of expression in CD34^L LSK cells (n = 5).
(B and C) Schematic illustrations of the TACE inhibitor administration protocol (B) and numbers of BM CD34^L LSK cells per femur in control and TACE inhibitor-treated mice in the morning (C, n = 4) and at night (C, n = 4).
(D) Number of BM CFU-C of WT (n = 6) and TNF KO (n = 5) mice.
(E–H) Schematic illustrations of the TNF antagonist administration protocol in the morning (E) or at night (G) and numbers of BM CD34^L LSK cells per femur in control and TNF KO mice and TNF antagonist-treated mice in the morning (F, n = 5) and at night (H, n = 6).
(I) Percentage of ROShigh CD34^L LSK cells in the BM (n = 4) of WT into TNF KO or TNF KO into WT chimeric mice and compared with WT and TNF KO mice.
(J) TNF levels in the BM (n = 4) of chimeric mice: WT into TNF KO or TNF KO into WT compared with BM TNF levels of WT and TNF KO mice.
(K) Percentage of ROS^{hi}CD34^LLSK cells in the BM (n = 4) of WT into TNF KO or TNF KO into WT compared with WT and TNF KO mice.
(L and M) Percentage of phosphorylated p65 (L, n = 4) or RelB (M, n = 4) in BM CD34^L LSK cells at 7 a.m. and 7 p.m. in control and TNF KO mice (at 7 a.m. only) and in mice treated with the TNF antagonist.
Error bars, mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; one-way ANOVA with Tukey’s post hoc test. See also Figure S1.

Because LT-HSC fluctuations cannot be explained by the limited proliferation of CD34^L LSK cells, we tested whether light and dark cues change their phenotype and function by dynamic changes in cell surface antigen expression. We found augmented CD150^{hi} levels of expression on CD34^L LSK cells at 11 p.m. compared with 11 a.m. (Figure S2C). Next, we prevented light induction at 6 a.m., keeping mice under extended dark conditions up to 11 a.m., which maintained higher
CD150⁺CD34⁻/LSK LT-HSC levels at 11 a.m. (Figures 4F and S2D) and increased CD150⁺ levels of expression on CD34⁻/LSK cells (Figure S2E). We also tested whether the 11 p.m. peak of LT-HSC depends on TNF by applying a TNF antagonist following light termination and found reduced CD150⁺CD34⁻/LSK LT-HSC levels at 11 p.m. (Figures 4G and S2F). At 11 a.m., we documented higher levels of common myeloid progenitors (CMPs), common lymphoid progenitors
Figure 4. The Daylight Peak Involves Increased Egress and Differentiation, whereas the Night Peak Consists of Retention and Reduced Differentiation

(A) Schematic illustration of BM competitive transplantation.
(B and C) Short-term (B, n = 6, 4 weeks) and LT (C, n = 5, 16 weeks) repopulation ability of WT BM cells.
(D and E) FACS representative plots (D) and data summary (E, n = 5) of the number of BM CD150⁺CD34⁻ LSK cells per femur.
(F) Numbers of BM CD150⁻CD34⁻ LSK cells per femur at 11 a.m. in mice exposed to extended darkness (n = 5).
(G) Numbers of BM CD150⁻CD34⁻ LSK cells per femur at 11 p.m. in mice treated with the TNF antagonist (n = 4).
(H) FACS analysis strategy for BM common myeloid progenitor (CMP) and common lymphoid progenitor (CLP) cells.
(I and J) Numbers of BM CMP cells (I, n = 7) or CLP cells (J, n = 8) per femur.
(K–M) Numbers of BM neutrophils (K, n = 9), monocytes (L, n = 6), and lymphoid (M, n = 6) cells per femur.
(N and O) FACS representative plots (N) and the numbers of circulating LSK cells per milliliter of blood (O, n = 8).
(P) Levels of BM Evans Blue dye absorbance per femur at 620 nm in mice (n = 4).

Error bars, mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; Student’s two-tailed unpaired t test (B, C, F, G, and P) and one-way ANOVA with Tukey’s post hoc test (E, I–M, and O). See also Figure S2.
Figure 5. Elevated Morning NE Further Increases ROS Levels and Vascular Permeability, Leading to HSPC Egress and Differentiation

(A) Schematic illustration of the β3AR antagonist administration protocol.

(B–E) Number of BM CMP (B, n = 6) or CLP (C, n = 6) cells per femur, Evans Blue dye absorbance per femur at 620 nm (D, n = 4), and circulating LSK cells per milliliter of blood (E, n = 8) following β3AR antagonist administration.

(F) LT (n = 5, 16 weeks) repopulation ability of BM cells from mice treated with the β3AR antagonist, harvested at 11 a.m. and transplanted into WT recipient mice.

(G) Numbers of BM CD150+CD34−/CD0 LSK cells per femur at 11 a.m. in mice treated with the β3AR antagonist (n = 4).

(H) Schematic illustrations of the TNF antagonist administration protocol.

(I–K) Number of BM CMP (I, n = 4) or CLP (J, n = 6) cells per femur and circulating LSK cells per milliliter of blood (K, n = 5) in WT and TNF KO mice and TNF antagonist-treated mice.

(L–N) Schematic illustration of a single NE injection protocol (L), FACS analysis (M) of BM ROShigh CD34−/CD0 LSK cells, and the summarized data (N, n = 4) following 1-hr NE administration.

(legend continued on next page)
(CLPs), neutrophils, monocytes, and lymphocytes. In contrast, at 11 p.m., we found no elevations in these immature and mature populations (Figures 4H–4M, respectively). Because HSPC differentiation and egress are linked to ROS elevation (Golan et al., 2012; Ludin et al., 2014; Suda et al., 2011), we measured the levels of circulating HSPCs, which indicate their egress from the BM. Egress was high during the morning HSPC peak (11 a.m.) and low at night (Figures 4N and 4O), corroborating previous reports (Méndez-Ferrer et al., 2008). Moreover, mature leukocyte egress was also increased during the morning HSPC peak (Figures S2G and S2H). More permeable BM sinusoidal blood vessels are the major site for HSPC trafficking from and to the BM (Itkin et al., 2016). We measured BM vascular permeability and found higher permeability at 11 a.m., in line with the extended cell egress (Figure 4P). Another regulator of lymphocyte and HSPC egress and mobilization is the bio-active lipid S1P (Pappu et al., 2007; Golan et al., 2012; Juarez et al., 2012; Ratajczak et al., 2010). Measuring S1P levels in the plasma revealed higher levels of S1P during the morning compared with night (Figure S2I). In accordance, higher S1P levels at night were measured in the BM (Figure S2J), further suggesting BM HSPC retention. In summary, during the 11 a.m. peak, HSPCs are primed to a state of high differentiation and egress, imposing a lower repopulation potential. In contrast, during the 11 p.m. peak, HSPCs are primed to a state of retention with low differentiation and high BM reservoir replenishment, including LT-HSCs, imposing a high repopulation potential.

Elevated Morning BM NE Levels Facilitate Vascular Permeability, HSPC Differentiation, and Egress

HSPC egress and trafficking are regulated by NE (Méndez-Ferrer et al., 2008; Scheiermann et al., 2012; Spiegel et al., 2007). Blockage of the β3AR (Figure 5A) reduced HSPC CMP and CLP differentiation (Figures 5B and 5C) and mature Mac-1+ neutrophils and monocytes (Figures S3A–S3C). In line with this, the β3AR antagonist also reduced BM vascular permeability (Figure 5D), decreasing HSPC (Figures 5E and S3D) and mature leukocyte egress at 11 a.m. (Figures S3E and S3F). Administration of the β3AR antagonist following light initiation increased the HSPC repopulation potential (Figures 5F and S3G) and elevated CD150+/CD43– LSK levels (Figure 5G). Next we tested CMP and CLP levels and HSPC egress at 11 a.m. in NE KO and WT mice treated with the TNF antagonist. Both mouse models had reduced BM CMP and CLP levels and decreased HSPC egress to the circulation (Figures 5H–5K and S3H, respectively). When we treated mice with NE at light termination (Figure 5L), it induced ROS elevation (Figures 5M, 5N, and S3I). Moreover, NE injection (Figure 5O) enhanced the levels of BM CMPs (Figures 5P and S3J) and CLPs (Figures 5Q and S3K), BM vascular permeability (Figures 5R and S3L), and HSPC egress to the circulation (Figures 5S, S3M, and S3N). These results reveal that light-induced NE elevation in the BM leads to increased TACE expression, TNF shedding via the β2AR on BM leukocytes, induction of HSPC differentiation and egress and increased BM vascular permeability via the β3AR.

Melatonin Retains Undifferentiated HSPCs in the BM during the Night Peak

Melatonin is present in the BM and is also produced by BM cells (Carrillo-Vico et al., 2013; Conti et al., 2000; Tan et al., 1999). By measuring melatonin levels in plasma and BM fluids, we found the highest levels at night (11 p.m.) (Figures 6A and 6B). TNF inhibits melatonin production in the pineal gland (Fernandes et al., 2006) but induces its production by macrophages (Muxel et al., 2012). Interestingly, TNF KO mice or mice treated with its antagonist had lower BM melatonin levels at 11 p.m. (Figure 6C). Injection of the melatonin antagonist luzindole (Figure 6D) at night induced HSPC differentiation (Figures 6E and 6F and S4A and S4B) and increased BM vascular permeability (Figure 6G) and HSPC egress to the circulation (Figures 6H and S4C). Similarly, luzindole induced the release of neutrophils and monocytes (Figures S4D and S4E). Melatonin injection in the morning (Figure 6I) reduced ROS levels in BM CD34+ LSK cells (Figures 6J and 6K) and their CMP and CLP differentiation (Figures 6L and 6M). Melatonin administration also reduced BM vascular permeability (Figure 6N) and HSPC egress to the circulation (Figures 6O and S4F) at 11 a.m. Because we found elevated LT-HSC function during nocturnal melatonin secretion (Figure 4C), we added a signaling lymphocyte activation molecule (SLAM) cell marker and examined whether a more primitive phenotype of Flt3+ CD34+ SLAM/LSK is also elevated at night. Indeed, we saw increased BM Flt3+ CD34+ SLAM/LSK levels at 11 p.m. compared with 11 a.m. (Figures 6P, S4G, and S4H). Importantly, melatonin administration at 6 a.m. also augmented Flt3+ CD34+ SLAM/LSK levels (Figures 6Q and S4I), including elevated CD150+/CD43– surface expression at 11 a.m. (Figure S4J) and increased competitive short-term repopulation (Figures 6R). Preliminary results reveal that in vivo administration of melatonin following light initiation upregulated human LT-HSCs and, to a lower extent, ST-HSC phenotypes but not the more differentiated myeloid lymphoid progenitor (MLP) (Figures S4K–S4M) in human stem cell-engrafted immune-deficient chimeric mice. These results reveal similar trends for mice and humans with regards to melatonin regulation of HSPCs. Of note, C57BL/6 mice have lower melatonin production by the pineal gland but high melatonin levels in the BM (Conti et al., 2000). To exclude strain-specific phenotypes, we tested C3H/HeN mice with normal melatonin levels and documented similar patterns of HSPC ROS levels and BM HSPC peaks, with elevated LT-HSC levels at 11 p.m. with increased differentiation and egress at 11 a.m. (Figures S5A–S5G). Both MT1 and MT2 melatonin receptors are expressed on BM CD34+ LSK HSPCs (Figure 6S). Upon binding of melatonin to its receptors, several molecular pathways can be activated or repressed, among them Akt (Blask et al., 2014). We treated BM cells in vitro with melatonin for
Figure 6. During the Night, Augmented Melatonin Levels Maintain HSPCs Undifferentiated and Retained in the BM
(A and B) Melatonin levels in the plasma (A, n = 7) and BM (B, n = 4) at different time points of the day.
(C) Melatonin levels in the BM (n = 6) at 11 p.m. in TNF KO mice and WT mice treated with the TNF antagonist.
(D–H) Schematic illustration of melatonin inhibitor (luzindole) administration protocol (D), numbers of BM CMP (E, n = 5) or CLP (F, n = 4) cells per femur, Evans Blue dye absorbance per femur at 620 nm (G, n = 5), and circulating LSK cells per milliliter of blood (H, n = 5) following luzindole administration.
(I–O) Schematic illustration of the melatonin administration protocol (I), FACS analysis (J) of BM ROShigh CD34- LSK cells and the summarized data (K, n = 5) following melatonin administration, number of BM CMP (L, n = 4) or CLP (M, n = 4) cells per femur, Evans Blue dye absorbance per femur at 620 nm (N, n = 4), and circulating LSK cells per milliliter of blood (O, n = 5) in melatonin-treated mice in the morning.
(P) Numbers of BM FLt3-CD34+ SLAM/LSK cells per femur at 11 a.m. and 11 p.m. (n = 4).
(Q) Numbers of BM FLt3-CD34+ SLAM/LSK cells per femur at 11 a.m. in mice treated with melatonin versus control vehicle-treated mice (n = 5).
(R) Short-term (n = 6 for PBS [x = full dose], n = 7 for melatonin [x = full dose], n = 5 for melatonin [1/2x = half dose], 4 weeks) repopulation ability of WT BM cells from control mice and mice treated with melatonin in the morning as in the schematic illustration (I).
(S) FACS representative plots of the levels of MT1 and MT2 melatonin receptors in BM CD34+ /LSK cells at 7 p.m.

(legend continued on next page)
10 min and found reduced Akt phosphorylation (Figure 6T). Because Akt activation increases HSPC ROS levels (Ludin et al., 2012), we treated Lin− enriched HSPCs with melatonin and found reduced ROS levels in BM HSPCs (Figure 6U). These results suggest that melatonin can directly regulate BM HSPC retention in a low metabolic state during the night peak.

Melatonin Elevates BM COX-2/αSMA Macrophages

Rare COX-2/α smooth muscle actin (αSMA) macrophages preserve BM HSPCs by reducing their ROS levels (Ludin et al., 2012). We detected the highest levels of BM αSMA macrophages at 11 p.m. (Figures 7A and S5G). Importantly, their COX-2 expression was even enhanced (Figure 7B), revealing their activated state. These cells express MT1 and MT2 melatonin receptors (Figures 7C, S6A, and S6B). Enforced morning melatonin elevation (Figure 7D) upregulated BM αSMA macrophage levels (Figure 7E). Interestingly, melatonin reduced the αSMA macrophage G0 phase of the cell cycle (Figure 7F) and increased their ROS levels (Figure 7G). Moreover, melatonin also decreased αSMA macrophage egress to the circulation (Figure S6C). Accordingly, melatonin receptors inhibition by luzindole (Figure 7H) reduced BM αSMA macrophage levels at 11 p.m. (Figure 7I), increased their G0 cell cycle phase (Figure 7J), and reduced their ROS levels (Figure 7K). Melatonin treatment did not increase COX-2 expression (Figure S6D). Because S1P increases COX-2 expression in smooth muscle cells (Hsieh et al., 2006), and BM S1P levels increase during the night (Figure S2H), our data suggest that the augmented S1P levels in the BM induce nocturnal COX-2 elevation. Next we inhibited COX-2 activity in mice by using a specific inhibitor at night to abolish the regulatory effect of this enzyme (Figure 7L), which did not reduce the population of BM COX-2/αSMA macrophages (Figure S6E). This treatment enhanced HSPC CMP and CLP differentiation (Figures 7M and 7N, respectively, and S6F and S6G) and their egress to the circulation (Figures 7O, S6H, and S6I). Furthermore, COX-2 inhibition during the night elevated ROS levels in immature HSPCs (Figures 7P, 7Q, and S6J) and decreased primitive CD150+CD34− LSK LT-HSC levels (Figures 7R and S6K). Finally, we utilized CX3CR1+ diphertheria toxin receptor (DTR) mice, in which we ablated CX3CR1+ monocytes and macrophages (Diehl et al., 2013). Because COX-2/αSMA macrophages express this receptor (Ludin et al., 2012), their levels were decreased upon administration of diphertheria toxin to these mice (Figure 7M). Interestingly, we also found reduced levels of primitive CD150+CD34− LSK LT-HSC levels at 11 p.m. in these mice (Figures 7T and S6L). Our data reveal how melatonin directly and indirectly, via αSMA macrophages, maintains undifferentiated BM HSPCs, including their LT-HSC function, during the night.

DISCUSSION

In this study, we identified daily fluctuations driven by light and dark signals, which regulate BM HSPCs. Light induction initiates sympathetic signals, inducing egress of BM HSPCs, including LT-HSCs (Casanova-Acebes et al., 2013; Méndez-Ferrer et al., 2009). In the morning, we found enhanced BM HSPC proliferation and differentiation, including CLP and CMP elevations prior to their egress. Consequently, the BM requires daily replenishment with new immature and maturing cells to allow continuous homeostatic balance between ongoing demands of mature blood cell production while maintaining the reservoir of undifferentiated stem and progenitor cells. Thus, our results reveal, during the day, replenishment of the circulation with immature and mature leukocytes, whereas at night, the BM pool of stem and progenitor cells is replenished.

We identified two major BM HSPC peaks at 11 a.m. and 11 p.m., in line with a previous report (Ieyasu et al., 2014). Our data suggest that BM HSPCs are metabolically programmed by daylight NE-induced signals for their differentiation and egress, accompanied by reduced repopulation potential. These BM HSPCs are metabolically reprogrammed at night by dark signals to reacquire their undifferentiated state, accompanied by elevated repopulation potential. The night HSPC state is a result of limited HSPC proliferation but more due to dynamic changes in cell surface antigen expression and metabolic state induced by melatonin. Surface CXCR4 fluctuates between day and night (Méndez-Ferrer et al., 2008), and surface LT-HSC endothelial protein C receptor (EPCR) is shed by TACE and later re-expressed in the BM (Gur-Cohen et al., 2015). Overall, light-induced HSPC migration and development versus dark-induced optimal LT-HSC function recovery on a daily basis suggest tight regulation of the HSC state and readiness to rapidly act upon demand. Thus, homeostatic regulation maintains and “trains” HSCs for emergency acute stress situations when their function is critical for rapid production of mature blood and immune cells while maintaining the stem cell reservoir to prevent hematopoietic failure.

HSPCs, including LT-HSCs, functionally express TNF receptors and are regulated by TNF released during infection onset (King and Goodell, 2011; Trumpp et al., 2010). In line with this, TNF promotes BM regenerations (Bowers et al., 2018). We identified two BM TNF daily bursts following light initiation and termination. Restricting TNF genetically or pharmacologically abolished the daily peaks, attributing a pivotal role to TNF in BM HSPC regulation. TNF bursts decode the environmental information of light on/off transitions, which may serve as a transient physiological stress, preparing BM HSPCs for their sequential activation. Light and dark induction elevated BM NE, which acts directly on leukocytes to increase TACE expression, leading to TNF cleavage.

Daylight raised NE, reduced BM CXCL12, and induced CXCR4+ HSPC egress (Lucas et al., 2008; Méndez-Ferrer et al., 2008). Antagonizing either β3AR or TNF signaling inhibited the morning peak and reduced vascular permeability, HSPC differentiation, and egress. NE treatment induced rapid murine HSPC mobilization (Dar et al., 2011) and human peripheral blood myeloid cell differentiation, associated with ROS production (Liu et al., 2015). Although ROS are rapidly elevated by the NE and

(t) Phosphorylated Akt levels in CD34− LSK cells 10 min following in vitro stimulation with melatonin (n = 7).

(U) Percentage of ROS+CD34− LSK cells following 1-hr in vitro stimulation of Lin− cells with melatonin (n = 4).

Error bars, mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; Student’s two-tailed unpaired t test (E–S) and one-way ANOVA with Tukey’s post hoc test (A–C). See also Figures S4 and S5.
Figure 7. Melatonin-Induced Elevation of COX-2/αSMA Macrophages Indirectly Reduces HSPC Egress and Differentiation

(A) Numbers of BM αSMA/Mac-1 macrophages per femur at different time points of the day (n = 9).
(B) Levels of COX-2 expression in BM αSMA/Mac-1 macrophages (n = 5).
(C) FACS representative plots of the levels of MT1 and MT2 melatonin receptors in BM αSMA/Mac-1 macrophages at 7 p.m.
(D–G) Schematic illustration of the luzindole administration protocol (D), numbers of BM αSMA/Mac-1 macrophages per femur (E, n = 5) at 11 a.m. following luzindole administration, percentage of quiescent G0 stage BM αSMA/Mac-1 macrophages at 11 a.m. following melatonin administration (F, n = 4), and percentage of ROSbased BM αSMA/Mac-1 macrophage cells at 11 a.m. following melatonin administration (G, n = 5).
(H–K) Schematic illustration of the luzindole administration protocol (H), numbers of BM αSMA/Mac-1 macrophages per femur (I, n = 5) at 11 p.m. following luzindole administration, percentage of quiescent G0 stage BM αSMA/Mac-1 macrophages at 11 p.m. following luzindole administration (J, n = 4), percentage of ROSbased BM αSMA/Mac-1 macrophage cells at 11 p.m. following luzindole administration (K, n = 5).
(L–O) Schematic illustration of the COX-2 inhibitor administration protocol (L), number of BM CMP (M, n = 4) or CLP (N, n = 6) cells per femur, and circulating LSK cells per milliliter of blood (O, n = 6) following COX-2 inhibitor administration.

(legend continued on next page)
TNF 7 a.m. peak, the outcome of this process is evident only a few hours later in terms of differentiation and egress.

Intriguingly, the high 7 a.m. NE and TNF bursts facilitated HSPC differentiation and egress, whereas their lower 7 p.m. bursts induced limited HSPC proliferation without differentiation and egress. These dual effects suggest multifactorial regulation. The major night peak is predominantly driven by elevation of BM melatonin, which, together with COX-2/zSMA macrophages and reduced endothelial cell permeability, inhibited HSPC differentiation and egress. In support of our study, CDB/T cell receptor (TCR)' cells enhanced HSPC engraftment by TNF-dependent regulation (Rezzoug et al., 2008). Melatonin protected circulating human HSPCs from chemotherapy via ROS downregulation (Carrillo-Vico et al., 2013) and human BM stromal cells from toxicity (Mehrzadi et al., 2017).

COX-2/zSMA macrophages support BM HSPC retention by lowering their ROS levels (Ludin et al., 2012). These cells functionally express melatonin receptors and peak at night in response to melatonin. Antagonizing melatonin signaling or inhibiting COX-2 at night turned the BM to a morning-like phenotype. Interestingly, partial deletion of COX-2/β56/βSMA macrophages from the BM reduced LT-HSC levels, further demonstrating the importance of these cells in HSPC BM maintenance.

Our study demonstrates a tightly synchronized balance of BM NE, TNF, COX-2, and melatonin to maintain mature leukocyte homeostasis. Basal inflammatory signals are required for steady-state HSC function (King and Goodell, 2011). Of interest is that lipo polysaccharide (LPS) induced HSPC proliferation directly via their TLR4 following a short stimulation. However, longer exposure impaired HSC competitive self-renewal and repopulation (Takizawa et al., 2017), demonstrating the need for robust short pulses of pro-inflammatory signals rather than chronic stimulations, which impair stem cell function.

We found dynamic oscillations of the BM homeostatic milieu of cytokines, hormones, and neurotransmitters, which are crucial for maintaining the dual activity of HSPCs: replenishing the blood with new mature cells with a finite lifespan on demand while maintaining the BM reservoir of undifferentiated stem and progenitor cells.

Our preliminary results reveal similar effects of melatonin on human HSPCs, including LT-HSCs. These data suggest that the time of BM HSPC harvest and transplantation may affect engraftment and repopulation efficiency in clinical BM transplantation. These results also suggest that manipulations with light and dark cues, melatonin, NE, COX-2, and TNF could improve clinical stem cell transplantation protocols.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
 - Mice
 - Xenogeneic models and human data

- **METHOD DETAILS**
 - In vivo treatments
 - Flow cytometry
 - TNF ELISA
 - Melatonin ELISA
 - Competitive repopulation assay
 - Chimera mice establishment
 - Colony-forming assay (CFU-C)
 - In vivo Evans Blue dye BM penetration assay
 - Human lineage depleted cord blood preparation
 - In vitro cultures
 - NE measurements by LC/MS
 - S1P measurement by RP-HPLC

- **QUANTIFICATION AND STATISTICAL ANALYSIS**
 - DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and can be found with this article online at https://doi.org/10.1016/j.stem.2018.08.002.

ACKNOWLEDGMENTS

We thank Prof. David Wallach for providing TNF KO mice and for fruitful discussions. We also thank Prof. Steffen Jung for the CX3CR1/DTR mice, for fruitful discussions, and for critically reviewing the results with these mice. This work was funded by The São Paulo Research Foundation (FAPESP); Brazil/Weizmann Institute of Science, Israel joint research projects (2015/50166-8) (to T.L. and R.P.M); a research grant from the Dr. Beth Rom-Rymer Stem Cell Research Fund (to T.L.); the Canadian Institutes of Health Research (CIHR) and the International Development Research Centre (IDRC) (to T.L. and J.E.D); the Israel Science Foundation (ISF), the Azrieli Foundation (2655/16), the Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, the ISF-NSFC joint research program (2474/16), and research grants from the Pertman Fund for Stem Cell Research and the Mashkin Family Foundation (to T.L.); and the CAMS Initiative for Innovative Medicine (2016-12M-1-017) and CAMS Fundamental Research Funds for Central Research Institutes (2016G3100001) (to T.C.).

AUTHOR CONTRIBUTIONS

K.G. designed and performed experiments, analyzed data, and wrote the manuscript. A.K. helped with experiments throughout the day and night and critically reviewed the manuscript. O.K. helped with the design and execution of experiments and wrote the manuscript. E.K.-M. helped with the design and execution of experiments. M.D.S. helped with experiments and summarized data. Z.S.F. designed and performed experiments related to melatonin. F.A., S.G.-C., T.I., N.K., A.L.-T., H.M., S.B., E.P.-K., and M.B. helped with experiments. S.R., A.K.C., and T.J. performed experiments related to S1P and NE (method #1). A.G.-G. performed experiments related to TNF levels in j2AR- and j3AR-deficient mice. S.X. and E.F.-F. performed experiments related to

(P and Q) FACS analysis (P) of ROS expression in BM CD34+ LSK cells and the summarized data (Q, n = 5) for the percentage of ROShigh CD34+ LSK cells in the BM following COX-2 inhibitor administration.

(R) Numbers of BM CD150+CD34+ LSK cells per femur at 11 p.m. following COX-2 inhibitor administration (n = 4).

(S and T) Percentage of BM COX-2β56/βSMA-Mac-1 macrophages (S, n = 5) and numbers of BM CD150+CD34+ LSK cells per femur (T, n = 5) at 11 p.m. following 12-hr depletion of CX3CR1 monocytes and macrophages in DTR mice (+/− mice contain the diphtheria toxin receptor for the depletion).

Error bars, mean ± SEM; *p < 0.05, **p < 0.01, ***p < 0.001; Student’s two-tailed unpaired t test (E–S) and one-way ANOVA with Tukey’s post hoc test (A and B). See also Figure S6.
the j3AR antagonist and human xenografts treated with melatonin. B.B. helped with experiments related to iDR mice. A.B. and T.M. performed experiments related to NE (method #2). H.C. helped with experiments related to vascular permeability. T.C., M.Z.R., S.M.-F., and J.E.D. critically reviewed the manuscript. I.S. developed and provided us with the specific TACE inhibitor. R.P.M. designed experiments related to melatonin, helped with writing of the manuscript, and critically reviewed it. T.L. supervised and designed the research and wrote the manuscript.

DECLARATION OF INTERESTS
The authors declare no competing interests.

Received: August 15, 2017
Revised: April 10, 2018
Accepted: August 6, 2018
Published: August 30, 2018

REFERENCES

Cell Stem Cell 23, 1–14, October 4, 2018 13
proliferation and CXCL12 expression by bone marrow stromal progenitors. Leukemia 27, 2006–2015.

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FITC-Ki67</td>
<td>BD Biosciences</td>
<td>Cat# 556026; RRID:AB_396302</td>
</tr>
<tr>
<td>FITC-CD4 (clone GK1.5)</td>
<td>BioLegend</td>
<td>Cat# 100406; RRID:AB_312691</td>
</tr>
<tr>
<td>FITC-CD8 (clone 53-6.7)</td>
<td>BioLegend</td>
<td>Cat# 100706; RRID:AB_312745</td>
</tr>
<tr>
<td>FITC-B220 (clone RA3-6B2)</td>
<td>BioLegend</td>
<td>Cat# 103206; RRID:AB_312991</td>
</tr>
<tr>
<td>FITC-CD11b (clone M1/70)</td>
<td>BioLegend</td>
<td>Cat# 101206; RRID:AB_312789</td>
</tr>
<tr>
<td>APC-CD11b-APC (clone M1/70)</td>
<td>eBioscience</td>
<td>Cat# 17-0112-83; RRID:AB_469344</td>
</tr>
<tr>
<td>FITC-Gr-1 (clone RB6-8C5)</td>
<td>BioLegend</td>
<td>Cat# 108406; RRID:AB_313371</td>
</tr>
<tr>
<td>FITC-Ter119 (clone TER-119)</td>
<td>BioLegend</td>
<td>Cat# 116206; RRID:AB_313707</td>
</tr>
<tr>
<td>biotinylated lineage cocktail</td>
<td>Miltenyi</td>
<td>Cat# 130-092-613; RRID:AB_1103214</td>
</tr>
<tr>
<td>PE-Sca-1 (clone D7)</td>
<td>BioLegend</td>
<td>Cat# 108108; RRID:AB_313345</td>
</tr>
<tr>
<td>Sca-1-PE-Vio770 (clone REA422)</td>
<td>Miltenyi</td>
<td>Cat# 130-106-220</td>
</tr>
<tr>
<td>c-Kit-APC (clone 2B8)</td>
<td>BioLegend</td>
<td>Cat# 105812; RRID:AB_313221</td>
</tr>
<tr>
<td>eFluor 450-CD34 (clone RAM34)</td>
<td>eBioscience</td>
<td>Cat# 48-0341-82; RRID:AB_2043837</td>
</tr>
<tr>
<td>Biotinylated CD34 (clone RAM34)</td>
<td>eBioscience</td>
<td>Cat# 13-0341-82; RRID:AB_466425</td>
</tr>
<tr>
<td>Brilliant Violet 510 -CD150- (clone TC15-12F12.2)</td>
<td>BioLegend</td>
<td>Cat# 115929; RRID:AB_2562189</td>
</tr>
<tr>
<td>PE-CD48 (clone HM48-1)</td>
<td>BD Biosciences</td>
<td>Cat# 557485; RRID:AB_396725</td>
</tr>
<tr>
<td>Biotinylated CD135 (Flt3)</td>
<td>BioLegend</td>
<td>Cat# 135308; RRID:AB_1953267</td>
</tr>
<tr>
<td>PE-CD16/32 (clone 93)</td>
<td>BioLegend</td>
<td>Cat# 101307; RRID:AB_312806</td>
</tr>
<tr>
<td>PE-Cy7-CD127 (L7Rz) (clone A7R34)</td>
<td>eBioscience</td>
<td>Cat# A14934; RRID:AB_2534372</td>
</tr>
<tr>
<td>APC-Ly6G (clone 1A8)</td>
<td>Biogems, Peprotech</td>
<td>Cat# 83112-80-100</td>
</tr>
<tr>
<td>PE-Cy7-Ly6C (clone HK1.4)</td>
<td>BioLegend</td>
<td>Cat# 128018; RRID:AB_1732082</td>
</tr>
<tr>
<td>CD45R/B220-PE (clone RA3-6B2)</td>
<td>BioLegend</td>
<td>Cat# 103208; RRID:AB_312993</td>
</tr>
<tr>
<td>TACE (ADAM17) rabbit polyclonal antibody</td>
<td>Abcam</td>
<td>Cat# ab39163; RRID:AB_722563</td>
</tr>
<tr>
<td>FITC-alphaSMA (clone 1A4)</td>
<td>Sigma</td>
<td>Cat# F3777; RRID:AB_476977</td>
</tr>
<tr>
<td>COX-2-unconjugated polyclonal antibody (aa570-598)</td>
<td>Cayman Chemical</td>
<td>Cat# 160106; RRID:AB_10077935</td>
</tr>
<tr>
<td>MT1 polyclonal antibody</td>
<td>Imuny</td>
<td>Cat# IM-0482</td>
</tr>
<tr>
<td>MT2 polyclonal antibody</td>
<td>Imuny</td>
<td>Cat# IM-0356</td>
</tr>
<tr>
<td>Phospho (Ser552) RelB-PE monoclonal antibody (clone D41B9)</td>
<td>Cell Signaling Technology</td>
<td>Cat# 13567</td>
</tr>
<tr>
<td>Phospho (Ser536) p65-PE monoclonal antibody (clone 93H11)</td>
<td>Cell Signaling Technology</td>
<td>Cat# 3033</td>
</tr>
<tr>
<td>Phospho (Thr308) Akt polyclonal antibody (clone 9275S)</td>
<td>Cell Signaling Technology</td>
<td>Cat# 9275</td>
</tr>
<tr>
<td>PE/Cy7-Streptavidin</td>
<td>BioLegend</td>
<td>Cat# 405206</td>
</tr>
<tr>
<td>APC/Cy7 Streptavidin</td>
<td>BioLegend</td>
<td>Cat# 405208</td>
</tr>
<tr>
<td>Anti-biotin microbeads</td>
<td>Miltenyi</td>
<td>Cat# 130-090-485; RRID:AB_244365</td>
</tr>
<tr>
<td>FITC-CD4.1 (clone 104)</td>
<td>BioLegend</td>
<td>Cat# 109806</td>
</tr>
<tr>
<td>PE-CD45.1 (clone A20)</td>
<td>eBioscience</td>
<td>Cat# 12-4503-83</td>
</tr>
<tr>
<td>Anti human FITC-CD45RA</td>
<td>BD Biosciences</td>
<td>Cat# 555488; RRID:AB_395879</td>
</tr>
<tr>
<td>Anti human PE-CD90</td>
<td>BD Biosciences</td>
<td>Cat# 555596; RRID:AB_395970</td>
</tr>
<tr>
<td>Anti human PE-Dazzle - CD38</td>
<td>BioLegend</td>
<td>Cat# 303538; RRID:AB_2564105</td>
</tr>
<tr>
<td>Anti human BV650-CD49f</td>
<td>BD Biosciences</td>
<td>Cat# 563707</td>
</tr>
<tr>
<td>Anti human APC-CD71</td>
<td>BD Biosciences</td>
<td>Cat# 551374; RRID:AB_398500</td>
</tr>
<tr>
<td>Anti human APC-Cy7-CD34</td>
<td>BD Biosciences</td>
<td>Custom-made</td>
</tr>
<tr>
<td>Anti human AF700-CD10</td>
<td>BD Biosciences</td>
<td>Cat# 563509</td>
</tr>
<tr>
<td>Anti human AF700-CD7</td>
<td>BD Biosciences</td>
<td>Cat# 561603</td>
</tr>
<tr>
<td>Anti human V500-CD45</td>
<td>BD Biosciences</td>
<td>Cat# 560777</td>
</tr>
</tbody>
</table>

(Continued on next page)
Please cite this article in press as: Golan et al., Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance, Cell Stem Cell (2018), https://doi.org/10.1016/j.stem.2018.08.002

CONTACT FOR REAGENT AND RESOURCE SHARING

As the Lead Contact, Tsvee Lapidot (Weizmann Institute of Science, Rehovot, Israel) is responsible for all reagent and resource requests. Please contact Tsvee Lapidot at tsvee.lapidot@weizmann.ac.il with requests and inquiries.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6 (CD45.2) and C3H/HeN mice were purchased from Harlan Laboratories (Rehovot, Israel). B6.SJL (CD45.1) mice were bred at the Weizmann Institute of Science. Breeding and all experimental procedures were monitored by the Veterinary Resources Unit of the Weizmann Institute and were approved by the Institutional Animal Care and Use Committee (IACUC). TNF-KO mice were purchased from Jackson Laboratory (strain #005540) by the group of Prof. David Wallach (Weizmann Institute) and bred at Weizmann Institute. These mice were kindly provided to us. Cx3cr1/DTR mice were kindly given to us by Prof. Steffen Jung (Weizmann Institute). These mice were generated by crossing Cx3cr1/DTR (Jackson Laboratory strain # 025629) to Pkg1-Cre (Jackson Laboratory strain # 020811). The progeny express DTR in all Cx3cr1 expressing cells (Diehl et al., 2013).

All transgenic mice with homozygous mutations were compared to strain matched wild-type C57BL/6 sex- and age-matched controls. 8–12-week-old mice, both male and female, were used for all experiments, keeping the same gender for each experiment. Mice were housed in a standard 12/12 light/dark cycles, ZT0 light on, ZT12 light off. Most night experiments were done with mice sacrificed at 7PM or 11PM that were acclimatized for 2 weeks and kept in a room with inverse light/dark cycles to enable working during the day with mice under the dark period. Some night experiments were performed in the standard room, yielding the same results. Exceptional is measuring TNF levels after light switch on and off. The mice were either switched from light to darkness at 2PM for 1 or 2 hours or from dark to light at 2AM for 1 or 2 hours. These time points have been selected in order to avoid effects driven by the physiologic TNF elevation and HSPC peaks. Moreover, in the experiments of extended darkness, we kept the mice under dark continuously after the normal 12h of dark up to 11AM. These mice were sacrificed still in the dark, preventing their exposure to light between 6AM to 11AM. Bone marrow cells were obtained by flushing long bones with PBS, and peripheral blood was collected from the heart using heparinized syringes. White blood cell (WBC) counts in the circulation were determined after red blood cell lysis.

Xenogeneic models and human data
Animal experiments were done in accordance to the institutional guidelines approved by the University Health Network animal care committee. NSG female mice (NOD.Cg Prkdcsclid12gmr1Wj /SzJ; Jackson Laboratory) or NSG-SGM3 female mice (NOD-scid IL2Rγnull-3/GM/SF; Jackson Laboratory) were sub-lethally irradiated with 250 Rad 24 hours before intrafemoral injection with 100,000 Lin− human cord blood (CB) cells. Xenografts were treated at 4 weeks post-transplantation with vehicle control (EtOH) or melanotin (0.75mg/kg freshly dissolved in vehicle from Sigma) by peritoneal injection at the start of light at 6AM and then euthanized at 10AM for human chimerism analysis. The injected femur and non-injected femur were collected and crushed in Iscove’s modified Dulbecco’s medium and human chimerism and HSPC populations were assessed as described in the flow cytometry section below.

METHOD DETAILS

In vivo treatments
For circadian studies, mice were sacrificed 1h (7AM) and 5h (11AM) after light initiation at 6AM or 1h (6PM) and 5h (11PM) after light termination at 6PM. TNF was purchased from PeproTech (cat # 300-01A, Human recombinant TNF) and was injected intraperitoneally at 5μg/mouse for 4h before cells were harvested at 11PM.

TACE monomeric prodomain inhibitor was developed and produced as previously described (Sagi et al., 2015). The TACE inhibitor was used in vivo and administrated intravenously at 25 μg/mouse at 6AM to inhibit BM HSPC peak at 11AM or at 12.5 μg/mouse 6PM to inhibit BM HSPC peak at 11PM. TNF antagonist was purchased from Calbiochem (cat #654255) and was injected intraperitoneally at 10μg/mouse twice, at 6AM and 9AM, to inhibit the morning HSPC peak at 11AM or at 5μg/mouse once at 6PM to inhibit the night HSPC peak at 11PM. N-Acetyl Cystein (NAC) was purchased from Sigma (cat # A8199) and was injected intraperitoneally at 25mg/kg at 6AM to monitor TACE and TNF levels at 7AM or to inhibit 11AM BM HSPC peak. NAC was administered at 10mg/kg at 6PM to monitor TACE and TNF levels at 7PM or to inhibit 11PM BM HSPC peak.

β3AR antagonist (SR58894A) was purchased from Sigma (cat # SML0581) and was injected intraperitoneally at 10mg/kg twice, at 6AM and 9AM, to inhibit the morning HSPC peak at 11AM. β3 antagonist was also injected intraperitoneally at 20mg/kg at 5AM to monitor TACE and TNF levels at 7AM. β2AR antagonist (ICI) was purchased from Sigma (cat # I127) and was injected intraperitoneally at 5mg/kg at 6AM or at 6PM to monitor TACE and TNF levels at 7AM or 7PM respectively. NE was purchased from Sigma (cat # A9512) and was injected intraperitoneally at 10mg/kg twice, at 6PM and 9PM, to modify the night HSPC peak at 11PM. NE was also injected at 2PM (10mg/kg) to induce mobilization in WT and TNF KO mice at 3PM. Luzindole was purchased from Sigma (cat #L2407) and was injected intraperitoneally at 2.5mg/kg once at 6PM to inhibit the night HSPC peak at 11PM. Melatonin was purchased from Sigma (cat #M5250) and was injected intraperitoneally at 0.75mg/kg once at 6AM to modify the morning HSPC peak at 11AM. COX-2 inhibitor (NS398) was purchased from Sigma (cat #N194) and was injected intraperitoneally at 10mg/kg twice at 6PM and 9PM to inhibit the night HSPC peak at 11PM.
Flow cytometry

Cell populations were analyzed with a MacsQuant VYB instrument (Miltenyi, Bergisch Gladbach, Germany) or with a FACS LSRII (BD Biosciences) with FACSDiva software. Data were analyzed with MacsQuant or FlowJo respectively. Flushed bone marrow cells were stained for 30 minutes at 4°C in flow cytometry buffer (PBS, 10% FCS and 0.02% azide). For antigens that require intracellular staining (αSMA macrophages, K67, COX-2, MT1 and MT2 melatonin receptors, phosphorylated RelB or p65, phosphorylated Akt), cell surface staining was followed by fixation and permeabilization with the Cytofix/Cytoperm kit (BD Biosciences) according to the manufacturer’s instructions. For LSK (Lin-Sca-1-c-Kit+) staining, we used a lineage cocktail of either FITC-conjugated antibodies to CD4 (NK1.1), CD8 (53-6.7), B220 (RA3-6B2), CD11b (M1/70), Gr-1 (RB6-8C5) and Ter119 (TER-119) (all from Biolegend) or a biotinylated lineage cocktail (Miltenyi), together with anti Sca-1-PE (D7) or Sca-1-PE-Cy7 (D7) and anti c-Kit-APC (2B8) (all from Biolegend). As secondary conjugated antibody we used Streptavidin-PE-Cy7 (Biolegend). For CD34 LSK (Lin-Sca-1-c-Kit+CD34+), CD34 expression on LSK cells was analyzed using anti CD34-eFlour 450 (RM34, ebioscience) or CD34- biotinylated (RAM34, ebioscience). Since currently there are different strategies described in the literature to gate for primitive BM stem cell populations, we applied two strategies: staining for CD150+CD34+ LSK cells as previously described by de Lecea and Weismann et al. (Figure S2A) or more stringent staining for Flt3 CD34 SLAM (CD150+CD48) LSK cells as previously described by the laboratories of Morrison and Trumpe (Figure S4G). For CD150+CD34+ LSK (CD150+CD34+Lin-Sca-1-c-Kit+), CD150 expression on CD34+ LSK cells was analyzed using anti CD150-VioGreen (TC15-12F12.2, Biolegend). For Flt3+CD34+ SLAM/LSK (Flt3+CD34+CD150+CD48+Lin-Sca-1-c-Kit+), SLAM expression on CD34+ LSK cells was analyzed using anti CD150-VioGreen (TC15-12F12.2, Biolegend) and anti CD48-PE (HM48-1, BD Biosciences). Flt3 expression was tested by anti Flt3-biotinylated (A2F10, Biolegend) together with Streptavidin-APC-Cy7 (Biolegend). For intracellular ROS detection, cells were incubated for 10 min at 37°C with 2 μM hydroethidine (Life Technologies) prior to cell surface staining for CD34+ LSK or αSMA macrophages markers as described above and below. For CMP (CD34+Lin-Sca-1-c-Kit+CD16/32+) cell surface markers, a lineage cocktail of FITC-conjugated antibodies as described above was used (all from Biolegend) together with anti Sca-1-PE-Cy7 (D7, Biolegend), anti c-Kit-APC (2B8, Biolegend), anti CD34-eFlour 450 (RAM34, ebioscience) and anti CD16/32-PE (93, Biolegend). (CLP (Lin-Sca-1low/inter-c-Kitlow/interLinIL7Rlow)+) cell surface markers (Bahr et al., 2018) were determined by staining with a lineage cocktail of FITC-conjugated antibodies as described above was used (all from Biolegend) together with anti Sca-1-PE-Cy7 (D7, Biolegend), anti c-Kit-APC (2B8, Biolegend) and anti CD127 (IL7Rα)-PE-Cy7 (A7R34, Biolegend). Neutrophils (CD11b+Ly6G+) and monocytes (CD11b+Ly6C+) were identified by staining with anti CD11b-FITC (M1/70, Biolegend) and anti Ly6G-APC (1A8, biogens) or anti Ly6C-PE-Cy7 (HK1.4, Biolegend). For lymphocyte detection, rat anti mouse CD45R/B220-PE (RA3-6B2, BD Biosciences) was used. TACE levels were detected by anti-TACE- (ADAM17) polyclonal antibody (ab39163, Abcam). Levels of cells in G0 state were determined by staining for cell surface markers of CD34+ LSK as described above or αSMA macrophages markers as described below following fixation and permeabilization and staining with mouse anti-human K67-FITC set (SK6026, BD Biosciences). Detection of αSMA macrophages (CD11b+αSMA+) was done by staining for cell surface marker with anti CD11b-APC (M1/70, ebioscience) following fixation and permeabilization. Then anti-αSMA-FITC monoclonal antibody (1A4, Sigma) was used. Detection of either COX-2 or MT1/MT2 receptors in αSMA macrophages was done after staining for these cells as described above and further using anti-COX-2- or- MT1/MT2 monoclonal antibody (aa570-598, Cayman chemical company) or anti-MT1-unconjugated polyclonal antibody (Imuny) or anti-MT2 polyclonal antibody (Imuny). Detection of MT1/MT2 receptors in CD34+ LSK cells was done after staining for these cells as described above and further using anti-MT1-unconjugated polyclonal antibody (Imuny) or anti-MT2 polyclonal antibody (Imuny). For phosphorylated antibody detection, the bones were maintained on ice followed by flushing and staining on ice. Detection of phosphorylated RelB/p65/Akt were done by staining for cell surface marker for CD34+ LSK followed by fixation and permeabilization. Then anti-phosphorylated Ser552 RelB-PE monochonal antibody (D1B9, Cell Signalling) or anti-phosphorylated Ser536 p65-PE monoclonal antibody (9H11, Cell Signalling) or anti-phosphorylated Thr308 Akt polyclonal antibody (9275S, Cell Signalling) were used. For Lineage (Lin) separation a biotinylated lineage cocktail (Miltenyi) was first used followed by anti-biotin microbeads (Miltenyi) according to manufacturer’s instructions.

Human HSPC populations were assessed with the following antibodies by flow cytometry on a BD Celesta (from BD Biosciences): FITC-anti-CD45RA, PE-anti-CD90, PE-Dazzle-anti-CD38, BV650-anti-CD49f, APC-anti-CD71, APC-cy7-anti-CD34, AF700-anti-CD10, AF700-anti-CD7, V500-anti-CD45, BV711-anti-CD19 and BV421-anti-CD33. We identified human LT-HSC (CD34+CD38+CD45RA CD49f+), human ST-HSC (CD34+CD38+CD90+CD45RA CD49f+) and human MLP (CD34+CD38+CD45RA+), according to protocol of the Dick lab.

TNF ELISA

Method #1: refers to all TNF measurements except for Figure 3H

TNF ELISA was performed by using a mouse TNF ELISA MAX™ Deluxe kit (BioLegend, 430904) according to manufacturer’s instructions. Total protein content in BM fluids was quantified by Bradford assay and TNF concentration in the BM fluids was normalized per protein content. Values were expressed as pg/mg protein for BM samples and as pg/ml for plasma samples. The assay has a detection limit of 4pg/ml. The 0pg/ml threshold was set according to plasma TNF KO samples that showed 0pg/ml. However in the plasma we obtain values that are below the ELISA kit sensitivity value and therefore are only suggestive. The 0pg/ml threshold was set according to plasma TNF KO samples that showed 0pg/ml. However in the plasma we obtain values that are below the ELISA kit sensitivity value and therefore are only suggestive. The 0pg/ml threshold was set according to BM supernatant TNF KO samples. Of note, in the BM there was a false positive background.

Please cite this article in press as: Golan et al., Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance, Cell Stem Cell (2018), https://doi.org/10.1016/j.stem.2018.08.002
of 3.22pg/mg protein in TNF KO samples thus this value was subtracted from all the TNF levels of WT samples and was set as the point of 0pg/mg protein in all the graphs of BM TNF levels.

Method #2: refers only to Figure 3H

TNF ELISA was performed by using the MILLIPLEX MAP Mouse Cytokine/Chemokine Magnetic Bead Panel - Immunology Multiplex Assay (MCYTOMAG-70K, Merck), according to manufacturer’s instructions. BM extracellular fluid samples were collected at 7AM and TNF was measured. TNF concentration (pg/ml) was normalized to protein concentration (mg/ml) measured with BCA Protein Assay Kit (Thermo Scientific; #23227). Due to difference in the TNF levels obtain by these two methods, TNF levels in Figure 3H are expressed as fold change.

Melatonin ELISA

The content of melatonin in plasma and BM fluids was measured through enzyme-linked immunosorbent assays (Melatonin ELISA; IBL, Hamburg, Germany) according to the manufacturer’s instructions. Values were expressed as ng/mL and the assay has a detection limit of 3pg/mL.

Competitive repopulation assay

BM cells from C57BL/6 (CD45.2) mice harvested at 11AM or 11PM were transplanted into lethally irradiated (950 cGy) B6.SJL (CD45.1) congenic mice (2 × 10^5 donor cells collected at the same time from the standard room (11AM) or the inverse light/dark cycles room (11PM) with 4 × 10^5 host cells collected only from the standard room (11AM) were transplanted at 3PM in the standard room). BM transplantation was performed 24 h after irradiation. Mice were killed 1 month or 4 months later and the levels of donor chimera were determined by flow cytometry using rat anti-mouse CD45.2 (BioLegend) and CD45.1 (eBioscience). In the experiments with j3-antagonist, mice were treated with the antagonist at 6AM and 9AM and the BM cells were harvested at 11AM. For the short-term repopulation following melatonin treatment, donor C57BL/6 mice were treated with melatonin at 6AM and sacrificed at 11AM. Donor cells were transplanted into B6.SJL congenic mice (full dose (x) - 2 × 10^5 donor cells collected at the same time with 4 × 10^5 host cells or half dose (1/2x) - 1 × 10^5 donor cells collected at the same time with 4 × 10^5 host cells).

Chimera mice establishment

Recipient TNF KO or WT mice were subjected to irradiation (950 cGy) 16-20h before transplantation. BM cells (10 × 10^6 donor cells) from WT or TNF KO mice was harvested and transplanted as following: WT into TNF KO and TNF KO into WT recipients. Four weeks after transplantation the experiments were conducted by killing the mice at 7AM and comparing their TNF and ROS HSPC levels.

Colony-forming assay (CFU-C)

BM mononuclear (BM-MNC) cells were isolated by Ficoll separation and were seeded (15x10^3 cells/ml) in CFU-C semisolid medium supplemented with EPO, IL-3, GM-CSF and SCF as described (Kollet et al., 2006). CFU-C were scored 7 days after plating and presented as CFU-C per number of seeded cells.

In vivo Evans Blue dye BM penetration assay

BM vascular endothelial barrier function was assessed using the Evans Blue Dye (EBD) assay. Evans Blue (Sigma-Aldrich) dissolved with PBS was injected i.v. to mice. For the WT 11AM and 11PM as well as for NE, Luzindole or melatonin treated mice we injected 10mg/ml Evans Blue Dye 5h before mice were euthanized. For j3-antagonist treated mice we injected 20mg/ml Evans Blue Dye 2h before mice were euthanized. In each experiment, a non-injected mouse was used for control blank measurements. Subsequently, mice were perfused with PBS via the left ventricle to remove intravascular dye. Femurs were removed and formamide was used for bone flushing, crushing and chopping. EBD was extracted in formamide by incubation and shaking of flushed and crushed fractions, overnight at 60 °C. Next, we performed 30 min centrifugation at 2,000g, EBD in BM supernatants was quantitated by spectrophotometric analysis at 620 nm.

Human lineage depleted cord blood preparation

Human umbilical cord blood (CB) samples were obtained from Trillium and Credit Valley Hospital with informed consent according to procedures approved by the University Health Network (UHN) Research Ethics Board. Mononuclear cells were isolated by centrifugation on Lymphoprep medium (Stem Cell Technologies) and depleted of Lineage positive cells (lineage depletion) by negative selection with the StemSep Human Progenitor Cell Enrichment Kit according to the manufacturer's protocol (Stem Cell Technologies). Lin - CB cells were stored viably at −80 °C or −150 °C.

In vitro cultures

Fresh bone marrow cells were seeded in RPMI (Gibco) with 10% FCS (Gibco), L-glutamine (Biological Industries), penicillin and streptomycin (Invitrogen). For pAKT levels in HSPC: total BM cells were cultured at a density of 2.5 × 10^6 cells per 1 ml in 12-well plates (Costar) with or without 10nM melatonin for 10min. The cells were taken and stained for pAKT/CD34+LSK. For ROS levels in HSPC, lineage negative (Lin -) cells were obtained from mouse total BM cells by magnetic beads separation
(as described in the flow cytometry section). Lin− cells (5 × 10⁵) were cultured in 24-well plates (Costar) with or without 10nM melatonin for 1h. The cells were taken and stained for ROS/CD34−LSK. Cultures were incubated for the appropriate time at 37°C in humidified chambers containing 5% CO₂.

NE measurements by LC/MS

Method #1: refers to all NE measurements except for Figure S1G

Samples preparation. BM cells were flushed with PBS and the cells were incubated for 45min at 37°C, 5% CO₂. The condition medium of these cells was collected and centrifuged at 4°C for 5 minutes. Plasma was also collected and centrifuged at 4°C for 5 minutes. Then 50 μL of each sample was mixed with 10 μL of metabisulfite (stock concentration 50 mM) for preservation. Later standards (NE and deuterated noradrenaline) and 200 μL of pure acetonitrile were added. After vortex and centrifugation at 4°C samples were transferred into fresh tubes. Sodium chloride was added and after centrifugation supernatants were collected. Then 25 μL of tetraborate buffer solution (stock: 0.2M) and 7 μL of 100% Benzoil chloride were added with a subsequent very long and careful vortexing for derivatization. Next, the samples were incubated for 10 minutes and sodium chloride was added to separate water phase from organic phase, and after intensive mixing, short incubation and short spin 100 μL of the upper phase was transferred into the bottles. Finally 25 μL of pure methanol was added. To remove NA from control samples, we performed 48 hours long UV radiation with meanwhile stirring.

Measurements

all the measurements were performed on high resolution ESI-QqTOF system (TripleTOF 5600+, Duospray Ion Source, external ion calibration; AB Sciex) after chromatographic separation (Nexera XR, Shimadzu). The spectrometer was set to MS/MSHR positive mode, spectra in range of 50-650 Da were acquired in accumulation time of 150 ms for product ion 482.2 (NE) and 488.2 (NE-d6), at declustering potential (DP) of 60 for both compounds, collision energy (CE) of 15 for NE and of 17 for NE-d6. Ion source parameters (ESI): Ion source gas (GS1) – 40, ion source gas (GS2) – 50, curtain gas (CUR) – 35, source temperature 6000°C, ion spray voltage floating – 5500. Chromatographic conditions: mobile phase in gradient of water 0.1% formic acid (A) and acetonitrile 0.1% formic acid (B)- 0-0.5 min 95% A, 6 min – 100% B, 10 min 100% B, 10.1 min – 95% A, 12 min – 95% A. Chromolith Performance RP-18e 100-2 mm column (Merck) with guard cartridge RP-18e 5-2 mm at 250°C. Quantitative analysis we made on MultiQuant (AB Sciex) software, peaks were calculated for product ion signals in range of 464.12-464.17 Da (NE) and 470.15-470.21 (NE-d6).

Method #2: refers only to Figure S1G

Aqueous solution (20μL of 1μg/mL) of d₅-norepinephrine (C.D.N. Isotopes, Canada) was added as internal standard to 300μL of the sample medium. The mix was diluted with 3mL of acetonitrile, followed by centrifugation (21,000 g x 15min). The collected supernatant was evaporated then re-dissolved in 0.1% formic acid (50 μL). Derivatization of amine containing metabolites was performed using Aqc reagent, followed by analysis of norepinephrine and d₅-norepinephrine by liquid chromatography–tandem mass spectrometry as described (Boughton et al., 2011; Wolf et al., 2017).

S1P measurement by RP-HPLC

The measurement of sphingosine-1-phosphate was performed by reversed-phase high-performance liquid chromatography (RP-HPLC) with Hewlett-Packard Series 1200 liquid chromatograph. Internal C17S1P standard (Avanti Polar Lipids) and samples were thawed at room temperature. For 100 μL sample volume, 30 μL of the C17S1P internal standard (diluted in 10 mM K₂HPO₄ mixture of methanol (MetOH), pH 7.2) was added as following: 30 μL of internal standard C17S1P (diluted with a mixture of K₂HPO₄-MetOH, pH 7.2) and 30 μL of internal standard C18S1P (diluted in a mixture of K₂HPO₄-MetOH, pH 7.2). The samples were mixed and supplemented with 1 M NaCl solution up to 1mL volume. After stirring, 1 mL of methanol and 300 mL of concentrated hydrochloric acid were added. After intensive mixing 2 mL of chloroform was added, stirred (20 min, 900 rpm), and centrifuged (3 min, 3500 rpm, 20°C). We transferred separated lower organic phase into a new tube and the upper phase was re-extracted and the lower organic phase was combined with the previously collected one and dried in a vacuum centrifuge for about 45 min at 45°C. Immediately before the measurements, the dried extracts were dissolved in 130 μL of methanol and 20 μL of OPA mixture. OPA mixture was prepared as following: 5 mg of o-phthalic dialdehyde, 100 μL of methanol, 5 μL of mercaptoethanol and 5 μL of boric acid at pH 10.5. At the same time we prepared a mixture containing 30 μL of internal standard C17S1P and 30 μL of internal standard C18S1P, to which we added 940 μL of a mixture of K₂HPO₄-MetOH, pH 7.2. 600 μL was transferred to a new tube and 75 μL of OPA was added. Samples with OPA were incubated in the dark at room temperature, 20 min and then centrifuged (10 min, 6000 rpm, 20°C). We obtained clear supernatant which was transferred to a fresh collecting tube, where we added 20 μL of 10 mM K₂HPO₄ buffer, and after incubation (10 min, +4°C) and centrifugation (5 min, 6000 rpm, 20°C) the supernatant was transferred into a vial and analyzed. Data were analyzed with HP Chemstation software (Agilent, USA). Separation in the reversed phase column was carried out on a Cosmosil 5 μm C18-ARII column (150 x 4.6) with a 5 μm C18-ARII (10 x 4.6) pre-column (Waters). Column temperature was 25°C. The isocratic method with mobile phase consisting of 10 mM K₂HPO₄ (pH 5.5) and methanol (15:85; v/v) was used. The flow rate was 1 mL/min 50 μL samples were injected every 30 min. The wavelength for the detection of S1P derivatives was 340 nm for the excitation and 455 nm for emission. The calculation of S1P concentration was based on the peak area of the internal standard C17-S1P.
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were conducted with Prism 6.0c version (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, “ns” represents non significance). All data are expressed as mean ± standard error (SEM) and all n numbers represent biological repeats. Unless indicated otherwise in figure legends, a Student’s two-tailed unpaired t test was used to determine the significance of the difference between means of two groups. One-way ANOVA was used to compare means among three or more independent groups. Bonferroni or Tukey post hoc tests were used to compare all pairs of treatment groups when the overall p value was < 0.05. Animals were randomly assigned to treatment groups.

DATA AND SOFTWARE AVAILABILITY

Download links for software used in this study are provided in the Key Resources Table.
Supplemental Information

Daily Onset of Light and Darkness Differentially Controls Hematopoietic Stem Cell Differentiation and Maintenance

Figure S1. Relates to figure 2 and Figure 3: Mutual cross talk between NE and TNF regulate BM HSPC peaks.
Figure S2. Relates to figure 4: BM cells primed for an immature phenotype at night. Egress of neutrophils and monocytes to the circulation peaks at 11AM, a time of increased S1P in the plasma.
Figure S3. Relates to figure 5: Reducing NE activity in the morning by \(\beta_3\) antagonist decreased differentiation and egress while administration of NE at night increased differentiation and egress.
Figure S4. Relates to figure 6: Inhibition of Melatonin at the night peak induced differentiation to mature neutrophils and monocytes in the BM and their egress to the circulation. Melatonin injection in the morning enhances HSC phenotype.
Figure S5. Relates to figure 6 and figure 7: C3H mice display daily fluctuations similar to C57BL/6 mice.
Figure S6. Relates to figure 7: Cox-2/αSMA+ macrophages are important regulators of HSPC maintenance at night.
Figure S7. Relates to figures 1-7: Summarizing suggested model.
Figure S1 related to Figure 2 and Figure 3: A mutual cross talk between NE and TNF. (A) BM TACE level of expression in monocytes (n = 5). (B) Percentage of quiescent G0 stage of BM CD34-LSK cells at 11PM following TNF antagonist administration (n = 4). (C) TNF levels in the plasma (n = 5) following 1h or 2h switch from light to darkness. (D) TNF levels in the plasma (n = 4) following 1h or 2h switch from darkness to light. (E) NE levels in the plasma (n = 7) at different time points of the day. (F) TNF levels in the BM (n = 3) at 7AM following β3AR antagonist administration. (G) NE levels in the BM (n = 6) at 7AM in TNF KO mice and following TNF antagonist administration. The results are represented as fold change. (H) Numbers of circulating white blood cells (WBC) in WT and TNF KO mice following injection with PBS (n = 4). (I) Numbers of circulating LSK in WT and TNF KO mice following injection with NE for 1h (mice were injected at 2PM) (n = 4). Error bars, mean ± SEM, *p < 0.05; **p < 0.01, Student’s two-tailed unpaired t-test (B, F, H), one-way ANOVA with Tukey’s post hoc test (A, C-E, G, I).

Figure S2 related to Figure 4: BM cells primed for an immature phenotype at night. Egress of neutrophils and monocytes to the circulation peaks at 11AM, a time of increased S1P in the plasma. (A) Gating strategy for CD150+CD34+ LSK cells in the BM. (B) c-Kit level of expression on Lin−/Sca-1−CD150+ cells in the BM (n = 3). (C) CD150high level of expression on CD34+LSK cells in the BM (n = 8). (D) FACS representative plots of the number of BM CD150+CD34+ LSK cells at 11AM following extended darkness. (E) CD150high level of expression on CD34+LSK cells in the BM at 11AM following extended darkness (n = 5). (F) FACS representative plots of the number of BM CD150CD34+LSK cells following TNF antagonist administration. (G-H) Numbers of circulating neutrophils (E, n = 7) and monocytes (F, n = 6) per ml of blood. (I-J) S1P levels in the plasma (G, n = 6) and in the BM (H, n = 4) at 11AM and 11PM. Error bars, mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, Student’s two-tailed unpaired t-test (A, C, G-H), one-way ANOVA with Tukey’s post hoc test (E-F).

Figure S3 related to Figure 5: Reducing NE activity in the morning decreased HSPC differentiation and egress, while administration of NE at night induced differentiation and egress. (A-C) Percentage of Mac-1(CD11b)+ cells (A, n = 5), numbers of BM neutrophils (B, n = 7) and monocytes (C, n = 6) per femur following β3AR antagonist administration. (D) FACS representative plots of circulating LSK cells following β3AR antagonist administration. (E-F) Numbers of circulating neutrophils (E, n = 7) and monocytes (F, n = 6) per ml of blood following β3AR antagonist administration. (G) FACS representative plots of BM CD150+CD34+ LSK cells following β3AR antagonist administration. (H) FACS representative plots of circulating LSK cells in TNF KO mice and following TNF antagonist administration to WT mice. (I-N) Percentage of ROShigh...
CD34 LSK cells in the BM at 7PM following NE 1h administration compared to 7AM steady state levels (I). Number of BM CMP (J, n = 5) or CLP (K, n = 6) cells per femur, Evans Blue Dye absorbance per femur at 620nm (L, n = 4) and circulating LSK cells: representative plots (M) and data summarized per ml of blood (N, n = 8) at 11PM in NE treated mice compared to 11AM steady state levels. Error bars, mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, Student’s two-tailed unpaired t-test (A-C, E-F), one-way ANOVA with Tukey’s post hoc test (I-N).

Figure S4 related to Figure 6: Inhibition of Melatonin during the night increased differentiation and mature leukocyte egress. (A-B) Numbers of BM neutrophils (A, n = 6) and monocytes (B, n = 5) per femur following luzindole administration. (C) FACS representative plots of circulating LSK cells at 11PM following luzindole administration. (D-E) Numbers of circulating neutrophils (D, n = 6) and monocytes (E, n = 4) per ml of blood following luzindole administration. (F) FACS representative plots of circulating LSK cells at 11AM following melatonin administration. (G) Gating strategy for Flt3+CD34+ SLAM/LSK LT-HSC in the BM. (H-I) FACS representative plots of BM Flt3+CD34+ SLAM/LSK LT-HSC at 11AM and 11PM (H) and at 11AM following melatonin administration (I). (G-I) Numbers show percentage of gated cells. (J) CD150high level of expression on CD34+ LSK cells in the BM at 11AM following melatonin administration (n = 5). (K-M) NSG (solid symbols), and NSG with human growth factors (NSG-SGM3) (open symbols) xenogeneic mice transplanted with human cord blood cells were treated with melatonin at 6AM and the percentage of LT-HSC (K, n = 5 each), ST-HSC (L, n = 5 each) and MLP (M, n = 5 each) were tested at 10AM. Error bars, mean ± SD (K-M), *p < 0.05; **p < 0.01, Student’s two-tailed unpaired t-test.

Figure S5 related to Figure 6 and Figure 7: C3H/HeN mice display daily fluctuations similar to C57BL/6 mice. (A) Percentage of ROShigh CD34+LSK cells in the BM (n = 4). (B) Numbers of BM CD34+LSK cells per femur (n = 4). (C) Numbers of BM CMP cells per femur (n = 4). (D) Numbers of BM CLP cells per femur (n = 4). (E) Numbers of circulating LSK cells (n = 4). (F-G) FACS representative plots (F) and numbers of BM CD150+CD34+ LSK cells per femur (n = 4). (H) Numbers of BM αSMA/Mac-1 macrophages per femur (n = 4). Error bars, mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, one-way ANOVA with Tukey’s post hoc test.

Figure S6 related to Figure 7: COX-2/αSMA macrophages are important regulators of HSPC maintenance at night. (A-B) Levels of MT1 (A, n = 5) and MT2 (B, n = 5) melatonin receptor expression in BM αSMA/Mac-1 macrophages. (C) Numbers of circulating αSMA/Mac-1 macrophages at 11AM following melatonin administration (n = 4). (D) Level of COX-2 expression in αSMA/Mac-1 macrophages (n = 4) at 11AM following melatonin administration. (E) Numbers of BM COX-2/αSMA/Mac-1
macrophages per femur at 11PM following COX-2 inhibitor administration \((n = 4) \). (F-I) Number of BM CMP \((F, n = 4) \) or CLP \((G, n = 6) \) cells per femur and circulating LSK cells: representative plots \((H) \) and data summarized per ml of blood \((I, n = 6) \) at 11PM in COX-2 inhibitor treated mice compared to 11AM steady state levels. (J) Percentage of ROShigh CD34+LSK cells in the BM at 11PM following COX-2 inhibitor treatment as compared to 7PM and 11AM steady state levels \((n = 5) \). (K) FACS representative plots of BM CD150+CD34+LSK cells at 11PM following COX-2 inhibitor administration. (L) FACS representative plots of BM CD150+CD34+LSK cells at 11PM following 12h depletion of CX3CR1+ monocyte and macrophages in DTR mice. Error bars, mean ± SEM, *\(p < 0.05 \); **\(p < 0.01 \); ***\(p < 0.001 \); ****\(p < 0.0001 \), Student’s two-tailed unpaired t-test \((C-E) \), one-way ANOVA with Tukey’s post hoc test \((A-B, F-J) \).

Figure S7 related to Figures 1-7: Suggested model. Upon light induction \((1) \), there is a high elevation in BM NE levels \((2) \) leading to TNF augmentation \((3) \) via β2AR on HSPC and monocytes. Together, NE and TNF increase ROS levels in HSPC \((4) \), known to exert their proliferation, differentiation and egress to the circulation \((5) \). At the same time NE further elevates BM vessel permeability via β3AR to facilitate mature and immature cell egress at 11AM \((6) \). Thus the morning peak involves proliferation, differentiation and egress with high BM blood vessel permeability, all associated with a state of increased migration, development and blood replenishment. Following termination of light \((7) \) NE \((8) \), TNF \((9) \) and ROS \((10) \) are elevated, however to a lower extent then in the morning, enabling proliferation without differentiation and egress of HSPC. More importantly, nocturnal melatonin levels are elevated in the BM \((11) \). Melatonon decreases vascular permeability \((12) \) and elevates COX-2/αSMA macrophages \((13) \). As such, melatonin primes HSPC to a state of retention, reduced differentiation and higher CD150 surface expression and repopulation potential \((14) \).