16:15:55 From Loren Spice : Works fine.

16:25:58 From Dmitry Gourevitch : Link to slides, just in case:

http://www.weizmann.ac.il/math/RTAA/sites/math.HWRT/files/uploads/2020bernstein-handout.pdf

17:10:21 From Spencer Leslie : Which paper was that referring to?

17:13:04 From Sol Friedberg : "On the Nonnegativity of $L(1/2,\pi)$ for SO(2n+1)". Annals of Mathematics. 157 (3): 891–917. 2003

17:16:46 From Alexander Braverman : Is it only for homogeneous spaces?

17:17:01 From Spencer Leslie : Thank you!

17:17:27 From David BenZvi : No, let's take X smooth affine for now but not necessarily homogeneous

17:18:04 From Alexander Braverman : But only for smooth, right? I mean before Yiannis was also

choosing an embedding of X into something affine - it was an additional choice

17:18:41 From David BenZvi : Yes that's correct

17:19:10 From Alexander Braverman : Do you have a more general conjectural which will also take the above embedding into account?

17:19:16 From Alexander Braverman : conjecure

17:19:31 From Jonathan Wang : But the right hand side does make sense for non-smooth X in terms of just V_X/G_X^{o} if you're not looking for something Hamiltonian

17:19:57 From akshay : I will say a little about non-smooth X in my talk

17:20:26 From Alexander Braverman : Well, sometimes you even start with something smooth (e.g. the group) but then embed it into something else (e.g. some semigroup). That case is not covered by the conjecture, right?

17:21:35 From akshay : The conjecture works well for toric varieties, at least. I haven't thought about group compactifications besides that case.

17:21:59 From akshay : That is the dual V_X depends on the embedding.

17:22:00 From Jonathan Wang : I don't know about a precise conjecture but I think the numerics suggest you can consider the loop space of the embedding X on the left (and V_X depends on the embedding)?

17:22:13 From Alexander Braverman : You mean, the equivalence of categories conjecture? Is it possible to formulate it for toric varieties?

17:23:09 From Dennis Gaitsgory : Can somebody explain the relation between the M-conjecture and Plancherel?

17:23:14 From akshay : I believe it is very close to the type of conjecture you discussed in your talk (although your conjecture llows ramification, whereas the conjecture Yiannis mentioned was only the ulnramified case)

17:23:59 From Alexander Braverman : I would be very glad to understand this...

17:24:02 From akshay : Dennis, if you compute all the Homs between sheaves on X(F)/G(O), and take Frobenius, you get a recipe for all inner products, which gives you Plancherel.

17:24:05 From bezrukav : Akshay, just to make clear "you" meant Sasha, not Dennis? :)

17:24:11 From akshay : Sorry, "you" was Sasha!

17:24:52 From Alexander Braverman : And my previous message was a reply to Akshay's statement that the toric is related to my talk (I am probably missing something obvious...)

17:25:05 From Tony Feng : What does the existence of a [distinguished?] Hamiltonian structure on M[^] mean in terms of V_X[^]? i.e. why does the recipe M[^] = V_X[^] x_{G_X^} G[^] produce a hamiltonian space? 17:25:16 From Yakov Varshavsky : Akshay: in the inner form formula, there is Verdier duality. Does it really exist?

17:26:26 From akshay : Yakov, for X smooth affine I don't think there is a problem. I don't know about other cases. Tony, the Hamiltonian structure is not obvious in this description - we construct it by hand (under some conditions).

17:27:08 From akshay : (Yakov, I am not an expert on that point, I would be happy to talk more.) 17:27:45 From David BenZvi : Tony - you can also give an alternative definition of V_X from the automorphic side where the Hamiltonian structure is evident

17:29:54 From bezrukav : David, if you heard my question, can you maybe comment please?

17:29:58 From David BenZvi : @Roman - I think this conjecture should be related to the "Matsuki dual" form of the real conjecture Nadler and I formulate

17:30:14 From bezrukav : yes, that's what I had in mind

17:32:18 From David BenZvi : I think it should be essentially the same conjecture in the case of symmetric spaces but not sure I want to commit to that

17:36:33 From Alexander Braverman : To David: Is the factorizable conjecture considerably more difficult than just the local one?

17:37:37 From David BenZvi : Yes, it's a lot more structure, even in the Satake case the factorizable form is not really documented! In general it's hard even to formulate

17:38:06 From David BenZvi : (It requires extra structure on the dual space)

17:38:45 From Alexander Braverman : I will be glad to discuss this further