Unipotent characters and \(\ell\)-adic sheaves.

Goal: \underline{geometric} way to write characters of \(p\)-adic groups.

Recall the answer for finite Chevalley groups.

Lusztig's theory of Character sheaves. \(G\) - reductive over \(\mathbb{F}_q\).

1) \(G = G(\mathbb{F}_q)\)

Then to an \(\mathfrak{g}\) - \(\mathfrak{u}\) repn of \(G\) there corresponds an irreducible perverse sheaf on \(\mathfrak{g}\), \(\mathcal{F}_g \in \text{Perv}_{\mathfrak{c}}(\mathfrak{g})\)

\[D_{\mathfrak{c}}(G) \]

\[X_g(g) = T_{2}(\mathbb{F}_2, \mathcal{F}_g|_{g}) \]
\[X_g = \text{Tr}_2 (F_2, F_g). \]

Example: \[g \in \mathbb{C}[G/B]. \]

Such \[g \] with ir. reps of \(H = \mathbb{C}[B \setminus G/B] \):

\[g \in \mathcal{S}_n \in \mathcal{S}_{n!}. \]

\[\mathcal{F}_g = \text{Sp}_2 \otimes \mathbb{C}[W]. \]

\[\text{Sp}_2 = \prod_k \overline{\mathbb{Q}_E} [d]. \]

\[\pi: \tilde{G} \longrightarrow G \]

\[\text{constant sheaf} \quad G/B \times G \]
16) \(G \) - any (connected center)

There is an assignment \(\mathfrak{g} \sim \mathfrak{g}_G \rightarrow \mathfrak{g}_\mathfrak{g} \) - irreducible powers sheaf

\[\text{In} \langle \mathfrak{g} \rangle \text{ (a character sheaf)} \]

\[
\begin{align*}
X_g & \hookrightarrow \text{Tr} (F_G, F_g) \\
\text{In} \langle \mathfrak{g} \rangle & = \sim \text{families}, \text{ for each family } R
\end{align*}
\]

one defines a finite group \(\Gamma = \Gamma_R \).

\[
\begin{align*}
s.t. \ R & \leftrightarrow (\text{In} \mathfrak{g}, \mathfrak{g}_G (\Gamma)) \Rightarrow \{ (\gamma, \psi) \mid \gamma \in \Gamma, \ \psi \in \text{In} \langle \mathfrak{g} (\Gamma) \rangle \} \\
\text{Rank} \ K (\mathfrak{g}_G (\Gamma)) & \sim \text{Fun} (\mathfrak{g}_G (\Gamma), \mathfrak{g} (\Gamma)) \ni \chi \mid \chi_1, \chi_2 \in \chi, \chi_1 \otimes \chi_2 \end{align*}
\]

\[
\begin{align*}
\text{Comm} (\Gamma) & = \{ (\delta_1, \delta_2) \in \mathfrak{g}^2 \mid \delta_1, \delta_2 = \delta_2, \delta_1 \} \\
\mathfrak{g} & \sim \mathfrak{g} (F_G, F_g).
\end{align*}
\]
The transformation matrix between x_g, $T_{21} F_2 F_3$ is the matrix of Φ.

\[S_z = \text{Rep}(\Gamma \times \Gamma) \cong F_T. \]

self-dual abelian group.

\[\text{Rmk 1) } CS \cong Z(\text{H}_f), \quad \text{H}_f - \text{finite Hecke category} \]

Driinfeld center on 3×3 monodromic sheaves on G.

\[\text{H}_f = D(\beta : G : B) \]

Ben-Zvi - Nadler

Finkelberg, Ostrik

Levendorskii

in different contexts this is due to

Leustig.
Rmk 2. \[C[G]^g = C[G]^g \]

\[\mathcal{Z}(C[G]) \]

Center won't be true for p-adic groups.

2) Change notation! \[G = G \left(\mathbb{F}_q(\mathbb{H}) \right) = G(\mathbb{F}_q) \]

2a) \[G = GL_n. \]

\[g - \text{a 1r irreducible) representation of } G \geq \mathbb{F}(0) \geq I - \text{Iwahori} \]

\[g^I \neq 0, \text{ } g \text{ is generated by } g^I. \]

\[G = G_c - \text{union of compact subgroups.} \]
Then $\chi_p |_{G_w} = T_2(F_2, \mathbb{Sp}_2 \otimes \overline{\mathbb{G})}$.

$g \leftrightarrow \text{rep of } H_{aff} = \mathbb{C}((\mathbb{F}/I) G/I) \rightarrow \mathbb{C}[W_{aff}]$

\overline{g} - degeneration of g.

Idea of proof:

It's enough for every parahoric P to prove equality after restricting to P and then also after taking push-forward to $\overline{P} = P/\text{prinmp. radical}$. - reduces to the f. dem. statement.
2 b) \(G \) - general (split),

If \(H \) is a (reductive) group \(/ C \), \(\text{Comm}(H) \) - variety of comm-Hg pairs.

\[
O(\text{Comm}(H))^H \supset O_e(\text{Comm}(H))^H = \{ f \mid \forall y, f|_{x(y)x^(-1)} \text{ is constant} \}
\]

\[
O_2 = \{ f \mid \forall X, f|_{x X x} \}
\]

\[
O_{e2} = O_e \cap O_2.
\]

- Recall \(G \) - \(p \)-adic group. \(S = C_e^\infty(G) \)

\[
C(S) = S / [S, S]
\]

\[
\text{Dist}(G) = C(S)^*.
\]

\[
\text{Rep}(G) = \text{Rep}(G)_u \oplus \text{Rep}(G)_n.
\]

\[
S = S_u \oplus S_{nu}, \quad \Rightarrow \quad C(S) = C(S)_u \oplus C(S)_n.
\]

\(\text{Rep} G_u = \{ \rho \mid g^2 \neq 0 \} \& \text{their } L \text{-packets} \)
\[G = G_c \sqcup G_{nc} \]
\[S(G) = S(G_c) \oplus S(G_{nc}) \]
\[C(S) = S_G = C(S)_c \oplus C(S)_{nc} \]

Lemma
\[C(S)_u = C(S)_{uc} \oplus C(S)_{unc} \]

Conj
There are canonical isomorphisms:
1. \[\hat{C}_{weu} = \oplus_{u \in U/\hat{G}} \mathcal{O} \left(\text{Comm} \mathbb{Z}(\hat{G})^{\text{red}} \right) \]
2. \[\hat{C}_{weu} = \oplus \mathcal{O}_{\mathbf{Z}_2} \]

This agrees with characters & almost characters.
Unipotent reps $\rightarrow (u, s, \psi)$

$u s = s u, s^4 u \in G$

$\psi \in \text{Im Rep}(\Pi_0(\mathbb{Z}(s, u)))$

G is simple, u is unipotent.

$\mathfrak{g} u/s, q - \text{standard rep. of } n.$

$\chi_{[u/s, q]} : \mathbb{C} \rightarrow \mathbb{C}$,

$f \rightarrow \langle f_u | \mathbb{Z}(s), s, \psi \rangle.$

$C_{u, c}$ has an obvious involution.

This sends character to almost character - $f \rightarrow$
coming from a character sheaf.

Rmk. Partly inspired by Lusztig's paper on unpotent \(\mathfrak{g} \)-on loop groups.

toccatas.

It)
dah

e-
edah

az-Nr

\[H^\omega = \mathcal{D} \text{Coh} \mathcal{C}'(\text{g}_F) \]

\[\mathcal{L}(H) = \mathcal{D} \text{Coh} (\text{Comm} (\mathcal{C})) \]

\[\mathbb{P} \rightarrow F_{5,n,1,4} \]

\[\psi \in \mathfrak{t} \]
Conj b) \[\Rightarrow \] \(C_{u, c} \) carries an involution \(\phi \).

Idea: \(\phi \): characters of standard model \(G \) to almost character \(f-n \) coming from \(CS \).

Rank Bouthier-Kazhdan-Varshavsky

define \(\text{Per}^{G}(\xi) \)

we expect these \(CS \) to lie in \(\text{Per}^{G}(\xi) \)

with Varshavsky have a similar result for cuspidal depth 0 \(L \)-packets.
for cuspidal depth 0 L-packets.