Halide Exchange in Macro-Sized Halide Perovskite Single Crystals

Aya Osherov1, Yishay Feldman2, Gary Hodes3 and David Cahen1

1Dept. of Materials & Interfaces, 2Dept. of chemical research support, Weizmann Institute of Science, Rehovot 76100

Halide Perovskites, rising star materials in photovoltaics, with the general formula ABX_3, where A = methylammonium (MA), formamidinium (FA) or Cs, B = Pb and X = halide have remarkable electronic and optical characteristics. The identity of the X component influences greatly the band gap of the material, and mixed halide compositions have been used for band gap-tuning. We demonstrate halide exchange in nm-sized MAPbX3 single crystals, achieved by diffusion. In these macro-sized crystals, the effects of surfaces and defects are significantly smaller than in microcrystals and polycrystalline thin films studied previously. Therefore, they are better suited to examine the fundamental exchange process(es), unencumbered by possible grain boundary and surface diffusion effects.

Halide exchange reaction

- General formula: ABX_3
- $MAPbCl_3$, $MAPbBr_3$ and $MAPbi_3$ single crystals were grown using various methods.
- As-grown single crystals were placed in an “exchange solution” in ambient conditions, in the dark for different time periods (days).
- The “exchange solutions” contain 0.1M MAX ($X = Cl$ or Br or I) in isopropanol.

Morphology change

Scanning Electron Microscope (SEM) images of a cross-section show a distinct morphology change between the bulk of the original single crystal and the exchanged layer close to the surface.

- (a) Cross-section scheme of a crystal post exchange.
- (b) Representative SEM images of a $MAPbi_3$ crystal immersed in $MABr$ solution for 1 month.

Composition gradient forms in the crystal

Representative SEM image and EDS composition analysis of a cross-section of a $MAPbI_3$ crystal soaked in MAI solution for 6 days. Green crosses represent the measured points.

- Electron Dispersive Spectroscopy (EDS) analysis shows a gradual change in the halide composition of the crystal.
- The composition of the in-coming halide is maximal on the surface of the crystal, and drops as we proceed further into the core of the crystal, and vice versa for the out-going halide.
- The ratio between the sum of halides and lead remains approximately 3:1 throughout the sample.

Halide pair determines the crystallinity post substitution

- Similar-sized halide pairs (i.e., Br^- and CI^-, Br^- and I^-, not Cl^- and I^-): high orientation regardless of symmetry and no matter which halide is the in-coming and which is the out-going (spectra 1-4).
- Cl^-/I^-: the crystals do not remain single crystals (spectra 5-6).
- The exchange causes a lattice parameter change and may cause a symmetry change.
- Spectrum 1: the substituted layer is thinner than the penetration depth of the x-ray, therefore we also see peaks that belong to the bulk single crystal.
- Pole figure (representative of all similar-sized halide pairs): after the exchange the original crystal remains a single crystal.

Conclusions and future work

- The crystal orientation post exchange is determined by that of the initial crystal.
- Only similar-sized halides exchange results in a single crystal (a topotactic reaction).
- Valuable result when one wishes to achieve a specific composition of halide perovskite crystals/crystallites, using multi-synthesis steps without compromising the degree of crystallinity and orientation.
- Future work: Determine the diffusion coefficients.

Acknowledgements

We thank the Weizmann Institute’s Sustainability and Energy Research Initiative and the Israel Ministry of Science for partial support.
