Infinite sums of L-functions
 Bernstein 75 Conference

May 13, 2020

My first interaction with Joseph came around 2005, when he was (with Reznikov) working on bounding the triple product L-function for GL_{2}.

My first interaction with Joseph came around 2005, when he was (with Reznikov) working on bounding the triple product L-function for GL_{2}.
In this context, all of us encountered curious behavior of certain (usually) infinite sums of L-functions. I will explain this in Part 1 of the talk.

- Part 2 - Relative Langlands duality (joint work in progress with Ben-Zvi, Sakellaridis).
- Part 2 - Relative Langlands duality (joint work in progress with Ben-Zvi, Sakellaridis).
- Part 3 - indicate how infinite sums of L-functions arise in relative Langlands duality.

I hope that eventually (but not yet!) relative Langlands duality will lead to a much better understanding of Part 1. Throughout I have suppressed many technical details in the statements.

- In the anaytic theory of L-functions, one studies a single L-function $L_{\varphi}(s)$ as part of a family sum $\sum_{\varphi} L_{\varphi}(s)$. Typically the sum is analyzed by means of the trace formula.
- In the anaytic theory of L-functions, one studies a single L-function $L_{\varphi}(s)$ as part of a family sum $\sum_{\varphi} L_{\varphi}(s)$. Typically the sum is analyzed by means of the trace formula.
- Some computations of this type have unexpectedly pleasant answers, hinting to an internal structure to the infinite sums.
- In the anaytic theory of L-functions, one studies a single L-function $L_{\varphi}(s)$ as part of a family sum $\sum_{\varphi} L_{\varphi}(s)$. Typically the sum is analyzed by means of the trace formula.
- Some computations of this type have unexpectedly pleasant answers, hinting to an internal structure to the infinite sums.
- For example, 1989 N. V. Kuznetsov discovered a remarkable symmetry, which (informally) says

$$
\sum_{\varphi \in \operatorname{Aut}\left(\mathrm{GL}_{2}\right)} L_{\varphi}\left(z_{1}\right) L_{\varphi}\left(z_{2}\right) L_{\varphi}\left(z_{3}\right) L_{\varphi}\left(z_{4}\right)
$$

- In the anaytic theory of L-functions, one studies a single L-function $L_{\varphi}(s)$ as part of a family sum $\sum_{\varphi} L_{\varphi}(s)$. Typically the sum is analyzed by means of the trace formula.
- Some computations of this type have unexpectedly pleasant answers, hinting to an internal structure to the infinite sums.
- For example, 1989 N. V. Kuznetsov discovered a remarkable symmetry, which (informally) says

$$
\sum_{\varphi \in \operatorname{Aut}\left(\mathrm{GL}_{2}\right)} L_{\varphi}\left(z_{1}\right) L_{\varphi}\left(z_{2}\right) L_{\varphi}\left(z_{3}\right) L_{\varphi}\left(z_{4}\right)
$$

is invariant under permutations by $z_{i} \mapsto Z-z_{i}$, with $Z=\frac{z_{1}+z_{2}+z_{3}+z_{4}}{2}$.

- Both P. Michel and I and Bernstein-Reznikov gave more transparent arguments for this formula. Following REZNIKOV we first describe the corresponding phenomenon in representation theory where it may be more familiar for the current audience.
- Let $V_{n}=\operatorname{Sym}^{n-1} \mathbf{C}^{2}$ be irreducible representations of $\mathrm{SU}(2)$. What is $\left(V_{a} \otimes V_{b} \otimes V_{c} \otimes V_{d}\right)^{S U(2)}$?
- Let $V_{n}=\operatorname{Sym}^{n-1} \mathbf{C}^{2}$ be irreducible representations of $\mathrm{SU}(2)$. What is $\left(V_{a} \otimes V_{b} \otimes V_{c} \otimes V_{d}\right)^{S U(2)}$? Get a basis by tensoring in stages.
- Let $V_{n}=\operatorname{Sym}^{n-1} \mathbf{C}^{2}$ be irreducible representations of $\mathrm{SU}(2)$. What is $\left(V_{a} \otimes V_{b} \otimes V_{c} \otimes V_{d}\right)^{S U(2)}$? Get a basis by tensoring in stages.
- More intrinsically (write $\langle X, Y\rangle=\operatorname{Hom}(X, Y)$):

$$
\left(V_{a} \otimes V_{b} \otimes V_{c} \otimes V_{d}\right)^{\mathrm{SU}(2)}=\sum_{e} \underbrace{\left\langle V_{e}, V_{a} \otimes V_{b}\right\rangle \otimes\left\langle V_{e}^{\vee}, V_{c} \otimes V_{d}\right\rangle}_{\leq 1 \text { dimensional }}
$$

- Let $V_{n}=\operatorname{Sym}^{n-1} \mathbf{C}^{2}$ be irreducible representations of $\mathrm{SU}(2)$. What is $\left(V_{a} \otimes V_{b} \otimes V_{c} \otimes V_{d}\right)^{S U(2)}$? Get a basis by tensoring in stages.
- More intrinsically (write $\langle X, Y\rangle=\operatorname{Hom}(X, Y)$):

$$
\left(V_{a} \otimes V_{b} \otimes V_{c} \otimes V_{d}\right)^{\mathrm{SU}(2)}=\sum_{e} \underbrace{\left\langle V_{e}, V_{a} \otimes V_{b}\right\rangle \otimes\left\langle V_{e}^{\vee}, V_{c} \otimes V_{d}\right\rangle}_{\leq 1 \text { dimensional }}
$$

- But also

$$
\left(V_{a} \otimes V_{b} \otimes V_{c} \otimes V_{d}\right)^{\mathrm{SU}(2)}=\sum_{f} \underbrace{\left\langle V_{f}, V_{a} \otimes V_{c}\right\rangle \otimes\left\langle V_{f}^{\vee}, V_{b} \otimes V_{d}\right\rangle}_{\leq 1 \text { dimensional }}
$$

- Let $V_{n}=\operatorname{Sym}^{n-1} \mathbf{C}^{2}$ be irreducible representations of $\mathrm{SU}(2)$. What is $\left(V_{a} \otimes V_{b} \otimes V_{c} \otimes V_{d}\right)^{S U(2)}$? Get a basis by tensoring in stages.
- More intrinsically (write $\langle X, Y\rangle=\operatorname{Hom}(X, Y)$):

$$
\left(V_{a} \otimes V_{b} \otimes V_{c} \otimes V_{d}\right)^{\mathrm{SU}(2)}=\sum_{e} \underbrace{\left\langle V_{e}, V_{a} \otimes V_{b}\right\rangle \otimes\left\langle V_{e}^{\vee}, V_{c} \otimes V_{d}\right\rangle}_{\leq 1 \text { dimensional }}
$$

- But also

$$
\left(V_{a} \otimes V_{b} \otimes V_{c} \otimes V_{d}\right)^{\mathrm{SU}(2)}=\sum_{f} \underbrace{\left\langle V_{f}, V_{a} \otimes V_{c}\right\rangle \otimes\left\langle V_{f}^{\vee}, V_{b} \otimes V_{d}\right\rangle}_{\leq 1 \text { dimensional }}
$$

- Get an nontrivial isomorphism between these sums of lines; the transition matrix is the $6 j$ symbol.
- These machinations have an analogue in the theory of automorphic forms, with the lines replaced by L-fnctions; the isomorphism of vector spaces above turns into an equality of sums of L-functions.
- These machinations have an analogue in the theory of automorphic forms, with the lines replaced by L-fnctions; the isomorphism of vector spaces above turns into an equality of sums of L-functions.
- Before we come to this, we say the abstract principle behind the computation: Restrict from $S U(2)^{4}$ to $S U(2)$ in stages by first passing to the intermediate subgroup

$$
\operatorname{SU}(2) \subset \mathrm{SU}(2)^{2} \subset \mathrm{SU}(2)^{4} .
$$

- These machinations have an analogue in the theory of automorphic forms, with the lines replaced by L-fnctions; the isomorphism of vector spaces above turns into an equality of sums of L-functions.
- Before we come to this, we say the abstract principle behind the computation: Restrict from $S U(2)^{4}$ to $S U(2)$ in stages by first passing to the intermediate subgroup

$$
\mathrm{SU}(2) \subset \mathrm{SU}(2)^{2} \subset \mathrm{SU}(2)^{4}
$$

- Both inclusions here have multiplicity one branching. The same principle applies in many other instances.

the Gelfand-Tsetlin basis

- A basis for an irreducible V of $U(n)$, obtained by restricting successively along

$$
\{e\} \subset U(1) \subset U(2) \subset \cdots \subset U(n)
$$

the Gelfand-Tsetlin basis

- A basis for an irreducible V of $U(n)$, obtained by restricting successively along

$$
\{e\} \subset U(1) \subset U(2) \subset \cdots \subset U(n)
$$

- Intrinsically:

$$
V=\bigoplus_{W_{i} \in \operatorname{Irr}(U(i))} \operatorname{Hom}\left(W_{1}, W_{2}\right) \otimes \operatorname{Hom}\left(W_{2}, W_{3}\right) \otimes \cdots \otimes \operatorname{Hom}\left(W_{n-1}, V\right)
$$

Each summand is one-dimensional and nonzero precisely when the weights interlace.

- Same principle applies in the obvious way to other situations. We will encounter later the following one: cmpute restriction of a $U(n)$-representation to the torus by successively restricting along

$$
\left(\begin{array}{ccc}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right) \subset\left(\begin{array}{lll}
* & * & 0 \\
* & * & 0 \\
0 & 0 & *
\end{array}\right) \subset \mathrm{U}_{3} .
$$

Automorphic story

Rest of the talk: G is a reductive group over a global field, e.g. GL_{n} over \mathbb{Q}; G_{F} are its points over some local field, e.g. $\mathrm{GL}_{n}(\mathbb{R})$.

- automorphic form φ_{G} (for G) is an eigenfunction of Hecke/differential operators on locally symmetric space [G].

Automorphic story

Rest of the talk: G is a reductive group over a global field, e.g. GL_{n} over \mathbb{Q}; G_{F} are its points over some local field, e.g. $\mathrm{GL}_{n}(\mathbb{R})$.

- automorphic form φ_{G} (for G) is an eigenfunction of Hecke/differential operators on locally symmetric space [G].
- for $H \subset G$ can restrict φ_{G} from [G] to [H]. Not an eigenfn:

$$
\operatorname{Res}_{[H]}^{[G]} \varphi_{G}=\sum_{i} m_{i} \varphi_{H, i}-\text { compare with }
$$

Automorphic story

Rest of the talk: G is a reductive group over a global field, e.g. GL_{n} over \mathbb{Q}; G_{F} are its points over some local field, e.g. $\mathrm{GL}_{n}(\mathbb{R})$.

- automorphic form φ_{G} (for G) is an eigenfunction of Hecke/differential operators on locally symmetric space [G].
- for $H \subset G$ can restrict φ_{G} from [G] to [H]. Not an eigenfn:

$$
\begin{aligned}
\operatorname{Res}_{[H]}^{[G]} \varphi_{G} & =\sum_{i} m_{i} \varphi_{H, i}-\text { compare with } \\
\operatorname{Res}_{H_{F}}^{G_{F}} V & =\bigoplus_{W \in \operatorname{Irr}\left(H_{F}\right)} \text { mult }_{W} \otimes W
\end{aligned}
$$

Automorphic story

Rest of the talk: G is a reductive group over a global field, e.g. GL_{n} over \mathbb{Q}; G_{F} are its points over some local field, e.g. $\mathrm{GL}_{n}(\mathbb{R})$.

- automorphic form φ_{G} (for G) is an eigenfunction of Hecke/differential operators on locally symmetric space [G].
- for $H \subset G$ can restrict φ_{G} from [G] to [H]. Not an eigenfn:

$$
\begin{aligned}
\operatorname{Res}_{[H]}^{[G]} \varphi_{G} & =\sum_{i} m_{i} \varphi_{H, i}-\text { compare with } \\
\operatorname{Res}_{H_{F}}^{G_{F}} V & =\bigoplus_{W \in \operatorname{Irr}\left(H_{F}\right)} \text { mult }_{W} \otimes W .
\end{aligned}
$$

Similarly, H_{F}-invariants on a G_{F}-representation $\leftrightarrow \int_{[H]} \varphi_{G}$.

Automorphic story

Rest of the talk: G is a reductive group over a global field, e.g.
GL_{n} over \mathbb{Q}; G_{F} are its points over some local field, e.g. $\mathrm{GL}_{n}(\mathbb{R})$.

- automorphic form φ_{G} (for G) is an eigenfunction of Hecke/differential operators on locally symmetric space [G].
- for $H \subset G$ can restrict φ_{G} from [G] to [H]. Not an eigenfn:

$$
\begin{aligned}
\operatorname{Res}_{[H]}^{[G]} \varphi_{G} & =\sum_{i} m_{i} \varphi_{H, i}-\text { compare with } \\
\operatorname{Res}_{H_{F}}^{G_{F}} V & =\bigoplus_{W \in \operatorname{Irr}\left(H_{F}\right)} \text { mult }_{W} \otimes W
\end{aligned}
$$

Similarly, H_{F}-invariants on a G_{F}-representation $\leftrightarrow \int_{[H]} \varphi_{G}$.

- It is expected that if branching from G to H is multiplicity one then the m_{i} (or their squares) are L-function values.
- For $\mathrm{GL}_{2} \subset \mathrm{GL}_{2}^{4}$ we compute $\int_{\left[\mathrm{GL}_{2}\right]} \varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4}$ by splitting into pairs and decomposing, we get the two sides of KuZnetsov's formula via two chains.
- For $\mathrm{GL}_{2} \subset \mathrm{GL}_{2}^{4}$ we compute $\int_{\left[\mathrm{GL}_{2}\right]} \varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4}$ by splitting into pairs and decomposing, we get the two sides of Kuznetsov's formula via two chains.
- More generally, when one can link $H \subset G$ by a multiplicity one branching chain, then one often gets

$$
\int_{[H]} \varphi_{G}=\text { sum of } L \text {-functions. }
$$

- For $\mathrm{GL}_{2} \subset \mathrm{GL}_{2}^{4}$ we compute $\int_{\left[\mathrm{GL}_{2}\right]} \varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4}$ by splitting into pairs and decomposing, we get the two sides of Kuznetsov's formula via two chains.
- More generally, when one can link $H \subset G$ by a multiplicity one branching chain, then one often gets

$$
\int_{[H]} \varphi_{G}=\text { sum of } L \text {-functions. }
$$

- We can now produce many interesting identities involving infinite sums of L-functions. (REZNIKOV).

Relative Langlands duality

- For exposition will use the TQFT metaphor for Langlands, first suggested by Kapranov. In this metaphor, the study of periods corresponds to the theory of boundary conditions for TQFT. I know very little about TQFT, and I apologize if I use the metaphor ineptly.

Langlands program: global, geometric global, local, geometric local

Manifold	Dimension	What we study
ring of integers e.g. \mathbf{Z}	3	vector space functions on $G_{\mathbf{Z}} \backslash G_{\mathbb{R}}$
curve over $\overline{\mathbb{F}_{p}}$ Σ	2	$\left.\begin{array}{c}\text { category of } \\ \text { sheaves onBun } \\ G\end{array}(\Sigma)\right)$

F\end{array} \quad 2 \quad \begin{array}{c}category of

G_{F} -representations\end{array}\right|\)| 2-category |
| :---: |
| function field |
| e.g. $\mathbf{C}((t))$ |

The Langlands program posits a description of everything here (together with their symmetries) in terms of a dual picture involving G^{\vee}.

Periods are boundary conditions

- Now suppose we are given a G-variety X. It induces extra data at each level of the diagram.

Periods are boundary conditions

- Now suppose we are given a G-variety X. It induces extra data at each level of the diagram.
- For example, in the category of G_{F}-repreesntations, we have a specific object: Functions $\left(X_{F}\right)$ (or some other incarnation of functions on X).

Periods are boundary conditions

- Now suppose we are given a G-variety X. It induces extra data at each level of the diagram.
- For example, in the category of G_{F}-repreesntations, we have a specific object: Functions $\left(X_{F}\right)$ (or some other incarnation of functions on X).
- In the vector space of automorphic forms, we have a specific vector, the Poincaré series P_{X}. Long studied because periods attached to $X\left\langle P_{X}, \varphi_{G}\right\rangle$ are sometimes L-functions.

Periods are boundary conditions

- Now suppose we are given a G-variety X. It induces extra data at each level of the diagram.
- For example, in the category of G_{F}-repreesntations, we have a specific object: Functions $\left(X_{F}\right)$ (or some other incarnation of functions on X).
- In the vector space of automorphic forms, we have a specific vector, the Poincaré series P_{X}. Long studied because periods attached to $X\left\langle P_{X}, \varphi_{G}\right\rangle$ are sometimes L-functions.
- In the TQFT metaphor, the extra data is akin to choosing a bounding manifold.

The theory of periods attached to X, a G-variety

ring of integers e.g. \mathbf{Z}	fns on $G_{\mathbf{Z}} / G_{\mathbb{R}}$
curve over $\overline{\mathbb{F}_{p}}$	sheaves on Bun $_{G}(\Sigma)$
Σ	\ni the X-Poincaré sheaf
local field	category of G_{F}-rep.
F	\ni Functions $\left(X_{F}\right)$
function field	2-category of $G(\mathbf{C}((t))$-cat.
e.g. $\mathbf{C}((t))$	$\ni \operatorname{Sheaves}(X(\mathbf{C}((t)))$

The theory of periods attached to X, a G-variety

ring of integers e.g. \mathbf{Z}	fns on $G_{\mathbf{Z}} / G_{\mathbb{R}}$
curve over $\overline{\overline{\mathbb{F}_{p}}}$	the X-Poincaré series P_{X}
Σ	\ni the X-Poincaré sheaf
local field	category of G_{F}-rep.
F	\ni Functions $\left(X_{F}\right)$
function field	2-category of $G(\mathbf{C}((t))$-cat.
e.g. $\mathbf{C}((t))$	\ni Sheaves $(X(\mathbf{C}((t)))$

- Taking $X=G / H$ we recover various structures from Part 1 .

The theory of periods attached to X, a G-variety

ring of integers e.g. \mathbf{Z}	fns on $G_{\mathbf{Z}} / G_{\mathbb{R}}$
curve over $\overline{\mathbb{F}_{p}}$	the X-Poincaré series P_{X}
Σ	\ni the X-Poincaré sheaf Bun $_{G}(\Sigma)$
local field	category of G_{F}-rep.
F	\ni Functions $\left(X_{F}\right)$
function field	2-category of $G(\mathbf{C}((t))$-cat.
e.g. $\mathbf{C}((t))$	\ni Sheaves $(X(\mathbf{C}((t)))$

- Taking $X=G / H$ we recover various structures from Part 1 .
- Don't expect general nice 'dual" descriptions ... better in the multiplicity one cases.

Relative Langlands duality (w/ Ben-Zvi, Sakellaridis)

- Multiplicity one case (+technical assumptions): we give a recipe for a G^{\vee}-space X^{\vee} and we expect X^{\vee} controls the dual answer at each level of the table.

Relative Langlands duality (w/ Ben-Zvi, Sakellaridis)

- Multiplicity one case (+technical assumptions): we give a recipe for a G^{\vee}-space X^{\vee} and we expect X^{\vee} controls the dual answer at each level of the table. Actually recipe is for $T^{*} X$.

Relative Langlands duality (w/ Ben-Zvi, Sakellaridis)

- Multiplicity one case (+technical assumptions): we give a recipe for a G^{\vee}-space X^{\vee} and we expect X^{\vee} controls the dual answer at each level of the table. Actually recipe is for $T^{*} X$.
e.g. top row: $\left\langle P_{X}, \varphi_{G}\right\rangle \sim \sum_{\text {fixed points } x \in X^{\vee}} L$-function for $T_{x}\left(X^{\vee}\right)$.

Relative Langlands duality (w/ Ben-Zvi, Sakellaridis)

- Multiplicity one case (+technical assumptions): we give a recipe for a G^{\vee}-space X^{\vee} and we expect X^{\vee} controls the dual answer at each level of the table. Actually recipe is for $T^{*} X$.

$$
\begin{equation*}
\text { e.g. top row: }\left\langle P_{X}, \varphi_{G}\right\rangle \sim \sum_{\text {fixed points } x \in X^{\vee}} L \text {-function for } T_{x}\left(X^{\vee}\right) \text {. } \tag{1}
\end{equation*}
$$

- experimental miracle $X^{\vee \vee}=X$ when it makes sense.

Relative Langlands duality (w/ Ben-Zvi, Sakellaridis)

- Multiplicity one case (+technical assumptions): we give a recipe for a G^{\vee}-space X^{\vee} and we expect X^{\vee} controls the dual answer at each level of the table. Actually recipe is for $T^{*} X$.

$$
\begin{equation*}
\text { e.g. top row: }\left\langle P_{X}, \varphi_{G}\right\rangle \sim \sum_{\text {fixed points } x \in X^{\vee}} L \text {-function for } T_{x}\left(X^{\vee}\right) \text {. } \tag{1}
\end{equation*}
$$

- experimental miracle $X^{\vee V}=X$ when it makes sense.
- Godement-Jacquet \leftrightarrow Rankin-Selberg, Tate \leftrightarrow Tate, Gan-Gross-Prasad $\leftrightarrow \theta$; Whittaker \leftrightarrow point.

Relative Langlands duality (w/ Ben-Zvi, Sakellaridis)

- Multiplicity one case (+technical assumptions): we give a recipe for a G^{\vee}-space X^{\vee} and we expect X^{\vee} controls the dual answer at each level of the table. Actually recipe is for $T^{*} X$.

$$
\begin{equation*}
\text { e.g. top row: }\left\langle P_{X}, \varphi_{G}\right\rangle \sim \sum_{\text {fixed points } x \in X^{\vee}} L \text {-function for } T_{x}\left(X^{\vee}\right) \text {. } \tag{1}
\end{equation*}
$$

- experimental miracle $X^{\vee V}=X$ when it makes sense.
- Godement-Jacquet \leftrightarrow Rankin-Selberg, Tate \leftrightarrow Tate, Gan-Gross-Prasad $\leftrightarrow \theta$; Whittaker \leftrightarrow point.
- At the bottom row this should match with some conjectures explained in Braverman talk e.g. Raskin' theorem correponds to self-duality of Tate's thesis: $G=\mathbb{G}_{m}, X=\mathbb{A}^{1}$.

Relative Langlands duality (w/ Ben-Zvi, Sakellaridis)

- Multiplicity one case (+technical assumptions): we give a recipe for a G^{\vee}-space X^{\vee} and we expect X^{\vee} controls the dual answer at each level of the table. Actually recipe is for $T^{*} X$.

$$
\begin{equation*}
\text { e.g. top row: }\left\langle P_{X}, \varphi_{G}\right\rangle \sim \sum_{\text {fixed points } x \in X^{\vee}} L \text {-function for } T_{x}\left(X^{\vee}\right) \text {. } \tag{1}
\end{equation*}
$$

- experimental miracle $X^{\vee V}=X$ when it makes sense.
- Godement-Jacquet \leftrightarrow Rankin-Selberg, Tate \leftrightarrow Tate, Gan-Gross-Prasad $\leftrightarrow \theta$; Whittaker \leftrightarrow point.
- At the bottom row this should match with some conjectures explained in Braverman talk e.g. Raskin' theorem correponds to self-duality of Tate's thesis: $G=\mathbb{G}_{m}, X=\mathbb{A}^{1}$.
- The physical analogue, S-duality of boundary conditions, has been studied by Gaiotto and Witten.

Back to infinite sums of L-functions (speculative)

A multiplicity one X may dualize to X^{\vee} that doesn't have multiplicity one. (in which case $X^{\vee V}$ is not defined by our recipe).
The corresponding period can often be expressed as an infinite sum of L-functions.
I talk only about only one example.

Example: basic affine space

- $G=\mathrm{SL}_{n}$ and X the affine closure of G / U (not quite: will be replaced by smooth stack).

Example: basic affine space

- $G=\mathrm{SL}_{n}$ and X the affine closure of G / U (not quite: will be replaced by smooth stack).
- Duality recipe gives $G^{\vee}=\mathrm{PGL}_{n}, X^{\vee}=\mathrm{PGL}_{n} / T$ and predicts:

Example: basic affine space

- $G=\mathrm{SL}_{n}$ and X the affine closure of G / U (not quite: will be replaced by smooth stack).
- Duality recipe gives $G^{\vee}=\mathrm{PGL}_{n}, X^{\vee}=\mathrm{PGL}_{n} / T$ and predicts:

$$
\begin{align*}
& \left\langle P_{X}, \varphi_{G}\right\rangle \sim \sum_{\text {fixed points } x \in X^{\vee}} L \text {-function for } T_{x}\left(X^{\vee}\right) . \tag{2}\\
& \left\langle P_{X^{\vee}}, \varphi_{G} \vee\right\rangle \stackrel{?}{\sim} \sum_{\text {fixed points } x \in X} L \text {-function for } T_{x}(X) . \tag{3}
\end{align*}
$$

First is standard. The second is not proved, but I expect a version of it can be established with suitable regularizations ("cuspidal part" of both side match; Eisenstein story must be analyzed).

- Replace $\mathrm{SL}(V) / U$, which parameterizes flags in V where each subspace W comes with an orientation, by the smooth stack (cf. Laumon compactifiction) parameterizing
oriented line \rightarrow oriented plane $\rightarrow \ldots$ oriented $n-1$ - space $\rightarrow V$.
(reminiscent of G-T!)
- Replace $\mathrm{SL}(V) / U$, which parameterizes flags in V where each subspace W comes with an orientation, by the smooth stack (cf. Laumon compactifiction) parameterizing
oriented line \rightarrow oriented plane $\rightarrow \ldots$ oriented $n-1$ - space $\rightarrow V$.
(reminiscent of G-T!)
- We want to check:

$$
\left\langle P_{X^{\vee}}, \varphi_{G^{\vee}}\right\rangle \sim \sum_{\text {fixed points } x \in X} L \text {-function for } T_{x}(X)
$$

RHS is infinite sum of L-functions, indexed by (infinitely many) fixed points on the stack X.

- Replace $\mathrm{SL}(V) / U$, which parameterizes flags in V where each subspace W comes with an orientation, by the smooth stack (cf. Laumon compactifiction) parameterizing
oriented line \rightarrow oriented plane $\rightarrow \ldots$ oriented $n-1$ - space $\rightarrow V$.
(reminiscent of G-T!)
- We want to check:

$$
\left\langle P_{X^{\vee}}, \varphi_{G^{\vee}}\right\rangle \sim \sum_{\text {fixed points } x \in X} L \text {-function for } T_{x}(X)
$$

RHS is infinite sum of L-functions, indexed by (infinitely many) fixed points on the stack X.

- $\mathrm{LHS}=\int_{[\text {torus }]} \varphi_{\mathrm{PGL}_{n}}$ is an infinite sum of L-functions via multiplicity one chain from torus and PGL_{n}.

$$
\mathrm{LHS}_{c u s p}=\mathrm{RHS}_{\text {cusp }}, \mathrm{LHS}_{E i s} \stackrel{?}{=} \mathrm{RHS}_{\text {Eis }} .
$$

- So: infinite sums of L-functions can arise as non-unique duals of unique periods. Many interesting examples to examine!
- So: infinite sums of L-functions can arise as non-unique duals of unique periods. Many interesting examples to examine!
- A powerful method to analyze such situations is to use multiplicity one branching chains. But as we saw in Part 1, there may be more than one such chain. It is crucial to understand better how this fits with the duality paradigm.
- So: infinite sums of L-functions can arise as non-unique duals of unique periods. Many interesting examples to examine!
- A powerful method to analyze such situations is to use multiplicity one branching chains. But as we saw in Part 1, there may be more than one such chain. It is crucial to understand better how this fits with the duality paradigm.
- Happy Birthday, Joseph, and thank you for your inspiring mathematics!

