16:29:07
16:29:30
16:29:41
16:34:57
16:37:32
16:38:04
16:45:01
16:45:32
16:46:18
16:46:25
16:46:50
16:46:51 groupoid
16:46:52
16:49:01
16:49:19
16:49:21 From Roman Travkin : Well, I think varpi's belong to $\mathrm{m} / \mathrm{m}^{\wedge} 2$
16:49:26 From Dmitry Gourevitch : e^{\wedge} \gamma
16:49:41 From Oren Ben-Bassat : I think a morphism was a \gamma so that $\mathrm{E}^{\wedge} \backslash \mathrm{gamma}$ is the ratio of the \varpis
16:49:42
16:50:02 From Oren Ben-Bassat : e^{\wedge} \gamma
16:51:02 From Oren Ben-Bassat : I meant a morphism from \varpi_1 to \varpi_2 which I guess belong to
$\mathrm{m} / \mathrm{m}^{\wedge} 2$
16:52:02 From Daria Shchedrina : thanks!
17:03:13 From Daria Shchedrina : I think I don't understand again
17:03:22 From Daria Shchedrina : he said \gamma is a loop
17:03:31 From Daria Shchedrina : in C*
17:03:51 From shachar carmeli : it is a number defined up to integral translation
17:04:01 From shachar carmeli : so looks like choice of homotopy class of loop
17:04:20 From shachar carmeli : *chosen up to
17:04:21 From Oren Ben-Bassat : he might have meant the special case that \omega_1=\omega_2
17:04:42 From shachar carmeli : otherwise its not a loop but path but reasoning is the same.
17:04:56 From Daria Shchedrina : ok
17:05:32 From shachar carmeli : spcefifically the loop would be exp(t gamma)w_1
17:05:53 From Oren Ben-Bassat : yeah
17:05:55 From Daria Shchedrina : thanks!
17:15:26 From Sam Taylor : thanks
17:19:33 From Roman Travkin : is there an interpretation in terms of Raynaud models?
17:21:54 From Roman Travkin : Like as de Rham cohomology of a formal scheme?

