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In this paper we consider the following real-valued and finite dimensional specific 
instance of the 1-D classical phase retrieval problem. Let F ∈ RN be an 
N -dimensional vector, whose discrete Fourier transform has a compact support. The 
sign problem is to recover F from its magnitude |F|. First, in contrast to the classical 
1-D phase problem which in general has multiple solutions, we prove that with 
sufficient over-sampling, the sign problem admits a unique solution. Next, we show 
that the sign problem can be viewed as a special case of a more general piecewise 
constant phase problem. Relying on this result, we derive a computationally efficient 
and robust to noise sign recovery algorithm. In the noise-free case and with a 
sufficiently high sampling rate, our algorithm is guaranteed to recover the true sign 
pattern. Finally, we present two phase retrieval applications of the sign problem: 
(i) vectorial phase retrieval with three measurement vectors; and (ii) recovery of 
two well separated 1-D objects.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The recovery of a signal from modulus (absolute value) measurements of its Fourier transform, known as 
phase retrieval, is a classical problem with a broad range of applications, including X-ray crystallography 
[25], astrophysics [18], lensless imaging [24,13], and characterization of ultra-short pulses [36], to name but 
a few.

From a mathematical perspective, fundamental questions regarding uniqueness of the phase problem 
and development of reconstruction algorithms have been topics of intense research for several decades. 
Uniqueness of the phase problem in one and two-dimensions, typically under the assumption that the 
underlying signal has a compact support, was studied by many authors, see for example [2,9,10,20,30] and 
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many additional references therein. For a recent survey and new results on the uniqueness of the 1-D phase 
problem, see Beinert and Plonka [6]. From the computational aspect, as the classical phase problem is 
non-convex, the most commonly used phase-retrieval methods are iterative [5,15,17,23]. These often require 
careful initialization, may exhibit limited robustness to noise, and in general, even in the absence of noise, 
are not guaranteed to converge to the correct solution.

In recent years there has been a renewed surge of interest in the phase problem. This was motivated in 
part by proposals of new measurement schemes coupled with novel convex-optimization approaches that 
provide strong guarantees on correct recovery. Examples include coded diffraction patterns, polarization type 
schemes and other methods with multiple illuminations [12,3,1,28,26], semi-definite programs for matrix 
completion [35,11] and sparsity-based recovery methods [31,32].

Motivated by several phase retrieval applications, here we consider a finite dimensional and real-valued 
particular instance of the general 1-D phase problem, which we denote as the sign problem. As described 
in Section 2, its formulation is as follows: Let F be an N -dimensional real-valued vector, whose discrete 
Fourier transform, f = DFT {F} ∈ C

N , has a support of length τ + 1. The sign problem is to recover the 
sign pattern s = sign(F) ∈ {±1}N from possibly noisy measurements of |F|.

In this paper we perform a detailed study of this finite dimensional sign problem, including its uniqueness 
and the development of a stable reconstruction algorithm. We also present its application to two practical 
phase problems. First, in Section 3, Theorem 1 we prove that if N > 2τ , our discrete sign problem admits a 
unique solution, up to a global ±1 sign ambiguity. Our proof, similar to [28,9,6], is based on analyzing the 
roots of high degree polynomials. Since finding such roots is known to be an ill-conditioned problem [34], 
our proof does not directly lead to a stable reconstruction algorithm.

To robustly solve the sign problem we take a different approach. First, we study the structure of its 
solutions, showing in Lemma 1 that the sign pattern s = sign(F) ∈ {±1}N cannot be arbitrary, but rather 
has at most τ sign changes. Next, we relax the constraint that s ∈ {±1}N and allow the sign pattern to be 
a complex-valued N dimensional vector, which guided by Lemma 1, is piecewise constant over at most τ +1
intervals. This leads us to study the following two questions: (i) is it possible to detect at least parts of these 
intervals, where the underlying sign pattern is constant? and (ii) does such an over-segmentation of 1, . . . , N
to intervals of constant values indeed retains uniqueness of the problem? With respect to question (ii), we 
prove in Theorem 2 that given an over-segmentation with few segments M , such that N > 2τ + M , this 
piecewise constant phase problem has a unique solution.

Based on these theoretical results, in Section 4 we address question (i) above and develop methods to find 
either an exact or an approximate over-segmentation to intervals of constant sign, given only (noisy) mea-
surements of |F|. Given such an over-segmentation, we then develop a computationally efficient algorithm 
to retrieve the unknown sign pattern. Our approach follows our previous works [28,29], whereby instead of 
taking the signal f as our unknown, we work with the unknown phases, and formulate for them a quadratic 
functional to be minimized. Relaxing the requirement that the solution is a phase vector leads to solving a 
system of linear equations. In the noise-free case we prove that with a sufficiently high sampling rate, our 
algorithm is guaranteed to recover the true sign pattern.

Section 5 presents two phase retrieval applications of practical interest where the sign problem arises. 
The first is vectorial phase retrieval with three measurement vectors. Here the problem is to recover two 
compactly supported signals f1 and f2 from measurements of |F1|, |F2| and their interference |F1+F2|. With 
sufficient over-sampling, this problem was proven to admit a unique solution in [6], but no reconstruction 
algorithm was given. The second application is the recovery of two well separated 1-D objects from a single 
spectrum, a problem known to have a unique solution [14]. We show how stable recovery for both problems 
is possible by solving a related sign problem. Finally, in Section 6 we illustrate the performance of our 
algorithm via several simulations. For an example with real 2-D experimental data (involving a 2-D sign 
problem), we refer the reader to [21].
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This discrete sign problem considered in this paper can be viewed as the finite dimensional analogue 
of the following continuous problem, recently studied by Thakur [33]: Recover a real-valued function g(t)
whose continuous Fourier transform G(ω) is band-limited, from discrete measurements |g(tj)|. The analogy 
between the two problems follows by relating the continuous function g to our finite dimensional vector F
and its Fourier transform G to f . In [33], Thakur proved that if the sampling rate is at least twice the Nyquist 
rate then the continuous sign problem is well posed. He further developed an algorithm to reconstruct the 
function from a finite number of N measurements. While with noise-free data the reconstruction error 
of Thakur’s method decays exponentially fast in N , as we illustrate in Section 6, it is quite sensitive to 
even small measurement noise. Our sign recovery algorithm, in contrast, is based on an entirely different 
approach, in fact relying on a discrete formulation. Yet, it is applicable to this continuous setting, and as 
shown in Section 6, offers improved robustness to noise. We conclude in Section 7 with a discussion and 
directions for future research.

2. Problem setup

Notation. We denote i =
√
−1. For z ∈ C we denote by R(z) and I(z) its real and imaginary parts and 

by z̄ its complex conjugate. Vectors appear in boldface letters, for example F = (F0, . . . , FN−1). We denote 
the entry-wise multiplication of two vectors F and G by FG. We further denote by f �g the cross-correlation 
between the vectors f and g.

Measurements. While in this paper we shall mostly study a discrete formulation, it is nonetheless in-
structive to first briefly review the continuous setting. Let fc(t) denote a one dimensional continuous signal, 
whose 1-D Fourier transform Fc(ω) is given by

Fc(ω) =
∫

fc(t)e−iωtdt = |Fc(ω)|eiφ(ω). (1)

As mentioned in the introduction, in many applications direct measurement of fc(t) is not possible. Rather, 
the measured data is typically an equispaced sampling of |Fc(ω)|2 at ωj = jΔω, j = 0, ..., N − 1. We denote 
the values of Fc(ω) at the sampled frequencies by Fj := Fc(ωj), and denote F = (F0, . . . , FN−1). A discrete 
approximation of fc(t) at the N points tk = 2πk

NΔω , k = 0, . . . , N−1 can be computed via the discrete Fourier 
transform (DFT ) of Fc(ωj)

f(tk) = Δω

2π

N−1∑
j=0

|Fc(wj)|eiφ(ωj)eiωjtk := DFT {F} . (2)

For convenience, we rescale time and frequency so that Δω = 2π
N and tk = k for k = 0, ..., N − 1. In this 

paper we restrict our attention to a finite dimensional formulation and consider the reconstruction of the N
signal values f = (f0, . . . , fN−1) as our end goal. We note that, strictly speaking, f(tk) �= fc(tk). However, 
for N � 1 and a sufficiently high sampling rate, f(tk) ≈ fc(tk), see for example [19].

For future use, we recall that the two vectors f and F are thus related as follows

fk = DFT {F}(k) = 1
N

N−1∑
j=0

Fje
iωjk and Fj = IDFT {f}(j) =

N−1∑
k=0

fke
−iωjk. (3)

The classical phase problem. Let |F|2 ∈ R
N be the measured spectrum at the N equispaced frequencies 

as described above and denote the unobserved phase vector by φ = arg(F). The phase problem is to 
reconstruct from the intensity measurements |F|2, the missing phases {φj}N−1

j=0 or equivalently the N values 
f = DFT {F}. Clearly, without additional constraints this problem is ill-posed, as any vector of phase values 
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is a valid solution. A commonly imposed constraint is that f has a compact support. However, even with this 
assumption, the 1-D phase retrieval problem is in general still ambiguous. If N > 2τ and f has a support of 
length τ + 1, it still has at most 2τ−1 different solutions, see [6,9]. However, as shown in Theorem 3.1 and 
Corollary 3.2 of [7], additional information on the underlying signal, such as its amplitude at a single point 
inside its support almost always suffices for uniqueness.

The sign problem. In this paper we consider phase retrieval when the underlying function Fc(ω) is 
real-valued. Namely, the unobserved phases of F are restricted to φj ∈ {0, π}. Given |F|2 the problem is 
then to reconstruct this sign pattern. Clearly, without additional constraints this problem is also ill-posed 
as any sign pattern is a valid solution. In this paper we assume that f has a support of size (τ + 1) < N

and focus on the following two questions: 1) is there a unique solution? and 2) assuming there is, can one 
develop a stable and computationally efficient algorithm to recover it.

Trivial ambiguities. If f is a solution to the classical phase problem, then so are its circular shift, its 
reflection, conjugation and multiplication by a unimodular factor eiθ. These transformations do not change 
the physical nature of the signal and are thus known as trivial ambiguities of the phase problem. In the sign 
problem, since F is real-valued it implies that fk = f∗

(−k mod N) for all k = 0, . . . , N − 1. This eliminates the 
reflection ambiguity and all circular time shifts ambiguities except for a shift by N/2, assuming N is even. 
Hence, the trivial ambiguities of the sign problem are only a circular shift by N/2 and multiplication by a 
global sign.

Signal support. We say that a signal f ∈ C
N has a support of length τ + 1 if f(k) = 0 for all k /∈ CS

where for some α ∈ Z

CS = {k : k ∈ [−α,−α + τ ] mod N} . (4)

For the sign problem, given the discussion above on trivial ambiguities and assuming for simplicity that τ
is even, there are only two options for the set CS. Either it is centered around zero (α = τ/2),

CS =
{
k : k ∈ [−τ

2 ,
τ

2 ] mod N
}
, (5)

or it is the above set, circularly shifted by N/2. Without loss of generality, we will use Eq. (5) as the assumed 
support of the sign problem.

3. Mathematical uniqueness

In this section we study the uniqueness of the sign problem. As mentioned in the introduction, there 
are quite a few results on the number of frame-type measurements required for uniqueness of various phase 
problems, see for example [3,4,6,8] and references therein. However, our specific problem, involving a discrete 
unknown sign pattern s ∈ {−1, 1}N , does not fit into these general formulations, and hence their results do 
not directly apply to the sign problem. First, we show that in the ideal setting of noise free measurements, 
if the signal f has a sufficiently small support compared to N (or equivalently, if |Fc(ω)|2 is sampled at a 
sufficiently high rate), then the sign problem admits a unique solution. Next, we show how the sign problem 
can be viewed as a special case of a more general phase problem, where the (complex-valued) phase is 
assumed to be piecewise constant. Moreover, we prove that at the expense of a higher sampling rate, this 
piecewise constant phase problem also admits a unique solution. Finally, in Section 4 we combine the above 
results and develop a simple, computationally efficient algorithm to solve the original sign problem.

Specifically, we introduce the following assumption:

A1 Support. The vector f = DFT {F} ∈ C
N has a support of length τ + 1. For the classical phase problem 

the support set is given by Eq. (4), whereas for the sign problem it is given by Eq. (5).
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In this section we assume that τ is known. In Section 4 we discuss how τ can be estimated from the 
measured data. The following theorem proves that, when sampled properly, this sign problem has a unique 
solution.

Theorem 1. Let |F|2 be the observed noise-free spectrum of a signal that satisfies assumption A1, with support 
given by Eq. (5). If F ∈ R

N and N > 2τ then the sign problem has a unique solution up to a global ±1 sign 
ambiguity.

Proof. By assumption A1, the support of f is [−τ/2, . . . , τ/2] mod N . It is convenient to consider its 
circularly shifted signal, fs, defined as fs(k) = f(k + τ/2 mod N). By definition, the support of fs is 
[0, 1, . . . , τ ], and thus its DFT is Fs(ωj) =

∑τ
k=0 fs(k)eiωjk. The relation between Fs and F is

F (ωj) = e−iωjτ/2Fs(ωj) = eiωj(N− τ
2 )Fs(ωj)

where the last equality follows since eiωjN = 1 for all j.
Next, we make the change of variables z = eiω, known as the z-transform. With some abuse of notation 

we denote the resulting polynomial as F (z), defined for all z ∈ C,

F (z) = zN− τ
2

τ∑
k=0

fs(k)zk. (6)

By its definition, F (z) is analytic in the complex plane. Further, at the N sampling points, zj = eiωj , we 
have that F (zj) = F (ωj).

By the fundamental theorem of algebra, the polynomial F (z) of Eq. (6) can be decomposed as

F (z) = czN− τ
2

τ∏
r=1

(z − zr) (7)

for some c ∈ C. Since the support of the shifted signal fs(k) is the set {0, 1, ..., τ} it follows that both 
fs(0) �= 0 and fs(τ) �= 0. Hence, all zr �= 0, and the polynomial F (z) has exactly τ non-zero roots.

To guarantee a unique solution to the sign problem, these roots must be uniquely determined from the 
N measurements {|F (ωj)|}N−1

j=0 . In the classical 1-D phase problem, where F ∈ C
N , these N measurements 

do not yield a unique solution. In our sign problem, in contrast, F ∈ R
N , and as we now show, this leads to 

uniqueness, up to trivial ambiguities of the sign problem.
To this end, consider the polynomial F (z)2. By Eq. (7) it is given by

F (z)2 = c2z2N−τ
τ∏

r=1
(z − zr)2. (8)

Namely, F (z)2 has the same roots as F (z), but each with its multiplicity doubled. Thus, F (z)2 has exactly 
2τ non-zero roots and is uniquely determined by its values at any 2τ + 1 distinct points. Since F (zj) is real 
valued, at the N observed points F (zj)2 = |F (zj)|2. Hence, if N > 2τ these observations uniquely determine 
the 2τ roots, which in turn determine F (z) up to a global ±1 sign ambiguity. �

According to Theorem 1, up to a ±1 global sign, there is a single sign pattern s = (s0, . . . , sN−1), such 
that DFT {|F|s} yields a signal with the correct support. As the following lemma shows, this sign pattern 
cannot be arbitrary. Rather, it has a limited number of sign changes.
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Lemma 1. Let F ∈ R
N be a vector such that f = DFT {F} satisfies assumption A1 with support given by 

Eq. (5). Then the vector s = sign(F) ∈ {−1, 1}N has at most τ sign changes.

Proof. The assumption that F ∈ R
N implies that f(k) = f∗(−k mod N) for all k = 0, . . . , N − 1. This, in 

turn, implies that the function F (ω) =
∑τ/2

k=−τ/2 f(k)eiωk, which extends F (ωj) = Fj to all ω ∈ [0, 2π], is 
real-valued for all ω. As in the proof of Theorem 1, we consider the z-transform, z = eiω, and the polynomial 
F (z) of Eq. (6). Then, F (z) is real-valued for all |z| = 1. As in the proof of Theorem 1, F (z) has τ non-zero 
roots. In particular, F (z) can vanish in at most τ points on the unit circle. Furthermore, at the sampling 
points zj = eiωj we have F (zj) = Fj . Hence, in order for Fj and Fj+1 to have different signs, the continuous 
function F (z) must have a zero crossing somewhere along the arc between zj and zj+1. Thus, the total 
number of zeros of F (z) bounds the maximal number of sign changes in the vector s = sign(F) to be τ . 
If at some sampling points F (zj) = 0 then sign(F (zj)) is ill-defined. In this case we set sign(F (zj)) =
sign(F (zj−1)), and sign(F (z0)) = 1 if F (z0) = 0. �
Remark 1. It is interesting to contrast Lemma 1 with the phenomenon of superoscillations. As studied for 
example in [16], the Fourier transform of a compactly supported continuous signal may have an arbitrarily 
large number of sign changes. As a specific finite dimensional analogue, the vector Fj = (−1)j has N − 1
sign changes and its DFT is a delta function at the point N/2 which has a support of length one (τ = 0). 
While at first sight this seems to contradict Lemma 1, it does not, as Lemma 1 requires that the support is 
centered around the origin. Indeed, shifting the above delta function by N/2, so that its support is at the 
index k = 0 yields a DFT vector F = (1, 1, . . . , 1) with no sign changes at all, in accordance with Lemma 1.

According to Lemma 1, the sign pattern s that corresponds to a signal f with support of length τ + 1, 
belongs to a set of size O(Nτ ). For a fixed τ this set has size polynomial rather than exponential in N . 
Unfortunately, it is exponential in τ . Thus, finding the unique solution to a given sign problem by exhaustive 
search over all possible sign patterns in this set is generally computationally intractable.

To construct a computationally efficient sign retrieval algorithm, we consider the following more general 
phase problem: We relax the strict assumption of a real-valued phase and instead assume the phase is 
complex-valued but piecewise constant in M a-priori known segments. Note that according to Lemma 1, 
the (real-valued) sign problem is a particular instance of this piecewise constant phase problem. The following 
theorem shows that under suitable conditions, this modified phase problem also admits a unique solution. 
In section 4 below we then show how this modified problem can be solved computationally efficiently by 
framing it as the solution to a set of linear equations.

We mathematically formulate the piecewise constant phase property as follows:

A2 Known segmentation into constant phase intervals. There is a known division of the N frequencies ωj

to M contiguous segments, in which the unobserved phase vector φ is piecewise constant. Let c be a 
vector of length M containing the first index in each of these segments. The m-th segment of length Nm

consists of all frequencies ωj with j ∈ [c(m), c(m) +1, . . . , c(m) +Nm−1] and φ(ωc(m)) = φ(ωc(m)+k), 1 ≤
k ≤ Nm − 1.

If all indices where F changed its sign were known (e.g., we had a complete segmentation), then this 
information would directly resolve the sign pattern s, up to its global ±1 sign ambiguity. Unfortunately, in 
practice it is difficult to determine all zero crossings from the observed |F|, see for example [33].

Assumption A2 is thus interesting when it defines an over-segmentation of φ to piecewise constant phase 
intervals, where the number of intervals M of the given segmentation is not necessarily minimal. Indeed, 
a key result of our paper, stated in Theorem 2 below, is that under suitable conditions even such an 
over-segmentation can suffice to resolve the sign problem.
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Theorem 2. Let f ∈ C
N satisfy assumption A1 with a support given by Eq. (4), and suppose that F =

IDFT {f} has a piecewise constant phase and satisfies assumption A2. Assume |Fj| �= 0 at the first and last 
indices of each of the M segments of the given segmentation. If N > 2τ + M then the piecewise constant 
phase problem has a unique solution up to multiplication by a global phase. Namely, the vector |F| and the 
known segmentation uniquely determine f .

Proof. By assumption A1, the signal f has a support of length τ + 1, given by Eq. (4), with an integer 
α ∈ [0, N − 1] that is in general unknown. It will be convenient to work with the circularly shifted signal 
fs given by fs(k) = f(k + α mod N), whose support consists of the indices [0, 1, . . . , τ ]. Its DFT is 
Fs(ωj) =

∑τ
k=0 fs(k)eiωjk and it is related to F via Fs(ωj) = eiωjαF (ωj).

As in Theorem 1, consider the polynomials Fs(z) =
∑τ

k=0 fs(k)zk and F (z) = zN−αFs(z). In contrast to 
the sign problem, where F (z) was real-valued for all |z| = 1, here the phase is only assumed to be piecewise 
constant, and so F (z) is in general complex-valued. We thus write it as

F (z) = |F (z)|X(z). (9)

Assumption A2 can be expressed as X(zmγn) = am, m = 1, . . . , M, n = 0, . . . , Nm − 1 where zm = eiωc(m)

is the first point in each segment, γ = eiΔω and am are unknown constants of unit modulus. Note that if at 
some interior point of a segment |F (zj)| = 0, its phase X(zj) is ill defined. In such a case we define it to be 
equal to the phase of the left-most point in that segment.

To show that |F|2 uniquely determines F (z) up to a global phase eiφ, assume to the contrary that there 
exists another signal g �= f whose support is of the form [−α′, −α′ + τ ] mod N , where possibly α′ �= α. 
According to the problem statement, G = IDFT {g} satisfies that |G| = |F| and it has a piecewise constant 
phase in the same M segments as F as defined in assumption A2.

We denote the circular shift of g by gs, and the corresponding polynomials by G(z) = zN−α′
Gs(z)

and Gs(z) =
∑τ

j=0 gs(k)zk respectively. Similarly to Eq. (9) we write G(z) = |G(z)|Y (z). Assumption A2 
implies that Y (zmγn) = bm, where bm are unknown constants of unit modulus.

Next, we define the following polynomial, where γ = eiΔω

P (z) = F (z)G(γz) −G(z)F (γz)

= z2N−α−α′
(
γN−α′

Fs(z)Gs(γz) − γN−αFs(γz)Gs(z)
)
. (10)

Since both Fs(z) and Gs(z) are polynomials of degree τ , the term inside the brackets in Eq. (10) is a 
polynomial of degree at most 2τ . Hence P (z) may have at most 2τ non-zero roots.

Now let us study the values P (zj). In each segment m of length Nm ≥ 2 we have that P (z) vanishes at 
all the points in this segment excluding its last one, zmγNm−1, since for any n = 0, . . . , Nm − 2

P (zmγn) = F (zmγn)G(zmγn+1) −G(zmγn)F (zmγn+1)

= |F (zmγn)||F (zmγn+1)|
(
X(zmγn)Y (zmγn+1) − Y (zmγn)X(zmγn+1)

)

= |F (zmγn)||F (zmγn+1)|(ambm − bmam) = 0.

(11)

The total number of points where P vanishes in Eq. (11) is N −M . The condition that N −M > 2τ implies 
that P (z) = 0 everywhere.

Hence, at the last point in each segment, upon division by the non-vanishing signal magnitudes

X(zmγNm−1)Y (zmγNm) = Y (zmγNm−1)X(zmγNm), m = 1, . . . ,M (12)
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Next, using zmγNm = zm+1 and the fact that X and Y are phase vectors, Eq. (12) can be written as

X(zmγNm−1)X∗(zm+1) = Y (zmγNm−1)Y ∗(zm+1), m = 1, . . . ,M. (13)

From Eq. (13) it follows that the phase difference between any pair of consecutive segments in X(zj) is 
equal to the phase difference between the corresponding segments in Y (zj). Hence, we have that

X(zj) = eiφY (zj), j = 0, . . . , N − 1 (14)

where φ is an arbitrary global phase. Therefore, F (z) = eiφG(z) and since Fj = F (zj) we conclude that F
is uniquely determined up to an arbitrary global phase. �
Remark 2. Our proof of Theorem 2 breaks down if Fj = 0 at the last and/or first indices in one or more 
segments. To cover this case, the proof can be modified as follows: Redefine the polynomial P (z) of Eq. (10)
as P (z) = F (z)G(γ2z) −G(z)F (γ2z). By Eq. (11) the modified P (z) vanishes at N − 2M points. Hence, if 
N > 2M + 2τ the proof can be completed as above. If |F| vanishes at a number of consecutive points near 
the edges of some segments the proof can be modified in a similar manner.

4. Sign reconstruction with known support

We now describe a simple, computationally efficient algorithm to solve the sign problem. First, we study 
the case of noise-free measurements, given an over-segmentation of [0, . . . , N − 1] into intervals of constant 
sign. Using Theorem 2, in Section 4.1 we show how the sign pattern can be cast as the solution to an 
over-determined system of linear equations. Next, in Section 4.2 we describe a method to segment the N
indices into intervals of constant sign, given only the vector |F|. An algorithm to recover the sign pattern 
in the presence of noisy measurements appears in Section 4.3. Finally, estimation of the typically unknown 
support length τ is addressed in Section 4.4.

4.1. Sign recovery with known over-segmentation

Consider a signal F ∈ R
N satisfying assumptions A1 and A2, and further assume that the length τ of 

the support of f is a-priori known. As in our earlier works [27,28], instead of working with the (τ +1) signal 
values fk, k = −τ/2, . . . , τ/2 (mod N), as the unknown variables, we consider the vector of N unknown 
signs X = (X0, . . . , XN−1). Further, rather than dealing with the combinatorial set X ∈ {−1, 1}N , we relax 
this constraint and allow all entries Xj to be complex valued, namely X ∈ C

N .
As we now show, this allows us to write a system of linear equations for the vector X over the field C

whose unique real-valued solution is the true sign pattern. The first set of equations captures the support 
assumption on the vector f = DFT {F}. Since f is zero outside the set of indices CS of Eq. (5), the unknown 
vector X must satisfy the following set of N − τ − 1 linear equations

DFT {|F|X} (k) = 0 , k /∈ CS. (15)

The second set of equations imposes the known segmentation into intervals of constant sign, as described 
in A2. Let S denote the set of indices within the intervals of constant sign, excluding the last one in each 
interval. Then,

Xj = Xj+1, ∀j ∈ S. (16)

Given a segmentation to M constant sign intervals the number of equations in (16) is thus N −M .
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By definition, the true sign pattern s = sign(F) is a solution of Eqs. (15)–(16). Theorem 3 below shows 
that under suitable conditions and up to multiplication by a constant, it is the only solution to this system 
of equations.

Theorem 3. Let |F|2 be the intensity of a signal that satisfies assumptions A1 and A2, with a support given 
by Eq. (4). Assume |Fj | �= 0 at the first and last indices of each of the M segments of the given segmentation. 
If N > 2τ + M then, in the noise-free case, the only solutions to the set of linear equations (15)–(16) are 
of the form X = c s where c ∈ C.

Proof. By definition, the true phase vector s = F/|F| is a solution of Eqs. (15)–(16). We now show that all 
solutions are of the form X = c s where c ∈ C. Assume to the contrary that there exists another Y �= cs, 
which satisfies Eqs.(15)–(16). Let G = |F|Y be the signal associated with this solution. By Eq. (15), 
g = DFT {G} has the same (or smaller) support as that of f . As in the proof of Theorem 2, let gs be its 
shifted signal and let its corresponding polynomial be G(z) = zN−τ/2Gs(z).

Next, as in Theorem 2, consider the polynomial P (z) of Eq. (10) which has at most 2τ non-zero roots. 
Since by Eq. (16) the vector Y is piecewise constant in the same segments as X, it follows from Eq. (11)
that P (z) vanishes at a total of N −M points. Hence, the condition N −M > 2τ implies that P (z) = 0
everywhere. In particular, P (zj) = 0 for all j = 0, . . . , N − 1. Specifically for the last point at each segment, 
upon division by |F (zmγNm−1)F (zm+1)| which is non-zero by our assumption,

X(zmγNm−1)
X(zm+1)

= Y (zmγNm−1)
Y (zm+1)

, m = 1, . . . ,M − 1. (17)

Eq. (17) implies that the proportionality constants between each pair of consecutive segments in X and Y
are equal. Hence, Yj = cXj for all j = 0, . . . , N − 1 for some constant c ∈ C. �
Remark 3. Any over-segmentation with number of segments M < N − 2τ suffices for Theorem 3 to hold. 
Importantly, not all indices where s is piecewise constant need to be captured by Eq. (16).

Remark 4. While the condition N > 2τ +M is sufficient to ensure a rank-one solution to the linear system 
(15)–(16), it is by no means a necessary condition. Empirically, often an over-segmentation with more 
segments still suffices to reconstruct the correct sign pattern.

4.2. Segmentation to constant sign intervals

By Theorem 3, with a suitable over-segmentation one can retrieve the sign of F by solving the set of 
linear equations (15)–(16). To this end, however, one must first determine an (over-)segmentation from |F|2
alone. The following lemma provides a principled method to do so.

Lemma 2. Let F ∈ R
N be a signal that satisfies assumption A1 with support set (5). Then, the difference 

between two consecutive values of F is bounded by

|Fj − Fj−1| ≤
( 2
N

)3/2
πSτ/2‖F‖ (18)

where ‖F‖2 =
∑N−1

j=0 F 2
j and

S2
τ/2 =

τ/2∑
k=1

k2 = τ(τ + 1)(τ + 2)
24 = O(τ3).
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Proof. As in the proof of Lemma 1, let F (ω) be the extension of Fj = F (ωj) to all ω ∈ [0, 2π]. Since f is 
symmetric-conjugate and non-zero only in (5), F (ω) can be expressed as

F (ω) =
τ/2∑

k=−τ/2

f(k)e−iωk = f0 +
τ/2∑
k=1

(
f(k)e−iωk + f∗(k)eiωk

)

= f0 +
τ/2∑
k=1

2R(f(k)e−iωk) = f0 + 2
τ/2∑
k=1

|f(k)| cos(ωk + θk), (19)

where f0 = f(k = 0). Since ωj − ωj−1 = Δω = 2π
N ,

|F (ωj) − F (ωj−1)| ≤
2π
N

max
ω

| d
dω

F (ω)| (20)

Combining the last two equations gives

|F (ωj) − F (ωj−1)| ≤
4π
N

τ/2∑
k=1

|f(k)|k

Finally, by the Cauchy–Schwartz inequality,

|F (ωj) − F (ωj−1)| ≤
4π
N

√√√√τ/2∑
k=1

|f(k)|2

√√√√τ/2∑
k=1

k2 (21)

Next, using Parseval’s theorem

τ/2∑
k=1

|f(k)|2 = 1
2

τ/2∑
k=−τ/2

|f(k)|2 − 1
2 |f0|2 = ‖F‖2

2N − 1
2 |f0|2 ≤ ‖F‖2

2N (22)

Combining Eqs. (21)–(22) yields Eq. (18) which concludes the proof. �
Lemma 2 implies that the sign of F must be equal at any consecutive indices {j − 1, j} that satisfy

|Fj | + |Fj−1| >
(

2
N

)3/2

πSτ/2‖F‖ (23)

Eq. (23) thus provides an over-segmentation to constant sign intervals that depends only on the measured 
vector |F|. If the number of found segments M is sufficiently small, so that N > 2τ + M , we can then 
directly recover the sign pattern by solving the system of linear equations (15)–(16).

Remark 5. With a sufficiently high oversampling rate, the number of segments determined by Eq. (23)
satisfies N > 2τ + M , which in turn guarantees recovery of the true sign pattern by solving equations 
(15)–(16). To see this, note that as we increase the number of measurements N while keeping τ fixed, ‖F‖
increases as O(

√
N) and hence the threshold on the right hand side of Eq. (23) decreases as O(1/N). Thus, 

for sufficiently large N , a sufficient number of pairs (j − 1, j) satisfy Eq. (23).

Unfortunately, even though Eq. (23) provides a correct over-segmentation, with a finite over-sampling 
rate the resulting number of segments may be too large, so the corresponding Eqs. (15)–(16) have multi-
ple solutions. To decrease the number of segments, and thus increase the number of linear equations, we 
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Table 1
Heuristic over-segmentation scheme.

Algorithm Heuristic over-segmentation

Input: |F|2.
Algorithm:
1: Find the local minima of |F| given by the indices j s.t. |Fj | < min{|Fj−1|, |Fj+1|}.
2. Define all minima indices as single index segments.
3. Define the indices between each pair of consecutive minima indices as
a constant sign interval.
4: For each minima index, find the adjacent index with the closest value of |F|
value and exclude it from the constant sign interval, i.e. define it as a single index segment.
Output: Over-segmentation to constant sign intervals.

supplement Eq. (23) with a heuristic segmentation scheme which works well in practice, even though it is 
not theoretically guaranteed to yield a correct over-segmentation. Our heuristic segmentation scheme relies 
on the fact that for a sign change to occur between Fj and Fj+1 its underlying continuous function F (ω)
must have a zero crossing at some intermediate ω ∈ [ωj , ωj+1]. Hence, |F| is likely to have a local discrete 
minimum near this zero crossing.

This observation leads to the following segmentation algorithm summarized in Table 1: First, the discrete 
local minima of |F| are found and their indices are defined as single index segments. Next, all the indices 
between each pair of consecutive minima are defined to have the same sign. Finally, for each minimum 
index, the adjacent index for which |F| has closer value to the minimum value is also defined as a single 
index segment. The last step is applied to reduce errors in the resulting segmentation. In the absence of 
noise, our final segmentation is the merging of both segmentations described above. Fig. 9 in Section 6.6
presents an example of the segmentations produced by both schemes.

Note that this heuristic algorithm assumes that sign changes occur at local minima of the intensity. 
Unfortunately, this is not always the case – sign flips may occur at points with small intensity which are 
not a local minimum. This leads to indices with small intensity assigned to wrong segments. Although the 
reconstructed signs at these indices are wrong, their small amplitude yield a relatively small reconstruction 
error in the signal f .

4.3. Sign retrieval from noisy measurements

In realistic experimental scenarios the vector of intensities |F|2 is measured with some noise. In this case, 
no sign pattern satisfies Eq. (15). To cope with measurement noise, we reformulate the sign problem as 
the minimization of a suitable quadratic functional. Below, we first describe our assumed noise model, then 
construct the functional to be minimized and detail our minimization approach.

Let |F̃|2 be the vector of noisy measurements. As described in [28], a rather general noise model is

|F̃|2 = |F + σ√
N
ηs|2 + |F + σ√

N
ηs|ηsh + ηd, (24)

where ηs is background additive noise with noise level σ, ηd is dark counts noise, and |F + σ√
N
ηs|ηsh is 

the detector shot noise which is proportional to the signal intensity. In many cases the dark counts ηd has 
small variance and its main effect can be removed by proper calibration. We thus assume for simplicity that 
ηd = 0. We assume a classical light experiment, far from the single photon regime and we thus neglect the 
effect of shot noise. We further assume that ηs = (ηs0, . . . , ηsN−1) consists of N independent and identically 
distributed (i.i.d.) complex-valued Gaussian random variables N (0, 1). Since the noise level can be accurately 
estimated in most experimental realizations e.g. by calibration measurements, we assume that σ is known.
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To handle noisy measurements, we modify our sign retrieval scheme in two ways: (i) refine the method 
to find an oversegmentation; (ii) replace the homogeneous linear system by the minimization of a quadratic 
functional. Given noisy measurements, our sign retrieval consists of the following steps.
Step 1: Find an over-segmentation. First we apply the heuristic segmentation scheme defined in Table 1. 
We denote by S1 the set of indices of size S1 in the resulting segmentation, excluding the last index in each 
segment. Next, we modify Eq. (23) as detailed in the Appendix to yield,

|Fj | + |Fj−1| >
(

2
N

)3/2

πSτ/2‖F̃‖ + σ/
√
N, (25)

where σ is the standard deviation of the noise. We denote by S2 the set of indices of size S2 in the 
segmentation defined by Eq. (25), excluding the last index in each segment.
Step 2: Construct and minimize a quadratic functional. Given the noisy measurements |F̃|2 and the support 
parameter τ , we define the matrix Acs of size (N − τ − 1) ×N as

(Acs)k,j = (DFT · D)k,j , k /∈ CS, j ∈ [1, N ], (26)

where (DFT )j,k = 1
N eiωj−1(k−1) with j, k = 0, . . . , N − 1 is the discrete Fourier transform matrix, D =

diag(|F̃|) is a diagonal matrix and the set CS is given by Eq. (5). In the noise free case, AcsX = 0 imposes 
that DFT {|F̃|X} vanishes for k /∈ CS and is precisely Eq. (15).

Next, we impose our two segmentation schemes starting with the heuristic one. We use S1 to construct 
the matrix A1 of size S1 ×N , whose kth row is given by

(A1)k,j =

⎧⎪⎪⎨
⎪⎪⎩
Wk j = lk

−Wk j = lk + 1
0 otherwise,

lk ∈ S1 (27)

where k ∈ [1, S1], lk is the k-th index in S1, and the vector of weights W = [W1, . . . , WS1 ] is defined 
as W (k) = min{|F̃lk |2, |F̃lk+1|2}. We note that A1X = 0 imposes that X is piecewise constant in the 
intervals defined by Table 1. The purpose of W is to account for the fact that the heuristic algorithm 
presented in Table 1 does not guarantee a correct over-segmentation and that errors typically occur at indices 
corresponding to low |F̃|2 values where we have less certainty in our segmentation. With our weighting 
approach, we have that A1X = 0 imposes Wj(Xj − Xj+1) = 0 for j ∈ S1. Hence, when a quadratic 
functional based on A1 is minimized, as described below, the constraint that X is piecewise constant at 
j ∈ S1 is suppressed at indices with low |F̃|2 values.

Our second segmentation approach is guaranteed to yield a correct over-segmentation in the noise-free 
case, and in practice for high SNR, it is unlikely to make errors. Hence, we impose this segmentation 
without weights, in a way that also reduces the computational cost of our problem by reducing the number 
of variables. To this end, we sum over the appropriate columns of the (N +S1 − τ −1) ×N matrix [Acs; A1]
to construct the matrix A of size (N + S1 − τ − 1) × (N − S2), according to

Ak,m =
∑

j∈segment m
([Acs;A1])k,j , 1 ≤ m ≤ M, k ∈ [1, N + S1 − τ − 1]. (28)

Our approach is to find a vector X which minimizes the following quadratic functional,

Q(X) = ‖AX‖2. (29)

Since the required output is a sign vector, in principle Eq. (29) should be minimized over {−1, 1}N , which 
results in a non-convex problem. Here we relax this constraint and instead minimize Q(X) over vectors 
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Table 2
Sign retrieval algorithm.

Algorithm Sign retrieval

Input: |F̃|2, τ , σ2.
Algorithm:
1: Compute the sets of indices S1 and S2 according 

to Table 1 and Eq. (25) respectively.
2: Construct the matrix A.
3. Compute the minimizer X̂ of ‖A−ν − X−ν − aν‖2.
4. Project X̂ onto a sign: ŝ = sign(R(X̂)).
Output: Estimated sign vector: ŝ

X ∈ C
N . To avoid the zero solution and given the ±1 global sign ambiguity, as in [28] we set X(ν) = −1

for some index ν ∈ {0, . . . , N − 1}. The functional Q(X) of Eq. (29) then becomes

Q(X) = ‖A−νX−ν − aν‖2, (30)

where aν is the νth column of A, A−ν is the matrix A without aν and X−ν is the vector X without its 
νth entry. We choose ν as the index for which |F̃|2 is maximal. Minimizing Q(X) amounts to the convex 
problem of solving a set of linear equations without constraints. Moreover, in the noise-free case, minimizing 
Q(X) is equivalent to solving the set of linear equations

AX = 0, (31)

which effectively imposes Eqs. (15)–(16) with S = S1 ∪S2. Therefore, under the assumptions of Theorem 3
the minimizer of Q(X) is the true sign vector s (up to multiplication by a constant). As demonstrated in 
section 6.2, empirically this approach is robust to noise and, in practice, even tolerates a small number of 
segmentation errors. Table 2 summarizes our algorithm.

4.4. Estimating the support

In many practical cases, the support parameter τ of f is only known to be bounded between some 
a-priori known values τmin and τmax. Here we propose an algorithm to estimate it from the (possibly noisy) 
measurements |F̃|2. To estimate τ , we scan over the possible values τmin ≤ τs ≤ τmax. For each value τs
we retrieve the sign pattern ŝ according to the algorithm in Table 2, compute the corresponding signal 
f̂ = DFT {|F̃|ŝ} and its average energy outside of the assumed support,

Eout(τs) = 1
N − τs − 1

∑
k/∈CS(τs)

|f̂k|2. (32)

As detailed in Table 3, our estimate τ̂ of τ is the smallest τs where Eout(τs) attains its minimal value.
To justify this approach let us first analyze the noise-free case. Here, for τs = τ , as proven in Section 4.1

our algorithm perfectly recovers the true signal f . Hence, at the correct support, Eout(τ) = 0. For τs < τ

there is no signal f with support parameter τs whose DFT has a piecewise constant-phase. Namely, there is 
no vector X which gives Q(X) = 0 in Eq. (29). Minimizing this quadratic functional gives as output some 
signal f which does not vanish outside the assumed support, as otherwise this would contradict Theorem 3. 
Hence, for any τs < τ , Eout(τs) > 0. For τs > τ , the only solution is the true sign vector s. In the noise-free 
case, our scheme indeed recovers the correct support, τ̂ = τ .

In the presence of noise, even at τs = τ , the recovered signal is noisy and Eout(τ) > 0. As τs increases above 
τ the number of linear equations in Eq. (31) decreases. Hence, the sensitivity to noise of the corresponding 
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Table 3
Compact support estimation.

Algorithm Compact support estimation

Input: |F̃|2, τmin, τmax, σ2.
Algorithm:
1: For τs = τmin to τmax do:

a: Retrieve the sign of F using Table 2 with support of τs + 1.
b: For the retrieved sign ŝ, compute f̂ = DFT {|F̃|ŝ}.
c: Compute Eout(τs) =

∑
k/∈CS |f̂(k)|2/(N − τs − 1).

2. Estimate τ by τ̂ = argmin
τs

{Eout(τs)}.

Output: Estimated support: τ̂ + 1

solution increases, which in turn leads to an increase in Eout(τs) as a function of τs. At low noise levels, our 
approach is thus still able to correctly estimate the true support parameter.

5. Phase retrieval applications of the sign problem

We now present two phase retrieval settings of practical interest in which the sign problem plays a key 
role. The first is vectorial phase retrieval (VPR) [27,28] but with only 3 measurements, and the second is 
phase retrieval from two sufficiently separated objects [14,21].

5.1. VPR with 3 measurements

VPR consists of a recently suggested family of physically feasible measurement schemes together with 
computationally efficient methods to recover the phase. The VPR problem is to recover two signals f1, f2 ∈
C

N with corresponding Fourier transforms F1 and F2 from the following measurements,

|F1|, |F2|, F1F∗
2. (33)

As proven in [28], under suitable conditions, in particular both signals f1, f2 having sufficiently small sup-
ports, this phase problem admits a unique solution. Furthermore, the phase vectors X1, X2 ∈ C

N that 
correspond to F1 and F2 can be uniquely retrieved by solving the following set of linear equations

DFT {|F1|X1}(k) = 0, k /∈ CS

DFT {|F2|X2}(k) = 0, k /∈ CS

(F1F
∗
2)X2 = |F1||F2||X1.

(34)

In [28], several physical scenarios were described where the following 4 vectors can be measured, |F1|, 
|F2|, |F1 +F2| and |F1 + iF2|. From these measurements the interference term F1F∗

2 can be easily computed 
as 1

2 (
∣∣F1 + F2|2 + i|F1 + iF2|2 − (1 + i)(|F1|2 + |F2|2)

)
. Then, the phase is retrieved by solving Eq. (34). 

However, in various physical settings obtaining the fourth measurement, |F1 + iF2|, is difficult or impossible 
and only the following three spectra can be measured

|F1|, |F2|, S = |F1 + F2|. (35)

As we now show, using sign retrieval, these three measurements allow to recover F1F∗
2, the interference 

term required to apply VPR to solve the phase problem.
It was recently proven in [6], that the phase problem corresponding to Eq. (35) admits a unique solution 

if f1 and f2 have a sufficiently small support, but without suggesting a possible algorithm to solve it. We 
propose the following scheme: Given the three vectors of Eq. (35), compute
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ER = 1
2(S2 − |F1|2 − |F2|2) = |F1||F2| cos(φ12) = R(F1F∗

2), (36)

where φ12 = arg(F1F∗
2). Since ER = R

[
F1F∗

2
]

its DFT has support of length at most twice that of f1, f2. 
This is also true for the unknown corresponding imaginary part EI = I

[
F1F∗

2
]
. Moreover, the absolute 

value of EI can be calculated from Eq. (35),

|EI | =
√
|F1|2|F2|2 − E2

R.

To recover F1F∗
2 we thus need to solve the following sign problem: Given the absolute value |EI | of the 

imaginary part of the interference term EI , whose DFT has a support of length τ , retrieve sign(EI). 
For sufficiently small τ (sufficiently high over-sampling), we can thus use our sign retrieval algorithm to 
retrieve this sign. This immediately allows computation of ER + iEI = F1F∗

2 which, together with Eq. (35)
completes the required input for VPR depicted in Eq. (33). Applying this scheme, we demonstrate VPR 
reconstructions with 3 measurements in Section 6.4.

5.2. Phase retrieval from separated objects

A second phase retrieval scenario in which the sign problem arises is the reconstruction of two objects 
that are well-separated, by more than the length of the larger support. Let f ∈ C

N be of the form f = f1 + f2
where f1 and f2 have small supports and are well-separated from each other. In [14], it was shown that 
despite this being a 1-D phase problem, under suitable conditions, the signal f is uniquely determined by 
the single measurement vector |F| = |IDFT {f}| = |F1 + F2|.

Given the above uniqueness result, the goal here is to reconstruct f from the single measurement |F|2. Our 
approach is to use sign retrieval as a step to recover the input required for VPR from |F|2 and then apply 
VPR to retrieve f . Since f1 and f2 are well-separated, we have that DFT

{
|F1 + F2|2

}
yields 3 separated 

terms. The central term is the sum of the autocorrelations of f1 and f2, given by f1�f1+f2�f2. The two other 
terms are their cross-correlation, f1 � f2 and its complex conjugate. Performing an inverse DFT separately 
on each of these terms, yields the following equations

IS = |F1|2 + |F2|2, E3 = F1F∗
2. (37)

In order to apply VPR we first need to resolve the vectors |F1|2 and |F2|2 from Eq. (37). To this end, 
consider the (unknown) function

ID = |F1|2 − |F2|2. (38)

Since ID is the difference between the Fourier intensities of f1 and f2, its Fourier transform has a support 
of size at most twice that of f1, f2. Also, its absolute value can be computed from Eq. (37) as,

|ID| =
√

I2
S − 4|E3|2.

This gives rise to the following sign problem: Given |ID| with DFT {ID} having a small support, retrieve 
sign(ID). Once the sign is retrieved |F1|2 and |F2|2 can be immediately computed from their sum and 
difference which together with F1F∗

2 gives the required input of Eq. (33). The underlying two signals f1 and 
f2 can be now recovered by applying VPR.

In Section 6.5 below we numerically demonstrate this scheme. For its application in the reconstruction 
of separated 2D objects from experimental X-ray free electron laser measurements, see [21].
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6. Simulations

We illustrate the performance of our algorithm via several simulations. First, we consider noise-free and 
noisy reconstructions of complex-valued random signals with support length τ + 1. Next, we consider the 
continuous sign problem, and compare our method to the one suggested by Thakur [33]. Finally, we apply 
our sign retrieval algorithm to the two phase retrieval applications described in Section 5, VPR with 3 
measurements and phase retrieval for two well-separated 1-D objects.

Given the global ±1 ambiguity of the sign problem, we measure the reconstruction quality by the following 
mean-square-error (MSE),

MSE = min
(∑

k

|f̂k − fk|2,
∑
k

|f̂k + fk|2
)
. (39)

6.1. Noise-free reconstruction

We demonstrate that with noise-free measurements and sufficient over-sampling, our sign retrieval al-
gorithm perfectly recovers the underlying signal, essentially with machine-precision error. To this end, we 
generated a complex-valued random signal of length N = 500 with support parameter τ = 100, whose 
Fourier transform is real-valued. We applied our sign retrieval algorithm including a scan over the unknown 
support, as described in Section 4. The right panel of Fig. 1 shows, on a logarithmic scale, the residual energy 
outside the assumed support, as described in Section 4.4. In accordance with our theoretical analysis, the 
residual error sharply drops precisely at the correct support parameter τs = 100 and remains at essentially 
zero value (up to machine error) for all values τs ≥ τ . Our scheme thus correctly estimates τ̂ = τ = 100, 
and as shown in the left panel of Fig. 1, at this estimated support, our algorithm recovers correctly the 
exact sign pattern, leading to a zero MSE.

In the above example, our algorithm found a correct over-segmentation with not too many segments 
and thus resulted in perfect reconstruction. Even with noise-free measurements, this is not always the 
case. The left panel of Fig. 2 shows the number of sign errors, averaged over 100 random realizations as a 
function of the support parameter τ , with a fixed signal length N = 500, whereas the right panel shows the 
corresponding averaged MSE. In accordance with Remark 5, for small values of τ (e.g., a high oversampling 
rate), our segmentation scheme almost always obtains a perfect recovery. In contrast, as τ increases, the 
exact segmentation does not yield a sufficient number of equations, and the heuristic segmentation may 
make small errors. These, however, typically occur at indices with small values |Fj|, which as seen in the 
right panel lead to small reconstruction errors.

6.2. Reconstruction in the presence of noise

Next, we demonstrate the robustness of our algorithm to noise. First, we show the resulting reconstruc-
tions from noisy measurements, where an uncorrelated Gaussian noise with σ = 0.03 was added to the 
same signal as in Section 6.1, normalized to ‖F‖ = 1. As shown in Fig. 3(left) the reconstruction is in very 
good agreement with the true signal. The scan over Eout for different values of the support depicted in 
Fig. 3(right), shows that in contrast to the noise-free case, Eout increases as the support increases above its 
true value. This occurs because a larger assumed support yields a smaller number of linear equations which 
in turn increases the sensitivity to noise of the minimization problem described in Section 4.3.

Next, we study the effect of noise on our reconstructions by Monte Carlo simulations for different support 
lengths, τ = 20, 100, 140, 200, while keeping the oversampling ratio constant at N = 5τ . For each τ , we 
computed the average MSE from the reconstructions of 10 randomly generated, complex-valued signals, 
each with 100 noise realizations. The results, presented in Fig. 4, show that the reconstructions are stable 



B. Leshem et al. / Appl. Comput. Harmon. Anal. 45 (2018) 463–485 479
Fig. 1. Reconstruction of a signal with support τ = 100, from N = 500 noise-free measurements. (Left) The reconstructed versus 
true signal; (right) the residual energy outside the support, on a log-scale, as a function of the unknown support. Our algorithm 
correctly estimates τ̂ = 100, and perfectly recovers the unknown sign pattern, leading to an essentially zero MSE.

Fig. 2. Reconstruction of a random signal as a function of the support parameter τ with N = 500. (Left) Average number of sign 
errors over 100 realizations. (Right) Average MSE.

Fig. 3. Reconstruction of the same signal as in Fig. 1 in the presence of noise at level σ = 0.03. (Left) Signal reconstruction. (Right) 
Residual error vs. assumed support τs.

up to σ � 0.01 even for τ = 200. Note that for τ = 20, the segmentation scheme makes almost no errors, 
and thus the MSE increases linearly with σ (on a log–log scale). For higher values of τ , the probability for 
small segmentation errors increases, leading to nearly constant MSE for small noise levels. Possible routes 
to improve the noise stability are discussed in Section 7.
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Fig. 4. Reconstruction error versus noise level (log–log scale).

Fig. 5. Two different real-valued continuous signals with band-limited Fourier Transform.

6.3. Reconstruction of a continuous function

As mentioned in the introduction, the discrete sign problem considered in this paper can be viewed as the 
finite dimensional analogue of the following continuous problem: Recover a real-valued function g(t) whose 
continuous Fourier transform G(ω) is band-limited, from discrete measurements |g(tj)|. As in the discrete 
case, the key challenge in the continuous problem is to locate the zero crossings of the function g(t), from the 
values |g(tj)|. This problem was recently studied by Thakur [33], who considered the analytic continuation 
of g(t) to the complex valued plane, and developed a method to reconstruct the function g(t + ic), for some 
fixed c ∈ R. In contrast, our approach, beyond being based on a discrete formulation, instead narrows down 
the possible locations of these zero crossings via an over-segmentation to intervals of constant sign. This 
different approach avoids the rather unstable operation of extending the function into the complex plane, 
and projecting it back to the real line.

We now illustrate the applicability of our discrete-formulation based algorithm to the continuous sign 
problem. Following Thakur [33], we sample at N = 200 equispaced points the absolute |Fc(ωj)| of a real-
valued continuous function Fc(ω) whose Fourier transform fc(t) has a compact support. Note that this 
scenario is different from our previous investigations, since the discrete Fourier transform of Fc(ωj) is not
compactly supported. It is thus interesting to see if our algorithm can still succeed in recovering the sign 
pattern.

We compare our algorithm to [33] via Monte Carlo simulations at several noise levels, σ = (0, 1, 2, 3, 4) ·
10−3. We consider two signals, a shifted Bessel function as in [33] and depicted in Fig. 5(right), and a linear 
combination of 10 randomly shifted, randomly weighted sinc functions, depicted in Fig. 5(left). All signals 
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Fig. 6. MSE comparison of Thakur’s method with different values of c and ours as a function of noise level. (Left) combination of 
sinc functions; (right) Shifted Bessel function.

Fig. 7. VPR with 3 measurements. (Left) Normalized magnitude of the reconstructed and true signal. (Right) Scan over averaged 
energy outside of the support.

were normalized to have unit norm prior to adding Gaussian uncorrelated noise. Since Thakur’s method 
depends on the above mentioned parameter c, following the recommendation in [33], we considered the 
following six values c = 0.02, 0.05, 0.1, 0.2, 0.5, 1. Fig. 6(left) compares the two methods for the randomly 
shifted sinc functions. In this case, Thakur’s method exhibited poor sensitivity to noise and its MSE rapidly 
increased with noise level for all considered values of c. In contrast, our method achieved a significantly 
lower error. For the shifted Bessel function, presented in Fig. 6(right), Thakur’s method achieved a lower 
MSE than ours for c = 0.2, 0.5. However, we note that the choice of the optimal c value is not a-priori 
known, and may depend on the signal to be reconstructed. Also, as we verified in additional simulations, 
with a higher sampling rate, our method achieved a lower MSE than Thakur’s.

6.4. VPR with 3 measurements

Next, we demonstrate the use of sign retrieval with VPR to reconstruct two unknown complex-valued 
random signals, f1 and f2 both with N = 150 and a support parameter τ = 50, from 3 measurements |F1 +
F2|2, |F1|2 and |F2|2, as described in Section 5.1. Fig. 7(left) shows the result for a noise-free reconstruction. 
For simplicity, we present the magnitudes of the complex-valued true and reconstructed signal, f1 (the results 
for f2 are similar). The reconstruction is perfect, up to machine error. In this reconstruction we do not assume 
that the support size is known. Instead, we scan over its possible values, similarly to Section 4.4 and [28]. 
A plot of the average energy outside of the support is presented in Fig. 7(right). Note that in contrast to 
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Fig. 8. Phase retrieval with separated objects. (Left) Normalized magnitude of the reconstructed and true signal. (Right) Scan over 
averaged energy outside of the support.

Fig. 9. Illustration of the segmentation scheme. The black line denotes the absolute value of the signal |F (ωj)|. The red circles 
mark the regions guaranteed to have a common sign according to Lemma 2. The green circles mark the additional regions that 
have common sign according to our heuristic segmentation scheme. The blue stars denote the true sign switching indices. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the sign problem here a clear minimum of Eout is obtained at the correct value of the support. The reason 
for this behavior is that for the phase problem, as opposed to the sign problem, shifted solutions are allowed 
as detailed in [28].

6.5. Phase retrieval of two separated objects

Here we demonstrate 1D phase retrieval of a complex-valued vector consisting of two well separated 
signals, from a single measurement. This is achieved by combining sign retrieval with VPR as described in 
Section 5.2. To this end, we generated a signal f of length N = 500 and support length 151, which consists 
of two random complex-valued vectors of length 50 separated by 51 zero entries. In the absence of noise, the 
signal is perfectly reconstructed (to within machine error), as demonstrated in Fig. 8(left). As in section 6.4, 
we did not assume here a known support but rather estimated it as a part of the algorithm. The scan over 
τs for different support values is presented in Fig. 8(right). As in Section 6.4, also here a clear minimum of 
Eout is attained at the true support value.

6.6. Segmentation scheme

Fig. 9 illustrates our segmentation scheme of Section 4.2 in the noise-free case. The indices in which sign 
changes occur are denoted by blue stars. The red circle denote indices for which Eq. (23) holds. The green 
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circles denote indices for which Eq. (23) does not hold, but are assigned to constant sign intervals according 
to the heuristic segmentation scheme of Table 1.

7. Discussion

In this paper we presented a theoretical study of the finite dimensional sign problem and developed 
a novel computationally efficient sign retrieval algorithm. We then showed its applicability to two phase 
retrieval problems of practical interest, VPR with 3 measurements and reconstruction of two well separated 
objects.

Our sign problem, which can be formulated as the solution to Eq. (15), is a specific instance of an 
under-determined system of linear equations with an integer solution (the sign pattern in our case). The 
question of uniqueness of the solution to such systems, was recently studied by [22]. In their paper, [22]
also proposed a linear programming relaxation of this non-convex problem, and proved it to work with 
overwhelming high probability if the equations are random and their number is more than half the number 
of unknowns. Unfortunately, this relaxation was unable to recover the correct sign pattern in our sign 
problem, probably due to the fact that our equations are far from being random.

Due to Lemma 1, which states that the sign pattern can have at most τ sign changes, our sign problem 
can also be viewed as a specific instance of an under-determined set of linear equations whose solution is 
sparse (for example by a change of variables from s to its discrete derivative). For this problem, L1-type 
minimization schemes have been proposed and proven to recover the correct solution under various con-
ditions. Unfortunately, a straightforward application of L1 Lasso penalization was again unable to recover 
the correct sign pattern, even with noise-free measurements, unless the support parameter, τ which also 
controls the sparsity, was extremely small compared to N . This naturally raises a question on the role of 
oversampling in the sign problem: in the examples above we used N = 5τ , which works in practice, but the 
exact dependence of the robustness on the oversampling is yet an open question.

Theoretical understanding of the robustness to noise of our algorithm is still lacking and is an interesting 
topic for further investigation. Improving the noise robustness is also an interesting route of future research. 
In particular, coupling the powerful relaxation schemes discussed above and their underlying theoretical 
guarantees to our segmentation-based relaxation could potentially improve the overall robustness of our 
sign retrieval algorithm.
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Appendix A. Segmentation in the presence of noise

Here we describe a simple modification to Eq. (23) to account for noise. As described in Section 4.3, our 
noise model is given by Eq. (24). After neglecting dark counts and shot noise, we are left with

|F̃| = |F + σ√
N
ηs|. (40)

Hence, assuming a high SNR we have,

|F̃| = |F| + σ√ R(e−iφηs) + O

(
σ2)

. (41)

N N
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Since we assumed ηs ∼ N (0, 1), we may thus write ηs = a+ib√
2 where a and b are i.i.d. N (0, 1). Hence, 

R(e−iφηs) = 1√
2(a cosφ + b sinφ) is zero-mean Gaussian and its variance is 1

2 . In the presence of noise, 
|F̃j | + |F̃j+1| is thus approximately the correct value |Fj| + |Fj+1|, perturbed by a Gaussian with variance 
σ2/N . To account for noise, we add this standard deviation σ√

N
to the threshold on the right hand side of 

Eq. (23). Thus Eq. (25) follows.
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