Periods and L-functions

Yiannis Sakellaridis

Johns Hopkins University

Conference on Representation Theory and Algebraic Analysis in honor of Joseph Bernstein on the occasion of his 75 th birthday

A sequence of periods

Let X^{\bullet} be the quotient of $\left(\mathrm{SL}_{2}\right)^{n}$ by the subgroup H_{n}, where:

$$
H_{n}=\left\{\left.\left(\begin{array}{cc}
1 & x_{1} \\
& 1
\end{array}\right) \times\left(\begin{array}{cc}
1 & x_{2} \\
& 1
\end{array}\right) \times \cdots \times\left(\begin{array}{cc}
1 & x_{n} \\
& 1
\end{array}\right) \right\rvert\, x_{1}+x_{2}+\cdots+x_{n}=0\right\} .
$$

It has an action of $G=\left(\mathbb{G}_{m} \times\left(\mathrm{SL}_{2}\right)^{n}\right) / \pm 1$, and corresponds to the following periods of automorphic forms $f \in \pi$ on $[G]:=G(k) \backslash G(\mathbb{A})$:

- $n=1$, Hecke: $\int_{\left[G_{m}\right]} f\left(\begin{array}{ll}a & \\ & 1\end{array}\right)|a|^{s} d a$, represents $L\left(\pi, \frac{1}{2}+s\right)$.
- $n=2$, Rankin-Selberg: $X^{\bullet} \hookrightarrow \mathbb{A}^{2} \times{ }^{G L_{2}} G, \Phi \in \mathcal{S}\left(\mathbb{A}_{2}\right)$,
$\int_{\left[G_{2}\right]} f_{1}(g) f_{2}(g) E_{\Phi}\left(g, \frac{1}{2}+s\right) d g$, represents $L\left(\pi_{1} \times \pi_{2}, \frac{1}{2}+s\right)$.
- $n=3$, Garrett: $X^{\bullet} \hookrightarrow[S, S] \backslash \mathrm{Sp}_{6}$, $\int_{\left[G / \mathbb{G}_{m}\right]} f(g) E_{\text {Siegel }}\left(g, \frac{1}{2}+s\right) d g$, represents $L\left(\pi_{1} \times \pi_{2} \times \pi_{3}, \frac{1}{2}+s\right)$.

To fix ideas:
All formulas approximate, Archimedean places omitted!

$$
[H] / K_{H}\left(=\operatorname{Bun}_{H}\right) \rightarrow[G] / K_{G}\left(=\operatorname{Bun}_{G}\right), \quad K_{G}=G(\widehat{\mathcal{O}})
$$

For f on $[G] / K_{G}$,

$$
\int_{[H]} f d h=\int_{[G]} f(g) \cdot 1_{[H] K_{G}}(g)
$$

The "period distribution" $1_{[H] K_{G}}$ is the image of

$$
1_{H \backslash G(\widehat{\mathcal{O}})} \in \mathcal{S}(H \backslash G(\mathbb{A}))
$$

under the "theta series"

$$
\Phi \mapsto \Theta \Phi(g):=\sum_{\gamma \in H \backslash G(k)} \Phi(\gamma g)
$$

Moral: The period distribution coming from $1_{X^{\bullet}(\widehat{\mathcal{O}})}\left(\right.$ for $\left.X^{\bullet}=H \backslash G\right)$ may be wrong!

Basic functions

Braverman-Kazhdan: Define a non-trivial Schwartz space for the "basic affine space" $X=\overline{N \backslash G^{\text {aff }}}=\operatorname{spec} k[G]^{N}$, generalizing:
$G=\mathrm{GL}_{2}, X^{\bullet}=N \backslash \mathrm{SL}_{2}=\mathbb{A}^{2} \backslash\{0\} \hookrightarrow X=\mathbb{A}^{2}$.
At any finite place,

$$
X^{\bullet}(\mathfrak{o})=\left\{(x, y) \in \mathfrak{o}^{2} \mid(x, y)=1\right\}, \quad X(\mathfrak{o})=\mathfrak{o}^{2} .
$$

$\mathcal{S}(X \bullet(\mathbb{A})) \xrightarrow{\int_{A} \times \chi^{-1}} \operatorname{Ind}_{B}^{G}(\chi) \xrightarrow{\mathcal{E}} C^{\infty}([G])$ Eisenstein series Difference between $\mathcal{S}\left(X^{\bullet}(\mathbb{A})\right)$ and $\mathcal{S}(X(\mathbb{A}))$ is

$$
E(z, s)=\sum_{(m, n)=1} \frac{y^{s}}{|m z+n|^{2 s}} \text { vs. } E^{*}(z, s)=\sum_{(m, n) \neq(0,0)} \frac{y^{s}}{|m z+n|^{2 s}}
$$

Here, $E^{*}(z, s)=\zeta(2 s) E(z, s)$, both have meromorphic continuation.
$X=\overline{N \backslash G}^{\text {aff }}$
$\mathcal{S}\left(\overline{N \backslash G^{\text {aff }}}\right.$) originates in Drinfeld's compactification of Bun ${ }_{B}$ (=global model for $N \backslash G(\mathfrak{o})$).

$$
\overline{\operatorname{Bun}_{B}}=\operatorname{Maps}\left(C, \overline{N \backslash G}^{\mathrm{aff}} / T \times G\right)
$$

$\overline{\mathrm{Bun}_{B}}$ is singular, so we want to compute $I C_{\overline{\mathrm{Bun}}{ }_{B}}$.
Function-theoretically (taking Frobenius trace):

$$
\mathcal{S}(X(\mathbb{A})) \ni I C_{X(\widehat{\mathcal{O}})},
$$

where for $\mathfrak{o}=\mathbb{F}((t))$ we'll think of $X(\mathfrak{o})$ as the \mathbb{F}-points of the arc space of $X: \mathcal{L}^{+} X=\operatorname{Maps}(D=\operatorname{spec} \mathbb{F}[[t]], X)$.

$$
I C_{\overline{\mathrm{Bun}_{B}}}=\Theta\left(I C_{X(\widehat{\mathcal{O}})}\right) \in C^{\infty}([T] \times[G])
$$

Braverman-Finkelberg-Gaitsgory-Mirković [BFGM]:
"The Eisenstein series $E^{*}(g, \chi)=\int_{[T]} I C_{\text {Bun }_{B}}(t, g) \chi^{-1}(t) d t$ attached to $\overline{\mathrm{Bun}_{B}}$ is $\prod_{\check{\alpha}>0} L(\chi \circ \check{\alpha}, 0)$ times the Eisenstein series $E(g, \chi)$ attached to Bun $_{B}$."

Back to $X^{\bullet}=H \backslash G$. Idea:

- Choose an affine $X^{\bullet} \hookrightarrow X$ (e.g., $X=\overline{X^{\bullet}}{ }^{\text {aff }}$).

■ Define a Schwartz space $\mathcal{S}(X(\mathbb{A}))$ with a "basic vector" $\Phi^{0}=I C_{X(\widehat{\mathcal{O}})}$.
■ Define the " X-period" as the theta series $P_{X}(g)=\Theta \Phi^{0}(g)=\sum_{\gamma \in X(k)} \Phi^{0}(g)$.

Conjecture (S., 2009)
For $f \in \pi^{G(\widehat{\mathcal{O}})}$ an automorphic form, suitably normalized (e.g., by Fourier-Whittaker coefficient), $\int_{[G]} f \cdot P_{X}$ is equal to (a special value of) an L-function.

The case of L-monoids

Example: $X^{\bullet}=H=\mathrm{GL}_{n} \hookrightarrow X=$ Mat $_{n}$, this unfolds to the Godement-Jacquet integral (here $G=H \times H, f=\phi \otimes \bar{\phi}$):

$$
\int_{[H]}\langle\pi(h) \phi, \phi\rangle \Phi^{0}(h) d h=L\left(\pi,-\frac{1}{2}(n-1)\right)
$$

For (split) $H \xrightarrow{\text { det }} \mathbb{G}_{m}$, and any section $\lambda: \mathbb{G}_{m} \rightarrow H$, identified with a heighest weight for the dual group H, Braverman-Kazhdan and $\mathrm{Ngô}$ defined an L-monoid $H \hookrightarrow H_{\lambda}$, generalizing $\mathrm{GL}_{n} \hookrightarrow \mathrm{Mat}_{n}$. Bouthier-Ngô-S. (2014):
1 For $\mathfrak{o}=\mathbb{F}[t t]$, the function $I C_{X(\mathfrak{o})}$ is well-defined.
(Rests on the Grinberg-Kazhdan-Drinfeld theorem on finite-dimensionality of singularities of $\mathcal{L}^{+} X$.)
2 The GJ integral in this case gives $L\left(\pi, V_{\lambda},-\langle\rho, \lambda\rangle\right)$.

The general case

What is the L-value attached to a general spherical X ? The Gaitsgory-Nadler dual group: $\breve{G}_{X} \hookrightarrow$. (Conjecturally, only automorphic forms with Langlands parameters into \breve{G}_{X} have nonzero pairing with P_{x}.)
E.g., in the group case that we just saw $X=H, G=H \times H$, and the representation must be of the form $\pi \otimes \tilde{\pi}$, so $\breve{G}_{X}=\check{H}$.
Looking for a representation $\rho_{X}: \breve{G}_{X} \rightarrow \mathrm{GL}(V)$.
S. (2009) Let $X=H \backslash G$ with H reductive, so $I C_{X(\mathfrak{o})}=1_{X(\mathfrak{o})}$. General formula in terms of the colors of X :
$X / / N \curvearrowleft T=B / N$, acts through some quotient $T \rightarrow T_{X}$.
The toric variety $X / / N$ defines certain coweights of T_{X} which are weights of the representation ρ_{X} of $X / / N$.

Examples

■ $X=H \curvearrowleft G=H \times H$. The colors are the Bruhat divisors, inducing valuations equal to the simple coroots $\check{\alpha}$. Hence $\rho_{X}=\check{\mathfrak{h}}$. Corresponds to Petersson diagonal period of normalized cusp forms:

$$
\int_{[H]} f(h) \overline{f(h)} d h=L(\pi, A d, 1)
$$

■ $X=P \mathrm{PL}_{2}^{\text {diag }} \backslash \mathrm{PGL}_{2}^{3}$. B-orbits $\leftrightarrow \mathrm{PGL}_{2}$-orbits on $\left(\mathbb{P}^{1}\right)^{3} \ni\left(z_{1}, z_{2}, z_{3}\right)$, colors $=\left\{z_{i}=z_{j}\right\}$, valuations $\frac{\check{\alpha}_{i}+\check{\alpha}_{j}-\check{\alpha}_{k}}{2}$. Hence, $\rho_{X}=\operatorname{Std} \otimes \operatorname{Std} \otimes \operatorname{Std}$ of SL_{2}^{3}.
The (Kudla, Harris, Gross, Böcherer, Schulze-Pillot, Watson, Ichino) triple product period

$$
\left|\int_{\left[\mathrm{PGL}_{2}\right]} f_{1}(g) f_{2}(g) f_{3}(g) d g\right|^{2}=L\left(\pi_{1} \times \pi_{2} \times \pi_{3}, \frac{1}{2}\right)
$$

S.-Jonathan Wang (2020?) Vast generalization of the above result and Bouthier-Ngô-S. (for $\breve{G}_{X}=\check{G}$, for now):
Description of $I C_{X(\mathfrak{o})}$ in terms of the geometry of X.
Example: Let $X^{\bullet}=H_{n} \backslash G_{n}$ the $\left(\mathbb{G}_{m} \times \mathrm{SL}_{2}^{n}\right) / \pm 1$-variety from the beginning of this lecture, $X=\overline{X^{\bullet}}{ }^{\text {aff }}$. Then, for a cusp form $f_{s} \in \pi=|\bullet|^{s} \otimes \pi_{1} \otimes \cdots \otimes \pi_{n}, \Re(s) \gg 0$, Whittaker coefficient 1 ,

$$
\int_{[G]} f \cdot \Theta\left(I C_{X(\widehat{\mathcal{O}})}\right)=L\left(\pi_{1} \times \cdots \times \pi_{n}, \frac{1}{2}+s\right) .
$$

Writing $\int_{[G]} f \cdot P_{X}$ as an Euler product is
sometimes easy (Godement-Jacquet, Hecke, Rankin-Selberg), and sometimes hard (Gan-Gross-Prasad).
The Ichino-Ikeda conjecture:

$$
\text { For } X=H \backslash G=\mathrm{SO}_{n} \backslash\left(\mathrm{SO}_{n} \times \mathrm{SO}_{n+1}\right),
$$

$$
\left|\int_{[G]} f \cdot P_{X}\right|^{2}=\left|\int_{[H]} f(h) d h\right|^{2}=\int_{H(\mathbb{A})}\langle\pi(h) f, f\rangle d h \text { (an Euler product). }
$$

The observation of Akshay Venkatesh: The RHS is equal to the Plancherel density of $1_{X(\mathfrak{o})}$ (when f is everywhere unramified). Hence, the L-value attached to the period can be computed by a local Plancherel formula:

$$
\left\|1_{X(\mathfrak{o})}\right\|_{L^{2}(X(F))}^{2}=\int_{\hat{G}^{u r r}} L\left(\pi, \rho_{X}\right) \mu(\pi)
$$

Of course, there is no a priori reason why the Plancherel formula should involve an L-function! A priori, what is denoted by $L\left(\pi, \rho_{X}\right)$ could be any function of π.

In any case, generalizing the Ichino-Ikeda conjecture (S.-Venkatesh), we have a path from periods to L-functions:

$$
\left|\int_{[G]} f \cdot P_{X}\right|^{2}
$$

II conjecture
Euler product of Plancherel densities of $\left\|I C_{X(\mathfrak{o})}\right\|_{L^{2}(X(F))}^{2}$
local calculation

$$
\int_{\hat{G}^{u n r}} L\left(\pi, \rho_{X}\right) \mu(\pi) .
$$

The aforementioned [S. 2009, S.-Wang 2020?] perform this local calculation.

Why do L-functions appear in the Plancherel decomposition of
$\left\|I C_{X(\mathfrak{o})}\right\|_{L^{2}(X(F))}^{2}$?
$F=\mathbb{F}((t)) \supset \mathfrak{o}$. Let's think of elements Φ_{i} of $S(X(F))^{G(\mathfrak{o})}$ as
Frobenius traces of $\mathcal{L}^{+} G$-equivariant ℓ-adic sheaves \mathcal{F}_{i} on the loop space $\mathcal{L} X$; then

$$
\left\langle\Phi_{1}, \Phi_{2}\right\rangle=\operatorname{tr}\left(\operatorname{Frob}, \operatorname{Hom}\left(\mathcal{F}_{1}, D \mathcal{F}_{2}\right)\right)
$$

(all objects and Homs in the derived category).
We are led to study $D\left(\mathcal{L} X / \mathcal{L}^{+} G\right)$, e.g., $X=H, G=H \times H$, this is the bounded derived category of $H(\mathfrak{o})$-equivariant constructible sheaves on the affine Grassmannian of H.
Bezrukavnikov-Finkelberg: There is a natural equivalence of triangulated categories ("the spherical category"):

$$
D\left(\mathcal{L}^{+} H \backslash \mathcal{L} H / \mathcal{L}^{+} H\right) \xrightarrow{\sim} \operatorname{Coh}_{\text {perf }}\left(\breve{\mathfrak{h}}^{*} / \check{H}\right)=\operatorname{Coh}_{\text {perf }}\left(T^{*} \check{H} /(\check{H} \times \check{H})\right) .
$$

Notice that the (co)adjoint representation $\check{\mathfrak{h}}^{*}$ is the one that shows up in the calculation of the Petersson norm=diagonal period of normalized cusp forms:

$$
\int_{[H]} f(h) \overline{f(h)} d h=L(\pi, A d, 1)
$$

Conjecture (Ben Zvi-Venkatesh-S.)

Given a spherical variety X, there is a Hamiltonian \check{G}-space $\check{M} \rightarrow \check{\mathfrak{g}}$ and an equivalence of module categories for the spherical category:

$$
D\left(\mathcal{L X} / \mathcal{L}^{+} G\right) \xrightarrow{\sim} \operatorname{Coh}_{\text {perf }}(\check{M} / \check{G})
$$

Moreover, $\check{M}=V_{X} \times \check{G}_{X} \check{G}$, where $\rho_{X}: \check{G}_{X} \rightarrow \mathrm{GL}\left(V_{X}\right)$ is the representation attached to the L-value of X.
The association $M=T^{*} X \leftrightarrow \check{M}$ is involutive, i.e., if $\check{M}=T^{*} \check{X}$, the Hamiltonian dual of \check{X} is M.

Examples

M	M
$\begin{gathered} T^{*} H \\ \int_{[H]^{\text {diag }}} f_{1}(h) f_{2}(h) d h=L(\tau, \mathrm{Ad}, 1), \pi=\tau \otimes \tilde{\tau} \end{gathered}$	$T^{*} \stackrel{H}{H}$
$\overline{T^{*}}((N, \psi) \backslash G)=\left(\mathfrak{t}^{*} / / W\right) \times G$ (Whittaker normalization)	$\begin{gathered} \mathrm{pt}=\dot{G} / \dot{G} \\ \int_{[\check{G}]} 1=L\left(\mathfrak{t}^{*} / / W\right)(\text { motive of } G) \end{gathered}$
$\begin{gathered} \text { Tate: } T^{*} \mathbb{A}^{1} \\ \int_{\left[\mathbb{G}_{m}\right]} \chi(x) \Theta \Phi(x) d x=L(\chi, 0) \end{gathered}$	$T^{*} \mathbb{A}^{1}$
$\begin{gathered} \text { Hecke: } T^{*}\left(\mathbb{G}_{m} \backslash \mathrm{PGL}_{2}\right) \\ \int_{\left[\mathbb{G}_{m}\right]} f\left(\begin{array}{ll} a & \\ & 1 \end{array}\right) d a=L\left(\pi, \operatorname{Std}, \frac{1}{2}\right) \end{gathered}$	$\begin{gathered} T^{*} \operatorname{Std} \curvearrowleft \mathrm{SL}_{2} \\ \left(E^{*}(g, \chi)=L(\chi \circ \check{\alpha}, 0) E(g, \chi)\right) \end{gathered}$
$\begin{gathered} \text { Gross-Prasad: } T^{*}\left(\mathrm{SO}_{2 n} \backslash \mathrm{SO}_{2 n} \times \mathrm{SO}_{2 n+1}\right) \\ \left\|\int_{[H]} f_{1}(h) f_{2}(h) d h\right\|^{2}=L\left(\pi_{1} \times \pi_{2}, \frac{1}{2}\right) \\ \hline \end{gathered}$	Theta: $\left(W_{4 n}, \omega\right) \curvearrowleft \mathrm{SO}_{2 n} \times \mathrm{Sp}_{2 n}$. Rallis inner product formula.

Remark: All these examples are spherical/multiplicity-free and smooth affine. Other examples suggest that losing the spherical property on one side leads to singularities/stacky behavior on the other.

Open problems

1 Proving the geometric conjecture: Recent new cases by Braverman-Finkelberg-Ginzburg-Travkin (unramified), Raskin. Can we upgrade the calculation of the Plancherel formula (with J. Wang) to the conjectural categorical equivalence?

2 Euler factorization and relative functoriality: it could be possible to establish the Ichino-lkeda formula through a comparison of relative trace formulas:

$$
\mathcal{S}(X \times X / G) \xrightarrow{\sim} \mathcal{S}(N, \psi \backslash G / N, \psi) .
$$

The geometric framework suggests the existence of natural such transfer map, corresponding to the pushforward $\check{M} \rightarrow \mathrm{pt}$.
3 Functional equation: There should be a Fourier transform $\mathcal{S}(X) \xrightarrow{\sim} \mathcal{S}\left(X^{*}\right)$, where X^{*} is X with G-action twisted by Chevalley involution, such that the theta series satisfy the Poisson summation formula. Also suggested by the geometric conjectures.

