Elliptic zastava

Michael Finkelberg (joint with Alexander Polishchuk)

Higher School of Economics & Skolkovo Institute of Science and Technology, Moscow

2020.05.12

(4回) (4回) (4回)

臣

Michael Finkelberg & Alexander Polishchuk Elliptic zastava

Zastava

X a smooth complex projective curve. G a simply connected semisimple group. T ⊂ B ⊂ G a Cartan torus and Borel subgroup; N_− the opposite unipotent subgroup. α = ∑_{i∈I} a_iα_i ∈ X_{*}(T)_{pos} a coroot.

크

Zastava

- X a smooth complex projective curve. G a simply connected semisimple group. T ⊂ B ⊂ G a Cartan torus and Borel subgroup; N_− the opposite unipotent subgroup. α = ∑_{i∈I} a_iα_i ∈ X_∗(T)_{pos} a coroot.
- The (open) zastava Z_X^α: the moduli space of G-bundles on X with a flag (a B-structure) of degree α and a generically transversal N_−-structure. A smooth variety of dimension 2|α| = 2∑_{i∈I} a_i.

Zastava

- ▶ X a smooth complex projective curve. G a simply connected semisimple group. $T \subset B \subset G$ a Cartan torus and Borel subgroup; N_- the opposite unipotent subgroup. $\alpha = \sum_{i \in I} a_i \alpha_i \in \mathbb{X}_*(T)_{\text{pos}}$ a coroot.
- The (open) zastava Z_X^α: the moduli space of G-bundles on X with a flag (a B-structure) of degree α and a generically transversal N_−-structure. A smooth variety of dimension 2|α| = 2∑_{i∈I} a_i.
- The factorization projection π_α: ²Z_X^α → X^α to the colored configuration space on X: remembers where the N₋- and B-structures are not transversal. Has a local nature: π_α⁻¹(D^α) is independent of X for any analytic disc D ⊂ X.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Additive case

► $X = \mathbb{P}^1$, and we additionally require that the N_- - and B-structures are transversal at $\infty \in \mathbb{P}^1$. We obtain a smooth affine variety $\hat{Z}^{\alpha}_{\mathbb{G}_a} \to \mathbb{A}^{\alpha}$. For physicists, $\hat{Z}^{\alpha}_{\mathbb{G}_a}$ is the moduli space of euclidean G_c -monopoles with maximal symmetry breaking at infinity of topological charge α . So it carries a hyperkähler structure and hence a holomorphic symplectic form.

Additive case

► $X = \mathbb{P}^1$, and we additionally require that the N_{-} and B-structures are transversal at $\infty \in \mathbb{P}^1$. We obtain a smooth affine variety $\mathring{Z}^{\alpha}_{\mathbb{G}_a} \to \mathbb{A}^{\alpha}$. For physicists, $\mathring{Z}^{\alpha}_{\mathbb{G}_a}$ is the moduli space of euclidean G_c -monopoles with maximal symmetry breaking at infinity of topological charge α . So it carries a hyperkähler structure and hence a holomorphic symplectic form.

From the modular point of view, the classifying stack BG has a 2-shifted symplectic structure, and $BB \to BG$ has a coisotropic structure. $\mathring{Z}_{\mathbb{G}_a}$ is the space of based maps from (\mathbb{P}^1, ∞) to G/B, that is a fiber of $\operatorname{Maps}(\mathbb{P}^1, \infty; BB) \xrightarrow{p} \operatorname{Maps}(\mathbb{P}^1, \infty; BG)$. The latter space has a 1-shifted symplectic structure, and p is coisotropic as well as $\operatorname{pt} \to \operatorname{Maps}(\mathbb{P}^1, \infty; BG)$. Hence the desired Poisson (symplectic) structure on $\mathring{Z}_{\mathbb{G}_a}$ [T.Pantev, T.Spaide].

副 🖌 🗸 臣 🖌 🖉 医 👘 臣

Explicit formula

Factorization property: the addition of divisors
X^β × X^γ → X^α for α = β + γ. A canonical isomorphism

$$\overset{\circ}{Z}{}^{\alpha}_{X} \times_{X^{\alpha}} (X^{\beta} \times X^{\gamma})_{\text{disj}} \cong (\overset{\circ}{Z}{}^{\beta} \times \overset{\circ}{Z}{}^{\gamma})|_{(X^{\beta} \times X^{\gamma})_{\text{disj}}}$$

臣

< ≣ ▶

Explicit formula

• Factorization property: the addition of divisors $X^{\beta} \times X^{\gamma} \to X^{\alpha}$ for $\alpha = \beta + \gamma$. A canonical isomorphism

$$\overset{\circ}{Z}{}_{X}^{\alpha} \times_{X^{\alpha}} (X^{\beta} \times X^{\gamma})_{\text{disj}} \cong (\overset{\circ}{Z}{}^{\beta} \times \overset{\circ}{Z}{}^{\gamma})|_{(X^{\beta} \times X^{\gamma})_{\text{disj}}}$$

• For a simple coroot α_i a canonical isomorphism $\overset{\circ}{Z}_{\mathbb{G}_a}^{\alpha_i} \cong \mathbb{G}_a \times \mathbb{G}_m$. Hence for arbitrary α away from diagonals in \mathbb{A}^{α} we have coordinates $(w_{i,r} \in \mathbb{G}_a)_{r=1}^{a_i}$ and $(y_{i,r} \in \mathbb{G}_m)_{r=1}^{a_i}$ on $\overset{\circ}{Z}_{\mathbb{G}_a}^{\alpha_i}$ up to simultaneous permutations in $S_{\alpha} = \prod_{i \in I} S_{a_i}$. • Factorization property: the addition of divisors $X^{\beta} \times X^{\gamma} \to X^{\alpha}$ for $\alpha = \beta + \gamma$. A canonical isomorphism

$$\overset{\circ}{Z}{}_{X}^{\alpha} \times_{X^{\alpha}} (X^{\beta} \times X^{\gamma})_{\text{disj}} \cong (\overset{\circ}{Z}{}^{\beta} \times \overset{\circ}{Z}{}^{\gamma})|_{(X^{\beta} \times X^{\gamma})_{\text{disj}}}$$

For a simple coroot α_i a canonical isomorphism Ž^{α_i}_{G_a} ≃ G_a × G_m. Hence for arbitrary α away from diagonals in A^α we have coordinates (w_{i,r} ∈ G_a)^{a_i}_{r=1} and (y_{i,r} ∈ G_m)^{a_i}_{r=1} on Ž^{α_i}_{G_a} up to simultaneous permutations in S_α = ∏_{i∈I} S_{a_i}.
From now on G is assumed simply laced. Choose an orientation of the Dynkin graph. Coordinate change: u_{i,r} := y_{i,r} ∏_{i→j} ∏^{a_j}_{s=1}(w_{j,s} - w_{i,r})⁻¹. The new coordinates are "Darboux" in the sense that the only nonzero brackets are {w_{i,r}, u_{i,r}} = u_{i,r}.

The factorization projection ²C^α_{G_a} → A^α is an integrable system. In case G = SL(2), the degree α is a positive integer d. Then we get the Atiyah-Hitchin system.

- The factorization projection Z^α_{G_a} → A^α is an integrable system. In case G = SL(2), the degree α is a positive integer d. Then we get the Atiyah-Hitchin system.
- It also coincides with the open Toda system for GL(d). In particular, A^(d) is the Kostant slice for gl(d), and Z^d_{Ga} is the universal centralizer (pairs: x in the slice, and commuting g ∈ GL(d)).

- The factorization projection [°]Z^α_{G_a} → A^α is an integrable system. In case G = SL(2), the degree α is a positive integer d. Then we get the Atiyah-Hitchin system.
- It also coincides with the open Toda system for GL(d). In particular, A^(d) is the Kostant slice for gl(d), and Z^d_{Ga} is the universal centralizer (pairs: x in the slice, and commuting g ∈ GL(d)).
- ► Equivalently, take a surface S = G_a × G_m ≅ Z¹_{G_a}. Then Z^d_{G_a} ≃ Hilb^d_{tr}(S): the transversal Hilbert scheme of d points on S. It is an open subscheme of Hilb^d(S) classifying the subschemes whose projection to G_a is a closed embedding.

イロン イヨン イヨン ・ ヨン

- The factorization projection [°]Z^α_{Ga} → A^α is an integrable system. In case G = SL(2), the degree α is a positive integer d. Then we get the Atiyah-Hitchin system.
- It also coincides with the open Toda system for GL(d). In particular, A^(d) is the Kostant slice for gl(d), and Z^d_{Ga} is the universal centralizer (pairs: x in the slice, and commuting g ∈ GL(d)).
- ► Equivalently, take a surface S = G_a × G_m ≅ Z¹_{G_a}. Then Z^d_{G_a} ≃ Hilb^d_{tr}(S): the transversal Hilbert scheme of d points on S. It is an open subscheme of Hilb^d(S) classifying the subschemes whose projection to G_a is a closed embedding.
- ► A symplectic form on S: {w, y} = y induces a symplectic form on Hilb^d_{tr}(S). It coincides with the above symplectic form on ²Z^d_{Ga}.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

► Recall the oriented Dynkin graph of G. Take the gauge group G := ∏_{i∈I} GL(a_i) acting on N := ⊕_{i→j} Hom(ℂ^{a_i}, ℂ^{a_j}). It gives rise to a certain space of triples R_{G,N} over the affine Grassmannian Gr_G, and the Coulomb branch M_C(G, N) := Spec H^G[t](R_{G,N}) (symplectically dual to Nakajima quiver variety (N ⊕ N^{*})//G). ► Recall the oriented Dynkin graph of G. Take the gauge group G := ∏_{i∈I} GL(a_i) acting on N := ⊕_{i→j} Hom(ℂ^{a_i}, ℂ^{a_j}). It gives rise to a certain space of triples R_{G,N} over the affine Grassmannian Gr_G, and the Coulomb branch M_C(G, N) := Spec H^G[[t]</sup>(R_{G,N}) (symplectically dual to Nakajima quiver variety (N ⊕ N^{*})//G).

• We have $\mathcal{M}_C(\mathbf{G}, \mathbf{N}) \simeq \check{Z}^{\alpha}_{\mathbb{G}_a}$, and the integrable system $\check{Z}^{\alpha}_{\mathbb{G}_a} \to \mathbb{A}^{\alpha}$ corresponds to the embedding $\mathbb{C}[\mathbb{A}^{\alpha}] \cong H^{\mathbf{G}\llbracket t \rrbracket}(\mathrm{pt}) \subset H^{\mathbf{G}\llbracket t \rrbracket}(\mathcal{R}_{\mathbf{G},\mathbf{N}}).$

Multiplicative case

• $X = \mathbb{P}^1$, and we additionally require that the N_{-} and B-structures are transversal at $\infty \in \mathbb{P}^1$ and $0 \in \mathbb{P}^1$. We obtain a smooth affine variety $\mathring{Z}^{\alpha}_{\mathbb{G}_m} \to \mathbb{G}^{\alpha}_m$. For physicists, $\mathring{Z}^{\alpha}_{\mathbb{G}_m}$ is the moduli space of *periodic* euclidean G_c -monopoles of topological charge α in one of its complex structures.

Multiplicative case

 X = P¹, and we additionally require that the N₋- and B-structures are transversal at ∞ ∈ P¹ and 0 ∈ P¹. We obtain a smooth affine variety Z^α_{Gm} → G^α_m. For physicists, Z^α_{Gm} is the moduli space of *periodic* euclidean G_c-monopoles of topological charge α in one of its complex structures.
 Its symplectic structure can be again defined in modular terms, but it *is not* the restriction of the symplectic structure of Z^α_{Ga} under the open embedding Z^α_{Gm} ⊂ Z^α_{Ga}. For a simple coroot, Z^α_{Gm} ≃ G_m × G_m, and {w, y} = wy (G is ADE).

★掃▶ ★注▶ ★注▶ → 注

Multiplicative case

 \triangleright $X = \mathbb{P}^1$, and we additionally require that the N_{-} - and *B*-structures are transversal at $\infty \in \mathbb{P}^1$ and $0 \in \mathbb{P}^1$. We obtain a smooth affine variety $\check{Z}^{\alpha}_{\mathbb{G}_m} \to \mathbb{G}^{\alpha}_m$. For physicists, $\check{Z}^lpha_{\mathbb{C}}$ is the moduli space of *periodic* euclidean G_c -monopoles of topological charge α in one of its complex structures. Its symplectic structure can be again defined in modular terms, but it is not the restriction of the symplectic structure of $\check{Z}^{\alpha}_{\mathbb{G}_{n}}$ under the open embedding $\check{Z}^{\alpha}_{\mathbb{G}_{m}} \subset \check{Z}^{\alpha}_{\mathbb{G}_{n}}$. For a simple coroot, $\tilde{Z}_{\mathbb{G}_m}^{\alpha_i} \cong \mathbb{G}_m \times \mathbb{G}_m$, and $\{w, y\} = wy$ (G is ADE). ▶ The factorization projection ${\check{Z}}^{\alpha}_{{\mathbb G}_m} \to {\mathbb G}^{\alpha}_m$ is an integrable system. In case G = SL(2), degree d, it coincides with the relativistic open Toda system for $\operatorname{GL}(d).$ In particular, $\check{Z}^d_{\mathscr{C}}$ is the universal group-group centralizer. Also, $\check{Z}^d_{\mathbb{G}_m} \simeq \operatorname{Hilb}^d_{\operatorname{tr}}(S')$, where $S' = \mathbb{G}_m \times \mathbb{G}_m$. Finally, $\check{Z}^{\alpha}_{\mathbb{G}_m}$ is isomorphic to a K-theoretic Coulomb branch and carries a natural cluster structure.

Elliptic case

X = E an elliptic curve, G = SL(2), S'' = E × 𝔅_m with an invariant symplectic structure. Then Hilb^d_{tr}(S'') ⊂ T^{*}E^(d), an open subvariety of the cotangent bundle.

3

Elliptic case

- ▶ X = E an elliptic curve, G = SL(2), $S'' = E \times \mathbb{G}_m$ with an invariant symplectic structure. Then $\operatorname{Hilb}_{\operatorname{tr}}^d(S'') \subset T^*E^{(d)}$, an open subvariety of the cotangent bundle.
- ► Surprise: Ž^d_E is an open subvariety of the *tangent* bundle TE^(d), not isomorphic to Hilb^d_{tr}(S"); does not carry any symplectic structure.

Elliptic case

- ▶ X = E an elliptic curve, G = SL(2), $S'' = E \times \mathbb{G}_m$ with an invariant symplectic structure. Then $\operatorname{Hilb}_{\operatorname{tr}}^d(S'') \subset T^*E^{(d)}$, an open subvariety of the cotangent bundle.
- ► Surprise: Z^d_E is an open subvariety of the *tangent* bundle TE^(d), not isomorphic to Hilb^d_{tr}(S"); does not carry any symplectic structure.
- ▶ Still there is a relation between \breve{Z}_E^d and the symplectic $\operatorname{Hilb}_{\operatorname{tr}}^{d}(S'')$. To describe it we need a compactification of \check{Z}_{E}^{α} . Generically transversal N_{-} and B-structures on a G-bundle on E define its generic trivialization (away from a colored divisor $D = \pi_{\alpha}(\phi), \ \phi \in \mathring{Z}_{E}^{\alpha}$. Thus we obtain an embedding of \check{Z}_{F}^{α} into a version of Beilinson-Drinfeld Grassmannian of E (partially symmetrized to live over $E^{\alpha} = E^{|\alpha|}/S_{\alpha}$). The desired compactification $\overline{Z}_{E}^{\alpha}$ is the closure of Z_{E}^{α} in the Beilinson-Drinfeld Grassmannian. In case of SL(2), degree d, it is a fiberwise compactification of the tangent bundle $TE^{(d)}$

Compactified zastava

▶ \overline{Z}_E^{α} is the moduli space of *G*-bundles on *E* equipped with generically transversal *generalized N*₋- and *B*-structures. We also allow a twist of *N*₋-structure. For *G* = SL(2), degree *d*, we consider the data

$$\mathcal{L} \subset \mathcal{V} \xrightarrow{\eta} \mathcal{K},$$

where \mathcal{V} is a rank 2 vector bundle, det $\mathcal{V} \cong \mathcal{O}_E$; \mathcal{L} an invertible subsheaf (not necessarily a line subbundle); η a morphism to a line bundle \mathcal{K} (not necessarily surjective). $\eta|_{\mathcal{L}}$ is not zero, and length $(\mathcal{K}/\eta(\mathcal{L})) = d$. We fix \mathcal{K} and obtain the (twisted) compactified zastava $\overline{Z}_{\mathcal{K}}^d$. ▶ \overline{Z}_E^{α} is the moduli space of *G*-bundles on *E* equipped with generically transversal *generalized N*₋- and *B*-structures. We also allow a twist of *N*₋-structure. For *G* = SL(2), degree *d*, we consider the data

$$\mathcal{L} \subset \mathcal{V} \xrightarrow{\eta} \mathcal{K},$$

where \mathcal{V} is a rank 2 vector bundle, det $\mathcal{V} \cong \mathcal{O}_E$; \mathcal{L} an invertible subsheaf (not necessarily a line subbundle); η a morphism to a line bundle \mathcal{K} (not necessarily surjective). $\eta|_{\mathcal{L}}$ is not zero, and length $(\mathcal{K}/\eta(\mathcal{L})) = d$. We fix \mathcal{K} and obtain the (twisted) compactified zastava $\overline{Z}_{\mathcal{K}}^d$.

For general G we consider the similar data for the associated (to all irreducible representations of G) vector bundles and impose Plücker relations. We get Z^α_K, where K is a T-bundle.

The relatively very ample determinant line bundle on the Beilinson-Drinfeld Grassmannian restricted to Z
^α_K gives a very explicit projective embedding. *Reason:* restriction to the *T*-fixed points in Z
^α_K gives an isomorphism on sections of the determinant line bundle [X.Zhu]

- The relatively very ample determinant line bundle on the Beilinson-Drinfeld Grassmannian restricted to Z
 ^α_K gives a very explicit projective embedding. *Reason:* restriction to the *T*-fixed points in Z
 ^α_K gives an isomorphism on sections of the determinant line bundle [X.Zhu]
- ▶ The *T*-fixed points components are $E^{\beta} \times E^{\gamma}$, $\beta + \gamma = \alpha$. The contribution of a component is

$$\mathbf{q}_* \left(\mathbf{p}^* \Big(\mathcal{K}^{\beta} \Big(\sum_{i \in I} \Delta_{ii}^{\beta} - \sum_{i \to j} \Delta_{ij}^{\beta} \Big) \Big) \Big(\sum_{i \in I} \Delta_{ii}^{\beta, \gamma} \Big) \right)$$

where $E^{\beta} \xleftarrow{\mathbf{p}} E^{\beta} \times E^{\gamma} \xrightarrow{\mathbf{q}} E^{\alpha}$ (addition of colored divisors); $\Delta_{ij}^{\beta,\gamma} \subset E^{\beta} \times E^{\gamma}$ is the incidence divisor; $\Delta_{ii}^{\beta} \subset E^{\beta}$ is the incidence divisor; $\mathcal{K}^{\beta} = \boxtimes_i \mathcal{K}_i^{(b_i)}$ (symmetric powers), and \mathcal{K}_i is the line bundle associated to the character $-\alpha_i^{\vee}: T \to \mathbb{C}^{\times}$.

Summing up the above vector bundles on E^{α} over all partitions $\beta + \gamma = \alpha$ we obtain a factorizable vector bundle $\mathbb{V}_{\mathcal{K}}^{\alpha}$ of rank $2^{|\alpha|}$. When $\alpha = \alpha_i$, we get $\mathbb{V}_{\mathcal{K}}^{\alpha_i} = \mathcal{K}_i \oplus \mathcal{O}_E$, and $\overline{Z}_{\mathcal{K}}^{\alpha_i} = \mathbb{P}\mathbb{V}_{\mathcal{K}}^{\alpha_i}$.

3

- Summing up the above vector bundles on E^α over all partitions β + γ = α we obtain a factorizable vector bundle ^V_K^α of rank 2^{|α|}. When α = α_i, we get V^{α_i}_K = K_i ⊕ O_E, and ^{Z^{α_i}_K = ℙV^{α_i}_K.}
- Away from diagonals in E^α, we get the fiberwise Segre embedding (from factorization):
 a fiber of compactified zastava ≃ (P¹)^{|α|} → a fiber of PV^α_K. The whole of Z^α_K is the closure in PV^α_K of the off-diagonal Segre embedding image.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- Summing up the above vector bundles on E^α over all partitions β + γ = α we obtain a factorizable vector bundle ^V_K^α of rank 2^{|α|}. When α = α_i, we get V^{α_i}_K = K_i ⊕ O_E, and ^{Z^{α_i}_K = ℙV^{α_i}_K.}
- Away from diagonals in E^α, we get the fiberwise Segre embedding (from factorization):
 a fiber of compactified zastava ≃ (P¹)^{|α|} → a fiber of PV^α_K. The whole of Z^α_K is the closure in PV^α_K of the off-diagonal Segre embedding image.
- $\check{Z}^{\alpha}_{\mathcal{K}} \subset \overline{Z}^{\alpha}_{\mathcal{K}}$ is the complement to 2 hyperplane sections. One hyperplane $\mathbb{V}^{\alpha}_{\mathcal{K},\text{low}} \subset \mathbb{V}^{\alpha}_{\mathcal{K}}$ is the direct sum of all contributions from partitions $\beta + \gamma = \alpha, \ \beta \neq 0$. The other hyperplane $\mathbb{V}^{\alpha,\text{up}}_{\mathcal{K}} \subset \mathbb{V}^{\alpha}_{\mathcal{K}}$ is the direct sum of all contributions from partitions $\beta + \gamma = \alpha, \ \gamma \neq 0$.

イロン イボン イモン イモン 三日

Coulomb version

• Instead of $\mathbb{V}^{\alpha}_{\mathcal{K}}$ consider

$$\mathbb{U}_{\mathcal{K}}^{\alpha} = \bigoplus_{\beta+\gamma=\alpha} \mathbf{q}_{*} \left(\mathbf{p}^{*} \mathcal{K}^{\beta} \otimes \mathcal{O}_{E^{\beta} \times E^{\gamma}} \left(\sum_{i \to j} \Delta_{ij}^{\beta,\gamma} \right) \right),$$

dual to \oplus of equivariant elliptic homology of all the positive minuscule parts of $\mathcal{R}_{\mathbf{G},\mathbf{N}}$ (space of triples over $\prod_{i\in I} \operatorname{Gr}_{\operatorname{GL}(a_i)}$).

3

Coulomb version

• Instead of $\mathbb{V}^{\alpha}_{\mathcal{K}}$ consider

$$\mathbb{U}_{\mathcal{K}}^{\alpha} = \bigoplus_{\beta+\gamma=\alpha} \mathbf{q}_{*} \left(\mathbf{p}^{*} \mathcal{K}^{\beta} \otimes \mathcal{O}_{E^{\beta} \times E^{\gamma}} \left(\sum_{i \to j} \Delta_{ij}^{\beta,\gamma} \right) \right),$$

dual to \oplus of equivariant elliptic homology of all the positive minuscule parts of $\mathcal{R}_{\mathbf{G},\mathbf{N}}$ (space of triples over $\prod_{i\in I} \operatorname{Gr}_{\operatorname{GL}(a_i)}$).

It is a factorizable vector bundle of rank 2^{|α|}, and away from diagonals in E^α we get the fiberwise Segre embedding of (ℙ¹)^{|α|} into a fiber of ℙU^α_K. The closure is the *Coulomb* elliptic zastava ^CZ^α_K. Removing the two hyperplane sections we get the *open* Coulomb zastava ^CŽ^α_K ≃ Spec H^G_{ell}[(R_{G,N}).

伺下 イヨト イヨト

Coulomb version

• Instead of $\mathbb{V}^{\alpha}_{\mathcal{K}}$ consider

$$\mathbb{U}_{\mathcal{K}}^{\alpha} = \bigoplus_{\beta+\gamma=\alpha} \mathbf{q}_{*} \left(\mathbf{p}^{*} \mathcal{K}^{\beta} \otimes \mathcal{O}_{E^{\beta} \times E^{\gamma}} \left(\sum_{i \to j} \Delta_{ij}^{\beta,\gamma} \right) \right),$$

dual to \oplus of equivariant elliptic homology of all the positive minuscule parts of $\mathcal{R}_{\mathbf{G},\mathbf{N}}$ (space of triples over $\prod_{i\in I} \operatorname{Gr}_{\operatorname{GL}(a_i)}$).

It is a factorizable vector bundle of rank 2^{|α|}, and away from diagonals in E^α we get the fiberwise Segre embedding of (P¹)^{|α|} into a fiber of PU^α_K. The closure is the *Coulomb* elliptic zastava ^CZ^α_K. Removing the two hyperplane sections we get the *open* Coulomb zastava ^CZ^α_K ≃ Spec H^G_{ell}(R_{G,N}).
In type A₁, ^CZ²_K is isomorphic to the transversal Hilbert scheme of d points in the total space of line bundle K with zero section removed.

 $C\overline{Z}_{d}^{d}$ is the fusion of minuscule \mathbb{P}^{1} -orbits in Grad (a) \mathbb{P}^{d} Michael Finkelberg & Alexander Polishchuk Elliptic zastava

Hamiltonian reduction

The total space of any line bundle *K_i* without zero section carries a symplectic form invariant with respect to dilations. Away from the diagonals in *E^α*, ^CŽ^α_K is étale covered by a product of *K_i*, and the direct sum of the above forms extends through the diagonals as a symplectic form on ^CŽ^α_K.

Hamiltonian reduction

- The total space of any line bundle K_i without zero section carries a symplectic form invariant with respect to dilations. Away from the diagonals in E^α, ^CZ^α_K is étale covered by a product of K_i, and the direct sum of the above forms extends through the diagonals as a symplectic form on ^CZ^α_K.
- ► The action of *T* is hamiltonian, and we perform the hamiltonian reduction. Consider the composition

$$\operatorname{AJ}_Z \colon {}^C \overset{\circ}{Z}^{\alpha}_{\mathcal{K}} \xrightarrow{\pi_{\alpha}} E^{\alpha} \to \prod_{i \in I} \operatorname{Pic}^{a_i} E$$

of the factorization projection with the Abel-Jacobi morphism. The reduction ${}_{\mathcal{D}}^{C} \mathring{Z}_{\mathcal{K}}^{\alpha} = {}^{C} \mathring{Z}_{\mathcal{K}}^{\alpha} /\!\!/ T := \mathrm{AJ}_{Z}^{-1}(\mathcal{D}) / T$ is conjecturally isomorphic to the moduli space of doubly periodic G_c -monopoles (monowalls) of topological charge α . It is the elliptic analogue of centered euclidean monopoles, the Coulomb branch with gauge group $\prod_{i \in I} \mathrm{SL}(a_i)$.

Mock Hamiltonian reduction

► Though the elliptic zastava ²/_K is not symplectic, we can mimic the hamiltonian reduction procedure and define the reduced zastava _D² ^A/_K := AJ⁻¹_Z(D)/T. In case T-bundle K has degree 0 and is *regular*, the reduced zastava is the moduli space of G-bundles of fixed type Ind^G_T K with B-structure of fixed type (fixed isomorphism class of the bundle induced from B to the abstract Cartan T).

Mock Hamiltonian reduction

- ► Though the elliptic zastava $\mathring{Z}^{\alpha}_{\mathcal{K}}$ is not symplectic, we can mimic the hamiltonian reduction procedure and define the reduced zastava ${}_{\mathcal{D}}\mathring{Z}^{\alpha}_{\mathcal{K}} := AJ_Z^{-1}(\mathcal{D})/T$. In case *T*-bundle \mathcal{K} has degree 0 and is *regular*, the reduced zastava is the moduli space of *G*-bundles of fixed type $\mathrm{Ind}_T^G \mathcal{K}$ with *B*-structure of fixed type (fixed isomorphism class of the bundle induced from *B* to the abstract Cartan T).
- Both Bun_G and Bun_T carry 1-shifted symplectic structures. The Lagrangian structures on Bun_B → Bun_G × Bun_T and on the stacky point [V] × [L] → Bun_G × Bun_T give rise to a symplectic structure on their cartesian product _D ²Z^α_K:

$$\begin{array}{ccc} {}_{\mathcal{D}} \tilde{Z}^{\alpha}_{\mathcal{K}} & \longrightarrow & \operatorname{Bun}_{B} \\ & \downarrow & & \downarrow \\ [\mathcal{V}] \times [\mathcal{L}] & \longrightarrow & \operatorname{Bun}_{G} \times \operatorname{Bun}_{T} \end{array}$$

• Miracle: the reduced zastava are isomorphic: ${}_{\mathcal{D}} \overset{\circ}{Z}^{\alpha}_{\mathcal{K}} \simeq {}_{\mathcal{D}} \overset{\circ}{Z}^{\alpha}_{\mathcal{K}'}$ for $\mathcal{K}'_i = \mathcal{K}_i \otimes \mathcal{D}_i \otimes \bigotimes_{i \to j} \mathcal{D}_j^{-1}$.

<回> < 回> < 回> < 回>

3

• Miracle: the reduced zastava are isomorphic: ${}_{\mathcal{D}} \overset{\circ}{Z}^{\alpha}_{\mathcal{K}} \simeq \overset{C}{\mathcal{D}} \overset{\circ}{Z}^{\alpha}_{\mathcal{K}'}$ for $\mathcal{K}'_i = \mathcal{K}_i \otimes \mathcal{D}_i \otimes \bigotimes_{i \to j} \mathcal{D}_j^{-1}$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

크

► Conjecture: This isomorphism is a symplectomorphism. Checked for G = SL(2) by Mykola Matviichuk.