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1. Second adjointness for p-adic groups

1.1. Notations. We let G be a split reductive group, with a chosen Cartan subgroup T ⊂ G, and a
polarization, so that we have the well-defined positive and negative Bore subgroups

B− ⊃ T ⊂ B.

Let N ⊂ B and N− ⊂ B− denote their unipotent radicals.

In this section, we will use boldface symbols such as G, T, etc., to denote the points of the corre-
sponding group over a p-adic field K.

1.2. Jacquet and induction functors.

1.2.1. Consider the (G,T)-bimodules

(1.1) Functc(G/N) and Functc(G/N
−),

1.2.2. Given a bimodule Q ∈ (G1 ×G2)-mod, we can define functors

FQ,1→2 and FQ,2→1

by

FQ,1→2(M1) = Q ⊗
H(G1)

M1 and FQ,2→1(M2) = Q ⊗
H(G2)

M2,

respectively, where H(Gi) denotes the Hecke algebra of Gi.

Remark 1.2.3. The functors FQ,1→2 and FQ,2→1 are each other’s duals for the canonical self-duality
on on G-mod, given by

M ′,M ′′ ∈ G-mod 7→ M ′ ⊗
H(G)

M ′′ ∈ Vect .

The corresponding anti self-equivalence on G-modc (the subcategory of compact objects) is the
cohomological duality

M 7→ HomH(G)(M,H(G)).

1.2.4. Consider the functors

T-mod↔ G-mod

corresponding to the bimodules (1.1).

These are the induction and Jacquet functors,

i, i− : T-mod→ G-mod and r, r− : G-mod→ T-mod,

respectively.
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1.2.5. Almost by definition, the functor r is given by

M 7→MN,

and similarly for r−.

Now, the fact that G/B is compact allows to rewrite i(M) as

Funct(G/N,M)T,

which implies that i is naturally the right adjoint of r. And similarly for the pair (r−, i−)

Remark 1.2.6. It is more convenient to replace the original (r, i) by their normalized versions, by
incorporating the ρ-shift. In what follows we will assume having done so.

1.3. Second adjointness.

1.3.1. Bersnstein’s second adjointness theorem says that there is another, much less obvious adjunction
between the above functors. Namely, it says:

Theorem 1.3.2 (Bernstein). The functors (i−, r) form an adjoint pair.

1.3.3. The statement of Theorem 1.3.2 should be complemented by the following:

An adjunction between a given pair of functors is uniquely determined by specifying either the unit
or the counit of the adjunction.

In the case of (i−, r) we a priori specify what the unit of the adjunction is. Note that the composite

r ◦ i−,

viewed as a functor T-mod→ T-mod is given by the bimodule

Functc(N\G/N−).

The unit is given by the map

(1.2) H(T) = Functc(T) ' Functc(
◦

N\G/N−)→ Functc(N\G/N−),

where
◦

N\G/N− ⊂ N\G/N−

is the big Bruhat cell, and the last arrow in (1.2) is given by extending a (compactly supported function)
by zero.

1.3.4. One approach to prove Theorem 1.3.2 is to exhibit explicitly the counit of the adjunction. This
approach has been realized by R. Bezrukavnikov and D. Kazhdan in [BK].

Note that the unit is supposed to be a map of G×G-modules

(1.3) Functc((G/N×G/N−)/T)→ Functc(G).

This map is constructed using a piece of geometry, which will be crucial throughout this talk.

1.3.5. Choose a dominant regular coweight γ : Gm → T . Consider the resulting adjoint action of Gm
on G. Its attractor/repeller/fixed locus is B, B− and T -respectively.



SECOND ADJOINTNESS VIA NEARBY CYCLES 3

1.3.6. More generally, let Y be a smooth affine scheme, equipped with an action of Gm. Let Y +, Y −, Y 0

be the corresponding attractor, repeller and fixed point loci. We have the inclusions

Y 0 s+→ Y + p+→ Y and Y 0 s−→ Y −
p−→ Y

and the projections

Y + q+→ Y 0 q−← Y −.

In this case, following [DG], we construct the interpolation

Ỹ ⊂ A1 × Y × Y,
by letting it be the closure along

Gm × Y × Y ↪→ A1 × Y × Y.
of the graph of the action map

Gm × Y → Y,

which is a closed subscheme in Gm × Y × Y .

By definition, the fiber of Ỹ over 1 ∈ A1 is the diagonal copy Y ⊂ Y × Y . Furthermore, one can
show that the preimage of 0 ∈ A1 identifies with

Y + ×
Y 0
Y − ⊂ Y + × Y − ⊂ Y × Y.

Moreover, Ỹ carries an action of Gm ×Gm compatible with the action on A1 via the multiplication
map Gm ×Gm → Gm, and the action on Y × Y , given by

(c1, c2) · (y1, y2) = (c1 · y1, c
−1
2 · y2).

1.3.7. Applying this to G with the above action of Gm, we obtain a group-scheme

G̃γ → A1,

whose fiber over 1 ∈ A1 is the original G, whose whose fiber over 0 is B ×
T
B−.

In particular, we can consider the A1-family of schemes

A1 ×G×G/G̃γ ,
equipped with an action of G×G, whose fiber over 1 ∈ A1 is G and whose fiber over 0 ∈ A1 is

(G/N ×G/N−)/T.

1.3.8. Let us take the set of points of A1 ×G×G/G̃γ over our p-adic field K, i.e.,

(1.4) K×G×G/G̃γ .

This is a space equipped with an action of G×G that interpolates between G and (G/N×G/N−)/T.

The authors of [BK] use the space of (1.4) to define the operation of taking the asymptotic, which
is a map

Functc((G/N×G/N−)/T)→ Functc(G),

defining the required map (1.3).

1.4. The original approach. Let us briefly describe the original Bernstein’s approach to the proof
of Theorem 1.3.2.

1.4.1. For a reductive group G, the category G-mod carries another self-duality, called the Cohen-
Macaulay duality (also discovered by J. Bernstein). Let us denote the corresponding self-equivalence
by

DCM
G : (G-modc)op → G-modc.

On the subcategory of admissible representations, the Cohen-Macaulay duality is the usual contra-
gredient duality M 7→M∨.
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1.4.2. In the same way as one shows that the functor i on admissible representations commutes with
contragredient duality, one shows that the following diagram commutes

(G-modc)op DCM
G−−−−−→ G-modc

iop

x xi
(T-modc)op DCM

T−−−−−→ T-modc.

Now, it follows formally that the statement of Theorem 1.3.2 is equivalent to the following:

Theorem 1.4.3. The following diagram of functors commutes:

(1.5)

(G-modc)op DCM
G−−−−−→ G-modc

rop

y yr−
(T-modc)op DCM

T−−−−−→ T-modc.

For example, for admissible representations, the commutativity in (1.5) means that we have a
canonical isomorphism

(1.6) (r(M))∨ ' r−(M∨).

This will be a prototype of the kind of equivalence we will aim to have in the geometric setting.

2. The geometric setting

2.1. Notation. In this section we will working of a ground field k of characteristic 0. Along with our
algebraic groups G, T , etc., we will consider the loop/arc groups L+(G) ⊂ L(G), L+(T ) ⊂ L(T ).

Our basic object of study is categories equipped with an action of L(G).

2.2. Jacquet functors for loop groups.

2.2.1. First, let C be a category equipped with an action of a finite-dimensional (or even pro-finite
dimensional group H). We can consider the categories of H-invariants and H-coinvariants on C:

C
H and CH .

There is a canonically defined averaging functor

AvH∗ : C→ C,

which canonically factors as
C→ CH → C

H → C,

and one can show that the resulting functor

(2.1) CH → C
H

is an equivalence.

However, this will no longer be the case if we replace H by a group ind-scheme, such as L(N).

2.2.2. Let C be a category acted on by L(G). Thus, a feature of the categorical set-up is that we now
have two possible Jacquet operations

C CL(N) and C C
L(N).

2.2.3. Assume for a moment that C is dualizable1. Then its dual C∨ also carries an action of L(G).

In this case, we have

(2.2) (CL(N))
∨ ' (C∨)L(N).

1Unlike the situation one categorical level down, in which a vector space is dualizable if and only if it is finite-
dimensional, most categories we encounter in practice are dualizable; in particular, every compactly generated category
is dualizable.



SECOND ADJOINTNESS VIA NEARBY CYCLES 5

2.3. Second adjointness for categorical actions?

2.3.1. We can loosely regard the dualization operation on categories acted on by L(G) as an analog of
Cohen-Macaulay duality. Then the analogy with Theorem 1.4.3 leads us to the following:

Question 2.3.2. Is it true that we have a canonical equivalence?

(CL(N))
∨ ' (C∨)L(N−).

In fact, Question 2.3.2 had been proposed as a conjecture by Sam Raskin. However, recently,
evidence has emerged that the answer in general is “no”; this is an ongoing project by David Yang.

2.3.3. By comparing with (2.2), we can restate Question 2.3.2 (in a more precise form) as follows:

Question 2.3.4. Is is true that the composite functor

(2.3) C
L(N) → C→ CL(N−)

is an equivalence?

2.3.5. A partial evidence towards Question 2.3.4 is the following:

Theorem 2.3.6. The induced functor

(CL(N))L
+(T ) → (CL(N−))

L+(T )

is an equivalence.

Proof. The proof is inspired by another idea of Joseph Bernstein:

Let I ⊂ L+(G) be the Iwahori subgroup; let Iu ⊂ I be its unipotent radical.

One shows, as in the theory of p-adic groups that the functors

(CL(N))L
+(T ) ↪→ C

L+(T ) AvIu∗→ C
I

and

C
I → C

L+(T ) → (CL(N−))
L+(T )

are both equivalences.

We claim that the resulting composite functor

(CL(N))L
+(T ) ↪→ C

L+(T ) AvIu∗→ C
L+(T ) → (CL(N−))

L+(T )

equals the functor

(CL(N))L
+(T ) → C

L+(T ) → (CL(N−))
L+(T ).

Indeed, let

Iu = I+
u · I0

u · I+ − u
be the triangular decomposition of Iu.

Then the functor

(CL(N))L
+(T ) ↪→ C

L+(T ) AvIu∗→ C
L+(T )

equals

(CL(N))L
+(T ) ↪→ C

L+(T ) Av
I−u
∗→ C

L+(T ),

since the averaging with respect to I0
u does nothing on L+(T )-invariants, and the averaging with respect

to I+
u does nothing on L(N)-invariants.

And the functor

C
L+(T ) Av

I−u
∗→ C

L+(T ) → (CL(N−))
L+(T )

equals the projection

C
L+(T ) → (CL(N−))

L+(T ),
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since the averaging with respect to I−u does not alter the projection to L(N−)-coinvariants.
�

2.4. The setting for Lin Chen’s theorem.

2.4.1. One way to state Lin Chen’s theorem is:

Theorem 2.4.2. The equivalence (2.3) holds for C := D-mod(GrG).

However, this formulation does not reveal the full strength of Lin Chen’s theorem for the following
reason: one can actually deduce Theorem 2.4.2 from Theorem 2.3.6. This is due to the fact that the
action of L+(T ) on the categoies

D-mod(GrG)L(N) and D-mod(GrG)L(N−)

is unipotent-monodromic, which means that they can be explicitly expressed via

(D-mod(GrG)L(N))L
+(T ) and (D-mod(GrG)L(N−))

L+(T ),

respectively.

The real point of Theorem 2.4.2 is that it holds factorizably, a statement that cannot be proved by
appealing to the Iwahori subgroup. In addition, an analog of Theorem 2.4.2 holds for any parabolic,
and the same proof as one indicated below applies.

2.4.3. Here is a reformulation of Theorem 2.4.2, adapted to the form in which we will prove it:

Theorem 2.4.4. The functor

(2.4) D-mod(GrG)L(N) ⊗D-mod(GrG)L(N−) → D-mod(GrG)⊗D-mod(GrG)→ Vect

defines a counit for the duality between D-mod(GrG)L(N) and D-mod(GrG)L(N−).

In (2.4), the arrow

D-mod(GrG)⊗D-mod(GrG)→ Vect

is the counit of the canonical self-duality for the category of D-modules on a (ind)=scheme, given by

F1,F2 7→ ΓdR(GrG,F1

!
⊗ F2).

The corresponding equivalence

(D-mod(GrG)c)op → D-mod(GrG)c

is given by Verdier duality.

2.4.5. Lin Chen’s approach to Theorem 2.4.4 consists of explicitly constructing the unit

Unit ∈ D-mod(GrG)L(N) ⊗D-mod(GrG)L(N−)

and showing that it satisfies the axioms for duality against the counit given by (2.4).

The construction of the unit carries a strong analogy to the construction of the counit in [BK] for
the (i−, r) adjunction, mentioned in Sect. 1.3.8. We outline it below.

2.5. The Unit as nearby cyces.
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2.5.1. Consider the (ind)-scheme

A1 ×GrG ×GrG.

Let γ : Gm → G be as in Sect. 1.3.5. Using

Gm → T → G ⊂ L+(G)

and the L+(G)-action on GrG, we obtain a Gm-action on GrG.

Consider the graph of this action

Gm ×GrG
graph-of-action

↪→ Gm ×GrG ×GrG,

and consider

graph-of-action∗(ωGm×GrG) ∈ D-mod(Gm ×GrG ×GrG).

We set

Unit := Ψ(graph-of-action∗(ωGm×GrG)) ∈ D-mod(GrG ×GrG) ' D-mod(GrG)⊗D-mod(GrG),

where

Ψ : D-mod(Gm ×GrG ×GrG)→ D-mod(GrG ×GrG)

is the nearby cycles functor.

2.5.2. The above object Unit has interesting stalks. Let Λ denote the coweight lattice of G. For each
λ ∈ Λ, let

ιλ : Sλ ↪→ GrG and ι−,λ : S−,λ ↪→ GrG

be the inclusion of the corresponding L(N) (resp., L(N−)) orbit.

We have

(ιλ × ι−,µ)!(Unit) ' ωSλ×S−µ ⊗ Ω̃(λ, µ),

where

Ω̃(λ, µ) := HomD-mod(GrG)(ι
µ
! (ωSµ), ιλ! (ωSλ).

We can also write

(ιµ)! ◦ ιλ! (ωSλ) ' ωSµ ⊗ Ω̃(λ, µ),

so the complexes Ω̃(λ, µ) are closely related to the semi-infinite Kazhdan-Lusztig polynomials.

3. Idea of proof

3.1. What do we need to show?

3.1.1. First, we need to show that our object Unit indeed belongs to the subcategory

D-mod(GrG ×GrG)L(N)×L(N−) ⊂ D-mod(GrG ×GrG).

This follows from the fact that the entire picture is equivariant with respect to the group-indscheme

L(G̃γ),

where G̃γ is as in Sect. 1.3.7.

3.1.2. In order to prove Theorem 2.4.4, we need to verify that Unit satisfies the duality axioms against
(2.4). This amounts to showing that for F ∈ D-mod(GrG)L(N), we have

(id×p)∗ ◦ (id×∆)!(Unit�F) ' F,

where p : GrG → pt.
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3.1.3. Consider the following diagram

(3.1)

Gm ×GrG ×GrG ×GrG
j−−−−−→ A1 ×GrG ×GrG ×GrG

i←−−−−− {0} ×GrG ×GrG ×GrG

id×∆

x id×∆

x xid×∆

Gm ×GrG ×GrG
j−−−−−→ A1 ×GrG ×GrG

i←−−−−− {0} ×GrG ×GrG

id×p
y id×p

y yid×p

Gm ×GrG
j−−−−−→ A1 ×GrG

i←−−−−− {0} ×GrG.

We need to show that the (naturally defined) map

(3.2) Ψ ◦ (id×p)∗ ◦ (id×∆)! (graph-of-action∗(ωGm×GrG)� F)→

→ (id×p)∗ ◦ (id×∆)! ◦Ψ (graph-of-action∗(ωGm×GrG)� F)

is an isomorphism, where we note that the LHS in (3.2) is isomorphic to F, and the RHS to

(id×p)∗ ◦ (id×∆)!(Unit�F).

3.1.4. Thus, we need to understand how to manipulate the nearby cycles sheaf against the operation of
!-pullback This is not straightforward, as the nearby cycles do not normally commute with !-pullback.

The diagram (3.1) also involves *-pushforward, but this poses no problem as the morphism in
question is proper.

Our ability to control it in the given situation is based on the combination of the several geometric
observations.

3.2. Replacing nearby cycles by i∗ ◦ j∗.

3.2.1. First, we claim that we can replace the full nearby cycles functor Ψ in the definition of Unit by
unipotent nearby cycles Ψun. This is a general claim within the following paradigm.

Let us be given a nearby cycles situation

(3.3)

Y ×
A1

Gm
j−−−−−→ Y

i←−−−−− Y ×
A1
{0}y y y

Gm −−−−−→ A1 ←−−−−− {0}.

Let us assume that we have a Gm-action on Y compatible with standard action of Gm on A1. Let

F ∈ D-mod(Y ×
A1

Gm)

be Gm-monodromic.

Lemma 3.2.2.

(a) The object Ψ(F) ∈ D-mod(Y ×
A1
{0}) is Gm-monodromic.

(b) If Ψ(F) is unipotent-monodromic, then Ψ(F) = Ψun(F).

The condition of the lemma holds in our case because all objects of D-mod(GrG)L(N) are unipotent-
monodromic for the action of T .

Remark 3.2.3. The reason we could not just forget Ψ and use Ψun instead is that we want to know
that Unit has he factorization property.

We can control factorization because the functor Ψ is a priori compatible with external tensor
products, while Ψun is not.
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3.2.4. Second, we claim that in a general nearby cycles situation of (3.3), we have

Ψun(F) ' i∗ ◦ j∗(F) ⊗
C·(Gm,k)

k.

3.2.5. The above two observations have reduced the manipulation of Ψ against !-pullbacks to that of
the more manageable functor i∗ ◦ j∗.

There is no problem controlling j∗ as it is compatible with !-pullbacks and *-pushforwards. The fact
that we can control i∗ ultimately comes from Braden’s theorem.

3.3. Using Braden’s theorem.

3.3.1. Let us be given a morphism of schemes over A1

f : Y2 → Y1.

Consider the corresponding diagram

Y 1 i1←−−−−− Y1 ×
A1
{0}

f

x xf0
Y 2 i2←−−−−− Y2 ×

A1
{0}.

For F ∈ D-mod(Y1) we have a canonically defined map

(3.4) i∗2 ◦ f !(F)→ f !
0 ◦ i∗1(F).

We want to give sufficient conditions for this map to be an isomorphism.

3.3.2. Suppose that Y1 and Y2 carry an action of Gm, in a way compatible with f and the projection
of both to A1. Let

Y 0
i

s+i ,q
+
i

� Y +
i

p+i→ Yi and Y 0
i

s−i ,q
−
i

� Y −i
p−i→ Yi

be the corresponding fixed/attractor/repeller loci.

Proposition 3.3.3 (Lin Chen). Assume that F is Gm-monodromic. Assume also that:

(i) Both sides in (3.4) land in a full subcategory of D-mod(Y2 ×
A1
{0}) on which the functor

(s−2 )! ◦ (p−2 )∗ : D-mod(Y2 ×
A1
{0})→ D-mod(Y 0

2 ×
A1
{0})

is conservative.

(ii) The diagram

Y +
1 ×

A1
{0}

q+1−−−−−→ Y 0
1 ×

A1
{0}

f+0

x xf00
Y +

2 ×
A1
{0}

q+2−−−−−→ Y 0
2 ×

A1
{0}

is Cartesian.

Then the map (3.4) is an isomorphism.
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3.3.4. We apply this proposition to the upper portion of the diagram (3.1) and the Gm action on the
upper row given by

s · (t, g1, g2, g3) = (s · t, s−1 · g1, g2, g3),

where the last term corresponds to the action of Gm on GrG via γ.

Note that the fixed/repeller locus for this action identifies with

{0} × (GrG)0 ×GrG ×GrG ⊂ {0} × (GrG)+ ×GrG ×GrG,

where (GrG)0 ⊂ (GrG)+ is the fixed/attractor locus of Gm on GrG.

We also note that
(GrG)+ = t

λ
Sλ, λ ∈ Λ,

and
(GrG)0 ' GrT .
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