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Zastava

I X a smooth complex projective curve. G a simply connected
semisimple group. T ⊂ B ⊂ G a Cartan torus and Borel
subgroup; N− the opposite unipotent subgroup.
α =

∑
i∈I aiαi ∈ X∗(T )pos a coroot.

I The (open) zastava
◦
ZαX : the moduli space of G-bundles on X

with a flag (a B-structure) of degree α and a generically
transversal N−-structure. A smooth variety of dimension
2|α| = 2

∑
i∈I ai.

I The factorization projection πα :
◦
ZαX → Xα to the colored

configuration space on X: remembers where the N−- and
B-structures are not transversal. Has a local nature:
π−1α (Dα) is independent of X for any analytic disc D ⊂ X.
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Additive case

I X = P1, and we additionally require that the N−- and
B-structures are transversal at ∞ ∈ P1. We obtain a smooth
affine variety

◦
ZαGa → Aα. For physicists,

◦
ZαGa is the moduli

space of euclidean Gc-monopoles with maximal symmetry
breaking at infinity of topological charge α. So it carries a
hyperkähler structure and hence a holomorphic symplectic
form.

I From the modular point of view, the classifying stack BG has
a 2-shifted symplectic structure, and BB → BG has a
coisotropic structure.

◦
ZGa is the space of based maps from

(P1,∞) to G/B, that is a fiber of

Maps(P1,∞;BB)
p→ Maps(P1,∞;BG). The latter space

has a 1-shifted symplectic structure, and p is coisotropic as
well as pt→ Maps(P1,∞;BG). Hence the desired Poisson
(symplectic) structure on

◦
ZGa [T.Pantev, T.Spaide].
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Explicit formula

I Factorization property: the addition of divisors
Xβ ×Xγ → Xα for α = β + γ. A canonical isomorphism

◦
ZαX ×Xα (Xβ ×Xγ)disj ∼= (

◦
Zβ ×

◦
Zγ)|(Xβ×Xγ)disj

I For a simple coroot αi a canonical isomorphism◦
ZαiGa

∼= Ga ×Gm. Hence for arbitrary α away from diagonals
in Aα we have coordinates (wi,r ∈ Ga)

ai
r=1 and (yi,r ∈ Gm)air=1

on
◦
ZαiGa up to simultaneous permutations in Sα =

∏
i∈I Sai .

I From now on G is assumed simply laced. Choose an
orientation of the Dynkin graph. Coordinate change:
ui,r := yi,r

∏
i→j

∏aj
s=1(wj,s − wi,r)−1. The new coordinates

are “Darboux” in the sense that the only nonzero brackets are
{wi,r, ui,r} = ui,r.
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Integrable system

I The factorization projection
◦
ZαGa → Aα is an integrable

system. In case G = SL(2), the degree α is a positive
integer d. Then we get the Atiyah-Hitchin system.

I It also coincides with the open Toda system for GL(d). In
particular, A(d) is the Kostant slice for gl(d), and

◦
ZdGa is the

universal centralizer (pairs: x in the slice, and commuting
g ∈ GL(d)).

I Equivalently, take a surface S = Ga ×Gm
∼=
◦
Z1

Ga . Then
◦
ZdGa ' Hilbdtr(S): the transversal Hilbert scheme of d points

on S. It is an open subscheme of Hilbd(S) classifying the
subschemes whose projection to Ga is a closed embedding.

I A symplectic form on S : {w, y} = y induces a symplectic
form on Hilbdtr(S). It coincides with the above symplectic
form on

◦
ZdGa .
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Coulomb branch of a quiver gauge theory

I Recall the oriented Dynkin graph of G. Take the gauge group
G :=

∏
i∈I GL(ai) acting on N := ⊕i→j Hom(Cai ,Caj ). It

gives rise to a certain space of triples RG,N over the affine
Grassmannian GrG, and the Coulomb branch
MC(G,N) := SpecHG[[t]](RG,N) (symplectically dual to
Nakajima quiver variety (N⊕N∗)//G).

I We have MC(G,N) '
◦
ZαGa , and the integrable system

◦
ZαGa → Aα corresponds to the embedding

C[Aα] ∼= HG[[t]](pt) ⊂ HG[[t]](RG,N).
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Multiplicative case

I X = P1, and we additionally require that the N−- and
B-structures are transversal at ∞ ∈ P1 and 0 ∈ P1. We
obtain a smooth affine variety

◦
ZαGm → Gα

m. For physicists,
◦
ZαGm is the moduli space of periodic euclidean Gc-monopoles
of topological charge α in one of its complex structures.

I Its symplectic structure can be again defined in modular
terms, but it is not the restriction of the symplectic structure
of
◦
ZαGa under the open embedding

◦
ZαGm ⊂

◦
ZαGa . For a simple

coroot,
◦
ZαiGm

∼= Gm ×Gm, and {w, y} = wy (G is ADE).

I The factorization projection
◦
ZαGm → Gα

m is an integrable
system. In case G = SL(2), degree d, it coincides with the
relativistic open Toda system for GL(d). In particular,

◦
ZdGm is

the universal group-group centralizer. Also,◦
ZdGm ' Hilbdtr(S

′), where S′ = Gm ×Gm. Finally,
◦
ZαGm is

isomorphic to a K-theoretic Coulomb branch and carries a
natural cluster structure.
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Elliptic case

I X = E an elliptic curve, G = SL(2), S′′ = E ×Gm with an
invariant symplectic structure. Then Hilbdtr(S

′′) ⊂ T ∗E(d), an
open subvariety of the cotangent bundle.

I Surprise:
◦
ZdE is an open subvariety of the tangent bundle

TE(d), not isomorphic to Hilbdtr(S
′′); does not carry any

symplectic structure.
I Still there is a relation between

◦
ZdE and the symplectic

Hilbdtr(S
′′). To describe it we need a compactification of

◦
ZαE .

Generically transversal N−- and B-structures on a G-bundle
on E define its generic trivialization (away from a colored
divisor D = πα(φ), φ ∈

◦
ZαE). Thus we obtain an embedding

of
◦
ZαE into a version of Beilinson-Drinfeld Grassmannian of E

(partially symmetrized to live over Eα = E|α|/Sα). The
desired compactification ZαE is the closure of

◦
ZαE in the

Beilinson-Drinfeld Grassmannian. In case of SL(2), degree d,
it is a fiberwise compactification of the tangent bundle TE(d).

Michael Finkelberg & Alexander Polishchuk Elliptic zastava



Elliptic case

I X = E an elliptic curve, G = SL(2), S′′ = E ×Gm with an
invariant symplectic structure. Then Hilbdtr(S

′′) ⊂ T ∗E(d), an
open subvariety of the cotangent bundle.

I Surprise:
◦
ZdE is an open subvariety of the tangent bundle

TE(d), not isomorphic to Hilbdtr(S
′′); does not carry any

symplectic structure.

I Still there is a relation between
◦
ZdE and the symplectic

Hilbdtr(S
′′). To describe it we need a compactification of

◦
ZαE .

Generically transversal N−- and B-structures on a G-bundle
on E define its generic trivialization (away from a colored
divisor D = πα(φ), φ ∈

◦
ZαE). Thus we obtain an embedding

of
◦
ZαE into a version of Beilinson-Drinfeld Grassmannian of E

(partially symmetrized to live over Eα = E|α|/Sα). The
desired compactification ZαE is the closure of

◦
ZαE in the

Beilinson-Drinfeld Grassmannian. In case of SL(2), degree d,
it is a fiberwise compactification of the tangent bundle TE(d).

Michael Finkelberg & Alexander Polishchuk Elliptic zastava



Elliptic case

I X = E an elliptic curve, G = SL(2), S′′ = E ×Gm with an
invariant symplectic structure. Then Hilbdtr(S

′′) ⊂ T ∗E(d), an
open subvariety of the cotangent bundle.

I Surprise:
◦
ZdE is an open subvariety of the tangent bundle

TE(d), not isomorphic to Hilbdtr(S
′′); does not carry any

symplectic structure.
I Still there is a relation between

◦
ZdE and the symplectic

Hilbdtr(S
′′). To describe it we need a compactification of

◦
ZαE .

Generically transversal N−- and B-structures on a G-bundle
on E define its generic trivialization (away from a colored
divisor D = πα(φ), φ ∈

◦
ZαE). Thus we obtain an embedding

of
◦
ZαE into a version of Beilinson-Drinfeld Grassmannian of E

(partially symmetrized to live over Eα = E|α|/Sα). The
desired compactification ZαE is the closure of

◦
ZαE in the

Beilinson-Drinfeld Grassmannian. In case of SL(2), degree d,
it is a fiberwise compactification of the tangent bundle TE(d).

Michael Finkelberg & Alexander Polishchuk Elliptic zastava



Compactified zastava

I ZαE is the moduli space of G-bundles on E equipped with
generically transversal generalized N−- and B-structures. We
also allow a twist of N−-structure. For G = SL(2), degree d,
we consider the data

L ⊂ V η−→ K,

where V is a rank 2 vector bundle, detV ∼= OE ;
L an invertible subsheaf (not necessarily a line subbundle);
η a morphism to a line bundle K (not necessarily surjective).
η|L is not zero, and length(K/η(L)) = d.
We fix K and obtain the (twisted) compactified zastava ZdK.

I For general G we consider the similar data for the associated
(to all irreducible representations of G) vector bundles and
impose Plücker relations. We get ZαK, where K is a T -bundle.
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Mirković approach

I The relatively very ample determinant line bundle on the
Beilinson-Drinfeld Grassmannian restricted to ZαK gives a very
explicit projective embedding. Reason: restriction to the
T -fixed points in ZαK gives an isomorphism on sections of the
determinant line bundle [X.Zhu]

I The T -fixed points components are Eβ × Eγ , β + γ = α.
The contribution of a component is

q∗

p∗
(
Kβ
(∑
i∈I

∆β
ii −

∑
i→j

∆β
ij

))(∑
i∈I

∆β,γ
ii

) ,

where Eβ
p←− Eβ ×Eγ q−→ Eα (addition of colored divisors);

∆β,γ
ij ⊂ Eβ × Eγ is the incidence divisor; ∆β

ii ⊂ Eβ is the

incidence divisor; Kβ = �iK(bi)
i (symmetric powers), and Ki

is the line bundle associated to the character −α∨
i : T → C×.
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Mirković approach

I Summing up the above vector bundles on Eα over all
partitions β + γ = α we obtain a factorizable vector bundle
VαK of rank 2|α|. When α = αi, we get VαiK = Ki ⊕OE , and
ZαiK = PVαiK .

I Away from diagonals in Eα, we get the fiberwise Segre
embedding (from factorization):
a fiber of compactified zastava ' (P1)|α| ↪→ a fiber of PVαK.
The whole of ZαK is the closure in PVαK of the off-diagonal
Segre embedding image.

I
◦
ZαK ⊂ ZαK is the complement to 2 hyperplane sections. One
hyperplane VαK,low ⊂ VαK is the direct sum of all contributions
from partitions β + γ = α, β 6= 0. The other hyperplane
Vα,upK ⊂ VαK is the direct sum of all contributions from
partitions β + γ = α, γ 6= 0.
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Coulomb version

I Instead of VαK consider

UαK =
⊕

β+γ=α

q∗

p∗Kβ ⊗OEβ×Eγ
(∑
i→j

∆β,γ
ij

) ,

dual to ⊕ of equivariant elliptic homology of all the positive
minuscule parts of RG,N (space of triples over∏
i∈I GrGL(ai)).

I It is a factorizable vector bundle of rank 2|α|, and away from
diagonals in Eα we get the fiberwise Segre embedding of
(P1)|α| into a fiber of PUαK. The closure is the Coulomb
elliptic zastava CZαK. Removing the two hyperplane sections

we get the open Coulomb zastava C
◦
ZαK ' SpecH

G[[t]]
e`` (RG,N).

I In type A1,
C
◦
ZdK is isomorphic to the transversal Hilbert

scheme of d points in the total space of line bundle K with
zero section removed.
CZdOE is the fusion of minuscule P1-orbits in GrPGL(2),Ed .

Michael Finkelberg & Alexander Polishchuk Elliptic zastava



Coulomb version

I Instead of VαK consider

UαK =
⊕

β+γ=α

q∗

p∗Kβ ⊗OEβ×Eγ
(∑
i→j

∆β,γ
ij

) ,

dual to ⊕ of equivariant elliptic homology of all the positive
minuscule parts of RG,N (space of triples over∏
i∈I GrGL(ai)).

I It is a factorizable vector bundle of rank 2|α|, and away from
diagonals in Eα we get the fiberwise Segre embedding of
(P1)|α| into a fiber of PUαK. The closure is the Coulomb
elliptic zastava CZαK. Removing the two hyperplane sections

we get the open Coulomb zastava C
◦
ZαK ' SpecH

G[[t]]
e`` (RG,N).

I In type A1,
C
◦
ZdK is isomorphic to the transversal Hilbert

scheme of d points in the total space of line bundle K with
zero section removed.
CZdOE is the fusion of minuscule P1-orbits in GrPGL(2),Ed .

Michael Finkelberg & Alexander Polishchuk Elliptic zastava



Coulomb version

I Instead of VαK consider

UαK =
⊕

β+γ=α

q∗

p∗Kβ ⊗OEβ×Eγ
(∑
i→j

∆β,γ
ij

) ,

dual to ⊕ of equivariant elliptic homology of all the positive
minuscule parts of RG,N (space of triples over∏
i∈I GrGL(ai)).

I It is a factorizable vector bundle of rank 2|α|, and away from
diagonals in Eα we get the fiberwise Segre embedding of
(P1)|α| into a fiber of PUαK. The closure is the Coulomb
elliptic zastava CZαK. Removing the two hyperplane sections

we get the open Coulomb zastava C
◦
ZαK ' SpecH

G[[t]]
e`` (RG,N).

I In type A1,
C
◦
ZdK is isomorphic to the transversal Hilbert

scheme of d points in the total space of line bundle K with
zero section removed.
CZdOE is the fusion of minuscule P1-orbits in GrPGL(2),Ed .
Michael Finkelberg & Alexander Polishchuk Elliptic zastava



Hamiltonian reduction

I The total space of any line bundle Ki without zero section
carries a symplectic form invariant with respect to dilations.
Away from the diagonals in Eα, C

◦
ZαK is étale covered by a

product of Ki, and the direct sum of the above forms extends
through the diagonals as a symplectic form on C

◦
ZαK.

I The action of T is hamiltonian, and we perform the
hamiltonian reduction. Consider the composition

AJZ : C
◦
ZαK

πα−→ Eα →
∏
i∈I

Picai E

of the factorization projection with the Abel-Jacobi morphism.
The reduction C

D
◦
ZαK = C

◦
ZαK//T := AJ−1Z (D)/T is

conjecturally isomorphic to the moduli space of doubly
periodic Gc-monopoles (monowalls) of topological charge α.
It is the elliptic analogue of centered euclidean monopoles, the
Coulomb branch with gauge group

∏
i∈I SL(ai).
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Mock Hamiltonian reduction

I Though the elliptic zastava
◦
ZαK is not symplectic, we can

mimic the hamiltonian reduction procedure and define the
reduced zastava D

◦
ZαK := AJ−1Z (D)/T . In case T -bundle K

has degree 0 and is regular, the reduced zastava is the moduli
space of G-bundles of fixed type IndGT K with B-structure of
fixed type (fixed isomorphism class of the bundle induced from
B to the abstract Cartan T).

I Both BunG and BunT carry 1-shifted symplectic structures.
The Lagrangian structures on BunB → BunG×BunT and on
the stacky point [V]× [L]→ BunG×BunT give rise to a
symplectic structure on their cartesian product D

◦
ZαK:

D
◦
ZαK −−−−→ BunBy y

[V]× [L] −−−−→ BunG×BunT
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Happy end

I Miracle: the reduced zastava are isomorphic: D
◦
ZαK ' C

D
◦
ZαK′

for K′i = Ki ⊗Di ⊗
⊗

i→j D
−1
j .

I Conjecture: This isomorphism is a symplectomorphism.
Checked for G = SL(2) by Mykola Matviichuk.
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