Introduction

Geometrization of the Plancherel formula 0000

Periods and *L*-functions

Yiannis Sakellaridis

Johns Hopkins University

Conference on Representation Theory and Algebraic Analysis in honor of Joseph Bernstein on the occasion of his 75th birthday

11-14 May 2020

Periods and L-functions

Introduction		Euler factorization	Geometrization of the Plancherel formula
•0	000000		0000

A sequence of periods

Let X^{\bullet} be the quotient of $(SL_2)^n$ by the subgroup H_n , where:

$$H_n = \left\{ \left(\begin{array}{cc} 1 & x_1 \\ & 1 \end{array}\right) \times \left(\begin{array}{cc} 1 & x_2 \\ & 1 \end{array}\right) \times \cdots \times \left(\begin{array}{cc} 1 & x_n \\ & 1 \end{array}\right) \middle| x_1 + x_2 + \cdots + x_n = 0 \right\}.$$

It has an action of $G = (\mathbb{G}_m \times (SL_2)^n) / \pm 1$, and corresponds to the following periods of automorphic forms $f \in \pi$ on $[G] := G(k) \setminus G(\mathbb{A})$:

$$\begin{array}{l} \bullet \quad n=1, \underbrace{\operatorname{Hecke:}}_{[\mathbb{G}_m]} f \begin{pmatrix} a \\ 1 \end{pmatrix} |a|^s da, \operatorname{represents} L(\pi, \frac{1}{2}+s). \\ \bullet \quad n=2, \underbrace{\operatorname{Rankin-Selberg:}}_{[\operatorname{GL}_2]} X^{\bullet} \hookrightarrow \mathbb{A}^2 \times^{\operatorname{GL}_2} G, \Phi \in \mathcal{S}(\mathbb{A}_2), \\ \int_{[\operatorname{GL}_2]} f_1(\overline{g}) f_2(g) E_{\Phi}(g, \frac{1}{2}+s) dg, \operatorname{represents} L(\pi_1 \times \pi_2, \frac{1}{2}+s). \\ \bullet \quad n=3, \underbrace{\operatorname{Garrett:}}_{[G/\mathbb{G}_m]} X^{\bullet} \hookrightarrow [S, S] \setminus \operatorname{Sp}_6, \\ \int_{[G/\mathbb{G}_m]} f(g) E_{\operatorname{Siegel}}(g, \frac{1}{2}+s) dg, \operatorname{represents} L(\pi_1 \times \pi_2 \times \pi_3, \frac{1}{2}+s). \end{array}$$

Introduction	The IC function	Euler factorization	Geometrization of the Plancherel formula
To fix ide *All for		ate, Archimedean	places omitted!*
	$[H]/K_H (= Bun_H)$	$ ightarrow [G]/K_G (= Bun_G), \; K_G = Bun_G$	$K_{G}=G(\widehat{\mathcal{O}})$
For f on [0	$G]/K_G,$		
	$\int_{[H]} fc$	$dh = \int_{[G]} f(g) \cdot 1_{[H]K_G}(g)$	
The "perio	od distribution" $1_{[H]K_G}$, is the image of	
	1 _{<i>F</i>}	$_{H\setminus G(\widehat{\mathcal{O}})}\in\mathcal{S}(H\backslash G(\mathbb{A}))$	
under the	"theta series"		
	$\Phi\mapsto \Theta$	$\Phi \Phi(g) := \sum_{\gamma \in H \setminus G(k)} \Phi(\gamma g)$	I.

Moral: The period distribution coming from $1_{X^{\bullet}(\widehat{O})}$ (for $X^{\bullet} = H \setminus G$) may be wrong!

	The IC function	Euler factorization	Geometrization of the Plancherel formula
00	●000000		0000

Basic functions

Braverman–Kazhdan: Define a non-trivial Schwartz space for the "basic affine space" $X = \overline{N \setminus G}^{aff} = \operatorname{spec} k[G]^N$, generalizing: $G = \operatorname{GL}_2, X^{\bullet} = N \setminus \operatorname{SL}_2 = \mathbb{A}^2 \setminus \{0\} \hookrightarrow X = \mathbb{A}^2$. At any finite place,

$$X^{ullet}(\mathfrak{o}) = \{(x,y) \in \mathfrak{o}^2 | (x,y) = 1\}, \ X(\mathfrak{o}) = \mathfrak{o}^2.$$

 $\mathcal{S}(X^{\bullet}(\mathbb{A})) \xrightarrow{\int_{\mathbb{A}^{\times}} \chi^{-1}} \operatorname{Ind}_{B}^{G}(\chi) \xrightarrow{\mathcal{E}} C^{\infty}([G])$ Eisenstein series Difference between $\mathcal{S}(X^{\bullet}(\mathbb{A}))$ and $\mathcal{S}(X(\mathbb{A}))$ is

$$E(z,s) = \sum_{(m,n)=1} rac{y^s}{|mz+n|^{2s}}$$
 vs. $E^*(z,s) = \sum_{(m,n) \neq (0,0)} rac{y^s}{|mz+n|^{2s}}$

Here, $E^*(z, s) = \zeta(2s)E(z, s)$, both have meromorphic continuation.

The IC function	Euler factorization	Geometrization of the Plancherel formula
000000		

 $X = \overline{N \setminus G}^{\text{aff}}$

 $S(\overline{N \setminus G}^{aff})$ originates in *Drinfeld's compactification* of Bun_B (=global model for $N \setminus G(\mathfrak{o})$).

$$\overline{\mathsf{Bun}_{B}} = \mathsf{Maps}(C, \overline{N \setminus G}^{\mathsf{aff}} / T \times G)$$

 $\overline{Bun_B}$ is singular, so we want to compute $IC_{\overline{Bun_B}}$. Function-theoretically (taking Frobenius trace):

$$\mathcal{S}(X(\mathbb{A})) \ni IC_{X(\widehat{\mathcal{O}})},$$

where for $\mathfrak{o} = \mathbb{F}((t))$ we'll think of $X(\mathfrak{o})$ as the \mathbb{F} -points of the *arc* space of X: $\mathcal{L}^+X = \text{Maps}(D = \text{spec } \mathbb{F}[[t]], X)$.

$$IC_{\overline{\operatorname{\mathsf{Bun}}}_{B}} = \Theta\left(IC_{X(\widehat{\mathcal{O}})}\right) \in C^{\infty}([T] \times [G]).$$

Braverman-Finkelberg-Gaitsgory-Mirković [BFGM]:

"The Eisenstein series $E^*(g, \chi) = \int_{[T]} IC_{\overline{Bun_B}}(t, g)\chi^{-1}(t)dt$ attached to $\overline{Bun_B}$ is $\prod_{\check{\alpha}>0} L(\chi \circ \check{\alpha}, 0)$ times the Eisenstein series $E(g, \chi)$ attached to Bun_B ."

The IC function	Euler factorization	Geometrization of the Plancherel formula
000000		

Back to $X^{\bullet} = H \setminus G$. Idea:

- Choose an affine $X^{\bullet} \hookrightarrow X$ (e.g., $X = \overline{X^{\bullet}}^{att}$).
- Define a Schwartz space $S(X(\mathbb{A}))$ with a "basic vector" $\Phi^0 = IC_{X(\widehat{O})}$.
- Define the "X-period" as the theta series $P_X(g) = \Theta \Phi^0(g) = \sum_{\gamma \in X(k)} \Phi^0(g).$

Conjecture (S., 2009)

For $f \in \pi^{G(\widehat{O})}$ an automorphic form, suitably normalized (e.g., by Fourier–Whittaker coefficient), $\int_{[G]} f \cdot P_X$ is equal to (a special value of) an L-function.

	The IC function	Euler factorization	Geometrization of the Plancherel formula
	000000		

The case of *L*-monoids

Example: $X^{\bullet} = H = GL_n \hookrightarrow X = Mat_n$, this unfolds to the Godement–Jacquet integral (here $G = H \times H$, $f = \phi \otimes \overline{\phi}$):

$$\int_{[H]} \langle \pi(h)\phi,\phi\rangle \,\Phi^0(h)dh = L(\pi,-\frac{1}{2}(n-1))$$

For (split) $H \xrightarrow{\text{det}} \mathbb{G}_m$, and any section $\lambda : \mathbb{G}_m \to H$, identified with a heighest weight for the dual group \check{H} , Braverman–Kazhdan and Ngô defined an *L*-monoid $H \hookrightarrow H_{\lambda}$, generalizing $\text{GL}_n \hookrightarrow \text{Mat}_n$. Bouthier–Ngô–S. (2014):

- For o = 𝔅[[t]], the function *IC*_{X(o)} is well-defined. (Rests on the Grinberg–Kazhdan–Drinfeld theorem on finite-dimensionality of singularities of 𝔅⁺X.)
- **2** The GJ integral in this case gives $L(\pi, V_{\lambda}, -\langle \rho, \lambda \rangle)$.

The IC function	Euler factorization	Geometrization of the Plancherel formula
0000000		

The general case

What is the *L*-value attached to a general spherical *X*? The Gaitsgory–Nadler dual group: $\check{G}_X \hookrightarrow \check{G}$. (Conjecturally, only automorphic forms with Langlands parameters into \check{G}_X have nonzero pairing with P_X .)

E.g., in the group case that we just saw $X = H, G = H \times H$, and the representation must be of the form $\pi \otimes \tilde{\pi}$, so $\check{G}_X = \check{H}$. Looking for a representation $\rho_X : \check{G}_X \to GL(V)$.

S. (2009) Let $X = H \setminus G$ with H reductive, so $IC_{X(o)} = 1_{X(o)}$. General formula in terms of the *colors* of X:

 $X/\!\!/N \curvearrowleft T = B/N$, acts through some quotient $T \twoheadrightarrow T_X$.

The toric variety $X /\!\!/ N$ defines certain coweights of T_X which are weights of the representation ρ_X of $X /\!\!/ N$.

	The IC function ○○○○○●○	Euler factorization	Geometrization of the Plancherel formula
Examples			

• $X = H \curvearrowleft G = H \times H$. The colors are the Bruhat divisors, inducing valuations equal to the simple coroots $\check{\alpha}$. Hence $\rho_X = \check{\mathfrak{h}}$. Corresponds to Petersson diagonal period of normalized cusp forms:

$$\int_{[H]} f(h)\overline{f(h)}dh = L(\pi, \mathrm{Ad}, 1)$$

• $X = PGL_2^{diag} \setminus PGL_2^3$. *B*-orbits $\leftrightarrow PGL_2$ -orbits on $(\mathbb{P}^1)^3 \ni (z_1, z_2, z_3)$, colors = $\{z_i = z_j\}$, valuations $\frac{\check{\alpha}_i + \check{\alpha}_j - \check{\alpha}_k}{2}$. Hence, $\rho_X = Std \otimes Std \otimes Std$ of SL_2^3 . The (Kudla, Harris, Gross, Böcherer, Schulze-Pillot, Watson, Ichino) triple product period

$$|\int_{[PGL_2]} f_1(g) f_2(g) f_3(g) dg|^2 = L(\pi_1 imes \pi_2 imes \pi_3, rac{1}{2}).$$

The IC function	Euler factorization	Geometrization of the Plancherel formula
000000		

S.–Jonathan Wang (2020?) Vast generalization of the above result and Bouthier–Ngô–S. (for $\check{G}_X = \check{G}$, for now): Description of $IC_{X(\mathfrak{o})}$ in terms of the geometry of X.

Example: Let $X^{\bullet} = H_n \setminus G_n$ the $(\mathbb{G}_m \times \mathrm{SL}_2^n) / \pm 1$ -variety from the beginning of this lecture, $X = \overline{X^{\bullet}}^{\mathrm{aff}}$. Then, for a cusp form $f_s \in \pi = |\bullet|^s \otimes \pi_1 \otimes \cdots \otimes \pi_n$, $\Re(s) \gg 0$, Whittaker coefficient 1,

$$\int_{[G]} f \cdot \Theta(IC_{X(\widehat{\mathcal{O}})}) = L(\pi_1 \times \cdots \times \pi_n, \frac{1}{2} + s).$$

	Euler factorization	Geometrization of the Plancherel formula
	•0	

Writing $\int_{[G]} f \cdot P_X$ as an Euler product is

sometimes easy (Godement-Jacquet, Hecke, Rankin-Selberg), and sometimes hard (Gan-Gross-Prasad).

The Ichino–Ikeda conjecture:

For $X = H \setminus G = SO_n \setminus (SO_n \times SO_{n+1})$,

 $\left|\int_{[G]} f \cdot P_X\right|^2 = \left|\int_{[H]} f(h) dh\right|^2 = \int_{H(\mathbb{A})} \langle \pi(h) f, f \rangle \, dh \text{ (an Euler product).}$

The observation of Akshay Venkatesh: The RHS is equal to the Plancherel density of $1_{X(o)}$ (when *f* is everywhere unramified). Hence, the *L*-value attached to the period can be computed by a local Plancherel formula:

$$\|\mathbf{1}_{X(o)}\||_{L^{2}(X(F))}^{2} = \int_{\hat{G}^{unr}} L(\pi, \rho_{X})\mu(\pi)$$

Of course, there is no a priori reason why the Plancherel formula should involve an L-function! A priori, what is denoted by $L(\pi, \rho_X)$ could be any function of π .

	Euler factorization	Geometrization of the Plancherel formula
	00	

In any case, generalizing the Ichino–Ikeda conjecture (S.–Venkatesh), we have a path from periods to *L*-functions:

Il conjecture Euler product of Plancherel densities of $||IC_{X(\mathfrak{o})}||^2_{L^2(X(F))}$ local calculation $\int_{\hat{G}^{unr}} L(\pi, \rho_X) \mu(\pi).$

 $\left|\int_{[G]} f \cdot P_X\right|^2$

The aforementioned [S. 2009, S.–Wang 2020?] perform this local calculation.

	Euler factorization	Geometrization of the Plancherel formula
		0000

Why do *L*-functions appear in the Plancherel decomposition of $||IC_{X(\mathfrak{o})}||^2_{L^2(X(F))}$? $F = \mathbb{F}((t)) \supset \mathfrak{o}$. Let's think of elements Φ_i of $S(X(F))^{G(\mathfrak{o})}$ as Frobenius traces of \mathcal{L}^+G -equivariant ℓ -adic sheaves \mathcal{F}_i on the loop space $\mathcal{L}X$; then

 $\langle \Phi_1, \Phi_2 \rangle = tr(Frob, Hom(\mathcal{F}_1, D\mathcal{F}_2)),$

(all objects and Homs in the derived category).

We are led to study $D(\mathcal{L}X/\mathcal{L}^+G)$, e.g., X = H, $G = H \times H$, this is the bounded derived category of $H(\mathfrak{o})$ -equivariant constructible sheaves on the affine Grassmannian of H.

Bezrukavnikov–Finkelberg: There is a natural equivalence of triangulated categories ("the spherical category"):

$$\mathsf{D}(\mathcal{L}^+ H ackslash \mathcal{L} H / \mathcal{L}^+ H) \xrightarrow{\sim} \mathcal{Coh}_{\mathsf{perf}}(\check{\mathfrak{h}}^* / \check{H}) = \mathcal{Coh}_{\mathsf{perf}}(T^* \check{H} / (\check{H} imes \check{H})).$$

	Euler factorization	Geometrization of the Plancherel formula
		0000

Notice that the (co)adjoint representation $\tilde{\mathfrak{h}}^*$ is the one that shows up in the calculation of the Petersson norm=diagonal period of normalized cusp forms:

$$\int_{[H]} f(h)\overline{f(h)}dh = L(\pi, \mathrm{Ad}, 1)$$

Conjecture (Ben Zvi–Venkatesh–S.)

Given a spherical variety X, there is a Hamiltonian \check{G} -space $\check{M} \to \check{\mathfrak{g}}$ and an equivalence of module categories for the spherical category:

$$D(\mathcal{L}X/\mathcal{L}^+G) \xrightarrow{\sim} Coh_{perf}(\check{M}/\check{G}).$$

Moreover, $\check{M} = V_X \times^{\check{G}_X} \check{G}$, where $\rho_X : \check{G}_X \to GL(V_X)$ is the representation attached to the L-value of X. The association $M = T^*X \leftrightarrow \check{M}$ is involutive, i.e., if $\check{M} = T^*\check{X}$, the Hamiltonian dual of \check{X} is M.

	Euler factorization	Geometrization of the Plancherel formula
		0000

Examples

M	Ň		
T*H	T* Ĥ		
$\int_{[H]^{\text{diag}}} f_1(h) f_2(h) dh = L(\tau, \text{Ad}, 1), \pi = \tau \otimes \tilde{\tau}$			
$T^*((N,\psi)\backslash G) = (\mathfrak{t}^* /\!\!/ W) \times G$	$pt = \check{G} / \check{G}$		
(Whittaker normalization)	$pt = \check{G}/\check{G}$ $\int_{[\check{G}]} 1 = L(\mathfrak{t}^* / W) \text{ (motive of } G)$		
Tate: $T^*\mathbb{A}^1$	$T^*\mathbb{A}^1$		
$\frac{\int_{[\mathbb{G}_m]} \chi(x) \Theta \Phi(x) dx = L(\chi, 0)}{\text{Hecke: } T^*(\mathbb{G}_m \setminus \text{PGL}_2)}$			
Hecke: $T^*(\mathbb{G}_m \setminus PGL_2)$	T^* Std \backsim SL ₂		
$\int_{\mathbb{[G_m]}} f \begin{pmatrix} a \\ 1 \end{pmatrix} da = L(\pi, \operatorname{Std}, \frac{1}{2})$	$(E^*(g,\chi) = L(\chi \circ \check{\alpha}, 0)E(g,\chi))$		
Gross–Prasad: $T^*(SO_{2n} \setminus SO_{2n} \times SO_{2n+1})$	Theta: $(W_{4n}, \omega) \curvearrowleft SO_{2n} \times Sp_{2n}$.		
$ \int_{[H]} f_1(h) f_2(h) dh ^2 = L(\pi_1 \times \pi_2, \frac{1}{2})$	Rallis inner product formula.		
Remark: All these examples are spherical/multiplicity-free and smooth			

<u>Remark:</u> All these examples are spherical/multiplicity-free and smooth affine. Other examples suggest that losing the spherical property on one side leads to singularities/stacky behavior on the other.

The IC function	Euler factorization	Geometrization of the Plancherel formula

Open problems

- Proving the geometric conjecture: Recent new cases by Braverman–Finkelberg–Ginzburg–Travkin (unramified), Raskin. Can we upgrade the calculation of the Plancherel formula (with J. Wang) to the conjectural categorical equivalence?
- Euler factorization and relative functoriality: it could be possible to establish the Ichino–Ikeda formula through a comparison of relative trace formulas:

 $\mathcal{S}(X \times X/G) \xrightarrow{\sim} \mathcal{S}(N, \psi \setminus G/N, \psi).$

The geometric framework suggests the existence of natural such transfer map, corresponding to the pushforward $\check{M} \rightarrow$ pt. 3 Functional equation: There should be a Fourier transform $S(X) \xrightarrow{\sim} S(X^*)$, where X^* is X with G-action twisted by Chevalley involution, such that the theta series satisfy the Poisson summation formula. Also suggested by the geometric conjectures.