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My first interaction with Joseph came around 2005, when he was
(with Reznikov) working on bounding the triple product
L-function for GL2.

In this context, all of us encountered curious behavior of certain
(usually) infinite sums of L-functions. I will explain this in Part 1
of the talk.
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I Part 2 – Relative Langlands duality (joint work in progress
with Ben-Zvi, Sakellaridis).

I Part 3 – indicate how infinite sums of L-functions arise in
relative Langlands duality.

I hope that eventually (but not yet!) relative Langlands duality will
lead to a much better understanding of Part 1.
Throughout I have suppressed many technical details in the
statements.
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I In the anaytic theory of L-functions, one studies a single
L-function Lϕ(s) as part of a family sum

∑
ϕ Lϕ(s). Typically

the sum is analyzed by means of the trace formula.

I Some computations of this type have unexpectedly pleasant
answers, hinting to an internal structure to the infinite sums.

I For example, 1989 N. V. Kuznetsov discovered a
remarkable symmetry, which (informally) says∑

ϕ∈Aut(GL2)

Lϕ(z1)Lϕ(z2)Lϕ(z3)Lϕ(z4)

is invariant under permutations by zi 7→ Z − zi , with
Z = z1+z2+z3+z4

2 .
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I Both P. Michel and I and Bernstein-Reznikov gave
more transparent arguments for this formula. Following
Reznikov we first describe the corresponding phenomenon in
representation theory where it may be more familiar for the
current audience.



I Let Vn = Symn−1C2 be irreducible representations of SU(2).
What is (Va ⊗ Vb ⊗ Vc ⊗ Vd)SU(2)?

Get a basis by tensoring
in stages.

I More intrinsically (write 〈X ,Y 〉 = Hom(X ,Y )):

(Va⊗Vb⊗Vc⊗Vd)SU(2) =
∑
e

〈Ve ,Va ⊗ Vb〉 ⊗ 〈V ∨e ,Vc ⊗ Vd〉︸ ︷︷ ︸
≤1dimensional

I But also

(Va⊗Vb⊗Vc⊗Vd)SU(2) =
∑
f

〈Vf ,Va ⊗ Vc〉 ⊗ 〈V ∨f ,Vb ⊗ Vd〉︸ ︷︷ ︸
≤1dimensional

I Get an nontrivial isomorphism between these sums of lines;
the transition matrix is the 6j symbol.
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I These machinations have an analogue in the theory of
automorphic forms, with the lines replaced by L-fnctions; the
isomorphism of vector spaces above turns into an equality of
sums of L-functions.

I Before we come to this, we say the abstract principle behind
the computation: Restrict from SU(2)4 to SU(2) in stages by
first passing to the intermediate subgroup

SU(2) ⊂ SU(2)2 ⊂ SU(2)4.

I Both inclusions here have multiplicity one branching. The
same principle applies in many other instances.
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the Gelfand-Tsetlin basis

I A basis for an irreducible V of U(n), obtained by restricting
successively along

{e} ⊂ U(1) ⊂ U(2) ⊂ · · · ⊂ U(n)

.

I Intrinsically:

V =
⊕

Wi∈Irr(U(i))

Hom(W1,W2)⊗Hom(W2,W3)⊗· · ·⊗Hom(Wn−1,V ).

Each summand is one-dimensional and nonzero precisely
when the weights interlace.
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I Same principle applies in the obvious way to other situations.
We will encounter later the following one: cmpute restriction
of a U(n)-representation to the torus by successively
restricting along ∗ 0 0

0 ∗ 0
0 0 ∗

 ⊂
 ∗ ∗ 0
∗ ∗ 0
0 0 ∗

 ⊂ U3.



Automorphic story

Rest of the talk: G is a reductive group over a global field, e.g.
GLn over Q; GF are its points over some local field, e.g. GLn(R).

I automorphic form ϕG (for G ) is an eigenfunction of
Hecke/differential operators on locally symmetric space [G ].

I for H ⊂ G can restrict ϕG from [G ] to [H]. Not an eigenfn:

Res
[G ]
[H]ϕG =

∑
i

miϕH,i– compare with

ResGF
HF

V =
⊕

W∈Irr(HF )

multW ⊗W .

Similarly, HF -invariants on a GF -representation ↔
∫

[H] ϕG .

I It is expected that if branching from G to H is multiplicity
one then the mi (or their squares) are L-function values.
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I For GL2 ⊂ GL4
2 we compute

∫
[GL2] ϕ1ϕ2ϕ3ϕ4 by splitting

into pairs and decomposing, we get the two sides of
Kuznetsov’s formula via two chains.

I More generally, when one can link H ⊂ G by a multiplicity
one branching chain, then one often gets∫

[H]
ϕG = sum of L-functions.

I We can now produce many interesting identities involving
infinite sums of L-functions. (Reznikov).
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Relative Langlands duality

I For exposition will use the TQFT metaphor for Langlands,
first suggested by Kapranov. In this metaphor, the study of
periods corresponds to the theory of boundary conditions for
TQFT. I know very little about TQFT, and I apologize if I use
the metaphor ineptly.



Langlands program: global, geometric global, local,
geometric local

Manifold Dimension What we study

ring of integers 3 vector space
e.g. Z functions on GZ\GR

curve over Fp 2 category of
Σ sheaves onBunG (Σ))

local field 2 category of
F GF -representations

function field 1 2-category
e.g. C((t)) G (C((t))-categories

The Langlands program posits a description of everything here
(together with their symmetries) in terms of a dual picture
involving G∨.



Periods are boundary conditions

I Now suppose we are given a G -variety X . It induces extra
data at each level of the diagram.

I For example, in the category of GF -repreesntations, we have a
specific object: Functions(XF ) (or some other incarnation of
functions on X ).

I In the vector space of automorphic forms, we have a specific
vector, the Poincaré series PX . Long studied because periods
attached to X 〈PX , ϕG 〉 are sometimes L-functions.

I In the TQFT metaphor, the extra data is akin to choosing a
bounding manifold.
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vector, the Poincaré series PX . Long studied because periods
attached to X 〈PX , ϕG 〉 are sometimes L-functions.

I In the TQFT metaphor, the extra data is akin to choosing a
bounding manifold.



Periods are boundary conditions

I Now suppose we are given a G -variety X . It induces extra
data at each level of the diagram.

I For example, in the category of GF -repreesntations, we have a
specific object: Functions(XF ) (or some other incarnation of
functions on X ).

I In the vector space of automorphic forms, we have a specific
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function field 2-category of G (C((t))-cat.
e.g. C((t)) 3 Sheaves(X (C((t)))

I Taking X = G/H we recover various structures from Part 1.

I Don’t expect general nice ‘dual” descriptions ... better in the
multiplicity one cases.
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Relative Langlands duality (w/ Ben-Zvi, Sakellaridis)

I Multiplicity one case (+technical assumptions): we give a
recipe for a G∨-space X∨ and we expect X∨ controls the dual
answer at each level of the table.

Actually recipe is for T ∗X .

e.g. top row:〈PX , ϕG 〉 ∼
∑

fixed points x ∈ X∨

L-function for Tx(X∨).

(1)

I experimental miracle X∨∨ = X when it makes sense.

I Godement-Jacquet ↔ Rankin-Selberg, Tate ↔ Tate,

Gan-Gross-Prasad ↔ θ ; Whittaker ↔ point.

I At the bottom row this should match with some conjectures
explained in Braverman talk e.g. Raskin’ theorem
correponds to self-duality of Tate’s thesis: G = Gm,X = A1.

I The physical analogue, S-duality of boundary conditions, has
been studied by Gaiotto and Witten.
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Back to infinite sums of L-functions (speculative)

A multiplicity one X may dualize to X∨ that doesn’t have
multiplicity one. (in which case X∨∨ is not defined by our recipe).
The corresponding period can often be expressed as an infinite sum
of L-functions.
I talk only about only one example.



Example: basic affine space

I G = SLn and X the affine closure of G/U (not quite: will be
replaced by smooth stack).

I Duality recipe gives G∨ = PGLn,X
∨ = PGLn/T and

predicts:

I

〈PX , ϕG 〉 ∼
∑

fixed points x ∈ X∨

L-function for Tx(X∨). (2)

〈PX∨ , ϕG∨〉 ?∼
∑

fixed points x ∈ X

L-function for Tx(X ). (3)

First is standard. The second is not proved, but I expect a
version of it can be established with suitable regularizations
(“cuspidal part” of both side match; Eisenstein story must be
analyzed).
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I Replace SL(V )/U, which parameterizes flags in V where each
subspace W comes with an orientation, by the smooth stack
(cf. Laumon compactifiction) parameterizing

oriented line→ oriented plane→ . . . oriented n − 1- space→ V .

(reminiscent of G-T!)

I We want to check:

〈PX∨ , ϕG∨〉 ∼
∑

fixed points x ∈ X

L-function for Tx(X )

RHS is infinite sum of L-functions, indexed by (infinitely
many) fixed points on the stack X .

I LHS =
∫

[torus] ϕPGLn is an infinite sum of L-functions via
multiplicity one chain from torus and PGLn.

LHScusp = RHScusp,LHSEis
?
= RHSEis .
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I So: infinite sums of L-functions can arise as non-unique duals
of unique periods. Many interesting examples to examine!

I A powerful method to analyze such situations is to use
multiplicity one branching chains. But as we saw in Part 1,
there may be more than one such chain. It is crucial to
understand better how this fits with the duality paradigm.

I Happy Birthday, Joseph, and thank you for your inspiring
mathematics!
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