Point-wise surjective presentations of stacks, or why I am not afraid of (infinity) stacks anymore.

A. Aizenbud

Weizmann Institute of Science

Joint with Nir Avni

http://www.wisdom.weizmann.ac.il/~aizenr/
Let a group G act on a space X. In representation theory we are often interested in objects on X which are G-invariant.
Motivation

Let a group G act on a space X. In representation theory we are often interested in objects on X which are G-invariant.

The collection of these objects usually does not depend directly on G and X but only on the "quotient" $G\backslash X$.
Let a group G act on a space X. In representation theory we are often interested in objects on X which are G-invariant.

The collection of these objects usually does not depend directly on G and X but only on the "quotient" $G\backslash X$.

This quotient is a groupoid or a (geometric/algebraic) stack.
Groupoids

Definition

A groupoid is a (usually small) category where all morphisms are isomorphisms.

Examples

For a group \(G \), define the groupoid \(BG \) to be the groupoid with one object \(pt \) and \(\text{Aut}^{\hat{}}_{pt} \cong G \).

For a group \(G \) acting on a space \(X \), define the groupoid \(G \text{__} f \text{__} X \) to be the groupoid whose set of objects is \(X \) and \(\text{Mor}^{\hat{}}_{x, y} \cong \tilde{g} \mapsto gx \rightarrow y \).
Definition

A groupoid is a (usually small) category where all morphisms are isomorphisms.
A groupoid is a (usually small) category where all morphisms are isomorphisms.

Examples
Definition

A groupoid is a (usually small) category where all morphisms are isomorphisms.

Examples

- For a group G, define the groupoid BG to be the groupoid with one object pt and $\text{Aut}(pt) = G$.

Definition

A groupoid is a (usually small) category where all morphisms are isomorphisms.

Examples

- For a group G, define the groupoid BG to be the groupoid with one object pt and $\text{Aut}(pt) = G$.
- For a group G acting on a space X, define the groupoid $G\backslash X$ to be the groupoid whose set of objects is X and

$$\text{Mor}(x, y) = \{g | gx = y\}$$
A groupoid object in the category of schemes is the following data:
A groupoid object in the category of schemes is the following data:

- Schemes Ob, Mor

where the fiber product $\text{Mor} \times \text{Ob}$ is taken w.r.t. the morphisms $\text{t} : \text{Mor} \times \text{Ob}$ and $\text{s} : \text{Mor} \times \text{Ob}$.
A groupoid object in the category of schemes is the following data:

- Schemes Ob, Mor
- Smooth morphisms $s, t : Mor \to Ob$
A groupoid object in the category of schemes is the following data:

- Schemes Ob, Mor
- Smooth morphisms $s, t : Mor \to Ob$
- Morphisms:
A groupoid object in the category of schemes is the following data:

- Schemes Ob, Mor
- Smooth morphisms $s, t : Mor \rightarrow Ob$
- Morphisms:
 - $i : Ob \rightarrow Mor$
A groupoid object in the category of schemes is the following data:

- Schemes Ob, Mor
- Smooth morphisms $s, t : \text{Mor} \to \text{Ob}$
- Morphisms:
 - $i : \text{Ob} \to \text{Mor}$
 - $\text{inv} : \text{Mor} \to \text{Mor}$
A groupoid object in the category of schemes is the following data:

- Schemes Ob, Mor
- Smooth morphisms $s, t : Mor \to Ob$
- Morphisms:
 - $i : Ob \to Mor$
 - $inv : Mor \to Mor$
 - $comp : Mor \times_{Ob} Mor \to Mor$ where the fiber product $Mor \times_{Ob} Mor$ is taken w.r.t. the morphisms $t : Mor \to Ob$ and $s : Mor \to Ob$
Groupoid objects

A groupoid object in the category of schemes is the following data:

- Schemes Ob, Mor
- Smooth morphisms $s, t : Mor \to Ob$
- Morphisms:
 - $i : Ob \to Mor$
 - $inv : Mor \to Mor$
 - $comp : Mor \times_{Ob} Mor \to Mor$ where the fiber product $Mor \times_{Ob} Mor$ is taken w.r.t. the morphisms $t : Mor \to Ob$ and $s : Mor \to Ob$

s.t. for any scheme S the tuple

$$(Ob(S), Mor(S), s(S), t(S), i(S), inv(S), comp(S))$$

is a groupoid.
A functor between two groupoid objects \((Ob, Mor)\) and \((Ob', Mor')\) is a pair of morphisms \(Ob \to Ob'\) and \(Mor \to Mor'\) that satisfy some conditions.
A functor between two groupoid objects \((\text{Ob}, \text{Mor})\) and \((\text{Ob}', \text{Mor}')\) is a pair of morphisms \(\text{Ob} \to \text{Ob}'\) and \(\text{Mor} \to \text{Mor}'\) that satisfy some conditions.

The collection of groupoid objects is a 2-category.
The 2-category of groupoids

A functor between two groupoid objects \((Ob, Mor)\) and \((Ob', Mor')\) is a pair of morphisms \(Ob \to Ob'\) and \(Mor \to Mor'\) that satisfy some conditions.

The collection of groupoid objects is a 2-category. By (restricted) Yoneda’s Lemma any groupoid object \(\mathcal{X}\) can be thought of as a functor from the category of schemes to the 2-category of groupoids:

\[
\mathcal{X}(S) = \text{Funct}(S, \mathcal{X}).
\]
A functor between two groupoid objects \((\text{Ob}, \text{Mor})\) and \((\text{Ob}', \text{Mor}')\) is a pair of morphisms \(\text{Ob} \to \text{Ob}'\) and \(\text{Mor} \to \text{Mor}'\) that satisfy some conditions.

The collection of groupoid objects is a 2-category. By (restricted) Yoneda’s Lemma any groupoid object \(\mathcal{X}\) can be thought of as a functor from the category of schemes to the 2-category of groupoids:

\[\mathcal{X}(S) = \text{Funct}(S, \mathcal{X}). \]

Problem

The notion of a functor between two groupoid objects is not local on the source.
The 2-category of groupoids

A functor between two groupoid objects \((\text{Ob}, \text{Mor})\) and \((\text{Ob}', \text{Mor}')\) is a pair of morphisms \(\text{Ob} \rightarrow \text{Ob}'\) and \(\text{Mor} \rightarrow \text{Mor}'\) that satisfy some conditions.

The collection of groupoid objects is a 2-category. By (restricted) Yoneda’s Lemma any groupoid object \(\mathcal{X}\) can be thought of as a functor from the category of schemes to the 2-category of groupoids:

\[
\mathcal{X}(S) = \text{Funct}(S, \mathcal{X}).
\]

Problem

The notion of a functor between two groupoid objects is not local on the source. Namely, if \(\mathcal{X} = U_1 \cup U_2\) is an open cover and \(\phi_i : U_i \rightarrow \mathcal{Y}\) are two functors which become isomorphic when restricted to the intersection, we sometimes cannot find an extension to a functor \(\mathcal{X} \rightarrow \mathcal{Y}\).
Solution – Stackification.

Definition

Given a groupoid X, we can define a functor X from the category of schemes to the 2-category of groupoids in the following way:

The objects of X are given by an (etale) open cover $S = \bigcup_{i} S_i$ and an object of X together with certain compatibility data.

Functors which are obtained in such a way are called algebraic stacks.

Remark

Not all algebraic stacks can be obtained in such a way. In order to obtain all of them, one has to allow Mor to be an algebraic space (and not just a scheme).

An algebraic space is an algebraic stack whose automorphism groups are trivial. For this purpose one can use algebraic stacks that are obtained using the construction above.
Definition

Given a groupoid \mathcal{X}, we can define a functor $\mathcal{X}^\breve{}$ from the category of schemes to the 2-category of groupoids in the following way:
Solution – Stackification.

Definition

Given a groupoid \mathcal{X}, we can define a functor \mathcal{X} from the category of schemes to the 2-category of groupoids in the following way: The objects of $\mathcal{X}(S)$ are given by an (etale) open cover $S' \to S$ and an object of $\mathcal{X}(S')$ together with certain compatibility data.

Remark

Not all algebraic stacks can be obtained in such a way. In order to obtain all of them, one has to allow Mor to be an algebraic space (and not just a scheme).

An algebraic space is an algebraic stack whose automorphism groups are trivial. For this purpose one can use algebraic stacks that are obtained using the construction above.
Solution – Stackification.

Definition

Given a groupoid \mathcal{X}, we can define a functor \mathcal{X} from the category of schemes to the 2-category of groupoids in the following way: The objects of $\mathcal{X}(S)$ are given by an (etale) open cover $S' \to S$ and an object of $\mathcal{X}(S')$ together with certain compatibility data. Functors which are obtained in such a way are called algebraic stacks.
From groupoids to stacks

Solution – Stackification.

Definition

Given a groupoid \mathcal{X}, we can define a functor \mathcal{X} from the category of schemes to the 2-category of groupoids in the following way: The objects of $\mathcal{X}(S)$ are given by an (etale) open cover $S' \to S$ and an object of $\mathcal{X}(S')$ together with certain compatibility data. Functors which are obtained in such a way are called algebraic stacks.

Remark

Not all algebraic stacks can be obtained in such a way. In order to obtain all of them, one has to allow Mor to be an algebraic space (and not just a scheme).
Definition

Given a groupoid \(\mathcal{X} \), we can define a functor \(\mathcal{X} \) from the category of schemes to the 2-category of groupoids in the following way: The objects of \(\mathcal{X}(S) \) are given by an (etale) open cover \(S' \to S \) and an object of \(\mathcal{X}(S') \) together with certain compatibility data. Functors which are obtained in such a way are called algebraic stacks.

Remark

Not all algebraic stacks can be obtained in such a way. In order to obtain all of them, one has to allow \(\text{Mor} \) to be an algebraic space (and not just a scheme). An algebraic space is an algebraic stack whose automorphism groups are trivial.
Solution – Stackification.

Definition

Given a groupoid \(\mathcal{X} \), we can define a functor \(\mathcal{X} \) from the category of schemes to the 2-category of groupoids in the following way: The objects of \(\mathcal{X}(S) \) are given by an (etale) open cover \(S' \to S \) and an object of \(\mathcal{X}(S') \) together with certain compatibility data. Functors which are obtained in such a way are called algebraic stacks.

Remark

Not all algebraic stacks can be obtained in such a way. In order to obtain all of them, one has to allow \(\text{Mor} \) to be an algebraic space (and not just a scheme). An algebraic space is an algebraic stack whose automorphism groups are trivial. For this purpose one can use algebraic stacks that are obtained using the construction above.
Main results

Problem

The functor $\mathcal{X}(S) \to \mathcal{X}(S)$ is fully faithful, but even in the case when S is a spectrum of a field, it is not necessarily essentially surjective.
Problem

The functor \(\mathcal{X}(S) \to \mathcal{X}(S) \) is fully faithful, but even in the case when \(S \) is a spectrum of a field, it is not necessarily essentially surjective.

Theorem (A.-Avni 2019)

Let \(\mathcal{X} \) be an algebraic stack. Then \(\mathcal{X} \) can be represented by a groupoid \(\mathcal{X} = (\text{Ob}, \text{Mor}) \) s.t.
Main results

Problem

The functor $\mathcal{X}(S) \to \mathfrak{X}(S)$ is fully faithful, but even in the case when S is a spectrum of a field, it is not necessarily essentially surjective.

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then \mathfrak{X} can be represented by a groupoid $\mathfrak{X} = (\text{Ob}, \text{Mor})$ s.t.

- The functor $\mathfrak{X}(F) \to \mathfrak{X}(F)$ is an equivalence of categories if F is a finite field or a real closed field (or a PAC field).
Main results

Problem

The functor $\mathcal{X}(S) \to \mathcal{X}(S)$ is fully faithful, but even in the case when S is a spectrum of a field, it is not necessarily essentially surjective.

Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then \mathcal{X} can be represented by a groupoid $\mathcal{X} = (\text{Ob}, \text{Mor})$ s.t.

- The functor $\mathcal{X}(F) \to \mathcal{X}(F)$ is an equivalence of categories if F is a finite field or a real closed field (or a PAC field).
- If \mathcal{X} is QCA, (i.e. the automorphism groups of its object are linear) then the functor $\mathcal{X}(F) \to \mathcal{X}(F)$ is an equivalence for any perfect field F.

Remark

One can replace in the above theorem the field F with any henselian ring with residue field F.

Main results

Problem

The functor $\mathcal{X}(S) \to \mathcal{X}(S)$ is fully faithful, but even in the case when S is a spectrum of a field, it is not necessarily essentially surjective.

Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then \mathcal{X} can be represented by a groupoid $\mathcal{X} = (\text{Ob}, \text{Mor})$ s.t.

- The functor $\mathcal{X}(F) \to \mathcal{X}(F)$ is an equivalence of categories if F is a finite field or a real closed field (or a PAC field).
- If \mathcal{X} is QCA, (i.e. the automorphism groups of its object are linear) then the functor $\mathcal{X}(F) \to \mathcal{X}(F)$ is an equivalence for any perfect field F.

Remark

One can replace in the above theorem the field F with any henselian ring with residue field F.
Definition

A morphism $X^0 \to \mathcal{X}$ of a scheme to an algebraic stack is called a presentation, if for any scheme S the morphism $X^0 \times_{\mathcal{X}} S \to S$ is smooth and surjective.
A morphism $X^0 \to \mathfrak{X}$ of a scheme to an algebraic stack is called a presentation, if for any scheme S the morphism $X^0 \times_{\mathfrak{X}} S \to S$ is smooth and surjective.

Given a presentation $X^0 \to \mathfrak{X}$ we can define $X^1 := X^0 \times_{\mathfrak{X}} X_0$. The pair (X^0, X^1) forms a groupoid object.
Presentations of a stack by a scheme

Definition

A morphism $X^0 \to \mathcal{X}$ of a scheme to an algebraic stack is called a presentation, if for any scheme S the morphism $X^0 \times_\mathcal{X} S \to S$ is smooth and surjective.

- Given a presentation $X^0 \to \mathcal{X}$ we can define $X^1 := X^0 \times_\mathcal{X} X_0$. The pair (X^0, X^1) forms a groupoid object.
- More generally one can define $X^n := X^0 \times_\mathcal{X} \ldots \times_\mathcal{X} X^0$. The collection X^n forms a simplicial object.

Theorem (A.-Avni 2019)

Let X be an algebraic stack. Then there is a presentation X s.t. the functor $X^\hat{F}$ is essentially surjective, under suitable assumptions on X or F.

A. Aizenbud
A morphism $X^0 \to \mathcal{X}$ of a scheme to an algebraic stack is called a presentation, if for any scheme S the morphism $X^0 \times_{\mathcal{X}} S \to S$ is smooth and surjective.

- Given a presentation $X^0 \to \mathcal{X}$ we can define $X^1 := X^0 \times_{\mathcal{X}} X_0$. The pair (X^0, X^1) forms a groupoid object.
- More generally one can define $X^n := X^0 \times_{\mathcal{X}} \cdots \times_{\mathcal{X}} X^0$. The collection X^n forms a simplicial object.

Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then there is a presentation $X \to \mathcal{X}$ s.t. the functor $X(F) \to \mathcal{X}(F)$ is essentially surjective,
Presentations of a stack by a scheme

Definition

A morphism $X^0 \to \mathfrak{X}$ of a scheme to an algebraic stack is called a presentation, if for any scheme S the morphism $X^0 \times_{\mathfrak{X}} S \to S$ is smooth and surjective.

- Given a presentation $X^0 \to \mathfrak{X}$ we can define $X^1 := X^0 \times_{\mathfrak{X}} X_0$. The pair (X^0, X^1) forms a groupoid object.
- More generally one can define $X^n := X^0 \times_{\mathfrak{X}} \cdots \times_{\mathfrak{X}} X^0$. The collection X^n forms a simplicial object.

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then there is a presentation $X \to \mathfrak{X}$ s.t. the functor $X(F) \to \mathfrak{X}(F)$ is essentially surjective, under suitable assumptions on \mathfrak{X} or F.
Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then for any presentation $X \to \mathcal{X}$ there is an integer n s.t. for any $x \in \mathcal{X}(F)$ there is a field extension E/F of degree $\leq n$ s.t. x lies in the essential image of $X(E) \to \mathcal{X}(E)$.
Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then for any presentation $X \to \mathcal{X}$ there is an integer n s.t. for any $x \in \mathcal{X}(F)$ there is a field extension E/F of degree $\leq n$ s.t. x lies in the essential image of $X(E) \to \mathcal{X}(E)$, under suitable assumptions on \mathcal{X} or F.
Main steps in the proof

Theorem (A.-Avni 2019)

Let \(\mathcal{X} \) be an algebraic stack. Then for any presentation \(X \to \mathcal{X} \) there is an integer \(n \) s.t. for any \(x \in \mathcal{X}(F) \) there is a field extension \(E/F \) of degree \(\leq n \) s.t. \(x \) lies in the essential image of \(X(E) \to \mathcal{X}(E) \), under suitable assumptions on \(\mathcal{X} \) or \(F \).

Main construction:

Proposition
Main steps in the proof

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then for any presentation $X \to \mathfrak{X}$ there is an integer n s.t. for any $x \in \mathfrak{X}(F)$ there is a field extension E/F of degree $\leq n$ s.t. x lies in the essential image of $X(E) \to \mathfrak{X}(E)$, under suitable assumptions on \mathfrak{X} or F.

Main construction:

Proposition

Given a presentation $\phi : X \to \mathfrak{X}$ and a field extension E/F we can modify it to a presentation $\psi : X' \to \mathfrak{X}$ s.t.

$$(*) \psi_F(X'(F)) \supset \phi_E(X(E)) \cap \mathfrak{X}(F)$$
Main steps in the proof

Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then for any presentation $X \to \mathcal{X}$ there is an integer n s.t. for any $x \in \mathcal{X}(F)$ there is a field extension E/F of degree $\leq n$ s.t. x lies in the essential image of $X(E) \to \mathcal{X}(E)$, under suitable assumptions on \mathcal{X} or F.

Main construction:

Proposition

- Given a presentation $\phi : X \to \mathcal{X}$ and a field extension E/F we can modify it to a presentation $\psi : X' \to \mathcal{X}$ s.t.

\[(*) \psi_F(X'(F)) \supset \phi_E(X(E)) \cap \mathcal{X}(F) \]

- Moreover, given an integer n one can find a presentation $\phi : X' \to \mathcal{X}$ s.t. condition (*) will be satisfied for any field extension E/F of degree $\leq n$.
Main steps in the proof

Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then for any presentation $X \to \mathcal{X}$ there is an integer n s.t. for any $x \in \mathcal{X}(F)$ there is a field extension E/F of degree $\leq n$ s.t. x lies in the essential image of $X(E) \to \mathcal{X}(E)$, under suitable assumptions on \mathcal{X} or F.

Main construction:

Proposition

- Given a presentation $\phi : X \to \mathcal{X}$ and a field extension E/F we can modify it to a presentation $\psi : X' \to \mathcal{X}$ s.t.

\[(*) \quad \psi_F(X'(F)) \supset \phi_E(X(E)) \cap \mathcal{X}(F) \]

- Moreover, given an integer n one can find a presentation $\phi : X' \to \mathcal{X}$ s.t. condition $(*)$ will be satisfied for any field extension E/F of degree $\leq n$.

- In general, the construction of X' does not give a scheme but only an algebraic space; however, if \mathcal{X} is an algebraic space and X is affine then X' is a scheme.
Internal Hom

Definition

Let X, Y be schemes. Consider the functor $\hat{X}^Y \colon \text{Schemes} \to \text{Sets}$ defined by

$$\hat{X}^Y_S := \text{Hom}^\mathbb{Z}_S(Y, X).$$

More generally, if X, Y are S-schemes we can define $X^S_Y \colon \text{Schemes} \to S$-sets by

$$X^S_Y_T := \text{Hom}^\mathbb{Z}_S(Y, X).$$

It makes sense to require the following:

- Y is flat over S,
- Y is proper over S,
- Y is finite over S.
Definition

Let X, Y be schemes. Consider the functor $X^Y : \text{Schemes} \rightarrow \text{sets}$ defined by

$$X^Y(S) = \text{Hom}(Y \times S, X)$$

More generally, if X, Y are S-schemes we can define $X^Y_S : \text{Schemes}_S \rightarrow \text{sets}_S$ by

$$X^Y_S(T) = \text{Hom}_S(Y \times S, X)$$

It makes sense to require the following:

- Y is flat over S,
- Y is proper over S,
- Y is finite over S.

A. Aizenbud
Internal Hom

Definition

Let X, Y be schemes. Consider the functor

$\hat{X}^Y : \text{Schemes} \to \text{sets}$ defined by

$$X^Y(S) = \text{Hom}(Y \times S, X)$$

More generally, if X, Y are S-schemes we can define

$\hat{X}^Y_S : \text{Schemes}_S \to \text{sets}$ by

$$X^Y_S(T) = \text{Hom}(Y \times_S T, X)$$
Internal Hom

Definition

Let X, Y be schemes. Consider the functor $X^Y : \text{Schemes} \to \text{sets}$ defined by

$$X^Y(S) = \text{Hom}(Y \times S, X)$$

More generally, if X, Y are S-schemes we can define $X_S^Y : \text{Schemes}_S \to \text{sets}$ by

$$X_S^Y(T) = \text{Hom}(Y \times_S T, X)$$

It makes sense to require the following:

- Y is flat over S,
- Y is proper over S,
- Y is finite over S.
Internal Hom

Definition

Let X, Y be schemes. Consider the functor $X^Y : \text{Schemes} \to \text{sets}$ defined by

$$X^Y(S) = \text{Hom}(Y \times S, X)$$

More generally, if X, Y are S-schemes we can define $X^Y_S : \text{Schemes}_S \to \text{sets}$ by

$$X^Y_S(T) = \text{Hom}(Y \times_S T, X)$$

It make sense to require the following:

- Y is flat over S,
Let X, Y be schemes. Consider the functor $X^Y : \text{Schemes} \to \text{sets}$ defined by

$$X^Y(S) = \text{Hom}(Y \times S, X)$$

More generally, if X, Y are S-schemes we can define $X^Y_S : \text{Schemes}_S \to \text{sets}$ by

$$X^Y_S(T) = \text{Hom}(Y \times_S T, X)$$

It make sense to require the following:

- Y is flat over S,
- Y is proper over S,
Internal Hom

Definition

Let X, Y be schemes. Consider the functor $X^Y : \text{Schemes} \to \text{sets}$ defined by

$$X^Y(S) = \text{Hom}(Y \times S, X)$$

More generally, if X, Y are S-schemes we can define $X^Y_S : \text{Schemes}_S \to \text{sets}$ by

$$X^Y_S(T) = \text{Hom}(Y \times_S T, X)$$

It makes sense to require the following:

- Y is flat over S,
- Y is proper over S,
- Y is finite over S.
Proposition

If Y is etale over S then X, S Y is representable by an algebraic space. If in addition X is quasi-projective then X, S Y is representable by a scheme.

Corollary

Given 2 diagrams of schemes of the same type, we can define the internal hom between them.
Internal Hom

Proposition

If Y is étale over S then $X^S Y$ is representable by an algebraic space.

If in addition X is quasi-projective then $X^S Y$ is representable by a scheme.

Corollary

Given 2 diagrams of schemes of the same type, we can define the internal hom between them.
Proposition

- If Y is etale over S then $X^\wedge_S Y$ is representable by an algebraic space.
- If in addition X is quasi-projective then $X^\wedge_S Y$ is representable by a scheme.
Proposition

- If Y is étale over S then $X^S Y$ is representable by an algebraic space.
- If in addition X is quasi-projective then $X^S Y$ is representable by a scheme.

Corollary

Given 2 diagrams of schemes of the same type, we can define the internal hom between them.
Let $X^0 \to \mathcal{X}$ be a presentation of a stack over a scheme S. Let $S^0 \to S$ be a finite etale cover.

Let

$$X^n := X^0 \times \mathcal{X} \cdots \times \mathcal{X} X^0$$

and

$$S^n := S^0 \times_S \cdots \times_S S^0$$

Let $X' = (X^\bullet)^\wedge_S S^\bullet$.
The main construction

Construction

Let $X^0 \to \mathfrak{x}$ be a presentation of a stack over a scheme S. Let $S^0 \to S$ be a finite etale cover.

Let

$$X^n := X^0 \times_{\mathfrak{x}} \ldots \times_{\mathfrak{x}} X^0$$

and

$$S^n := S^0 \times_{S} \ldots \times_{S} S^0$$

Let $X' = (X^\bullet)^{\wedge}_S S^\bullet$.

In case that $S^0 \to S$ is a field extension E/F, The presentation $X' \to \mathfrak{x}$ will satisfy (*).
The main construction

Construction

Let $X^0 \to \breve{x}$ be a presentation of a stack over a scheme S. Let $S^0 \to S$ be a finite etale cover.

Let

$$X^n := X^0 \times_{\breve{x}} \cdots \times_{\breve{x}} X^0$$

and

$$S^n := S^0 \times_{S} \cdots \times_{S} S^0$$

Let $X' = (X^\bullet)^\wedge_S S^\bullet$.

In case that $S^0 \to S$ is a field extension E/F, the presentation $X' \to \breve{x}$ will satisfy (*).

Construction

Let $U_n \subset \mathbb{A}^{n+1}$ be the variety of all monic separable polynomials of degree $\leq n$.
The main construction

Construction

Let $X^0 \to \mathcal{X}$ be a presentation of a stack over a scheme S. Let $S^0 \to S$ be a finite etale cover.

Let

$$X^n := X^0 \times \mathcal{X} \cdots \times \mathcal{X} X^0$$

and

$$S^n := S^0 \times_S \cdots \times_S S^0$$

Let $X' = (X^\bullet)^{\wedge}_S S^\bullet$.

In case that $S^0 \to S$ is a field extension E/F, the presentation $X' \to \mathcal{X}$ will satisfy (*).

Construction

Let $U_n \subset \mathbb{A}^{n+1}$ be the variety of all monic separable polynomials of degree $\leq n$. Let $U_n^0 := \{(p, x) \in U_n \times \mathbb{A}^1 | p(x) = 0\}$.
The main construction

Construction

Let \(X^0 \to \mathfrak{X} \) be a presentation of a stack over a scheme \(S \). Let \(S^0 \to S \) be a finite etale cover.

Let

\[
X^n := X^0 \times_{\mathfrak{X}} \cdots \times_{\mathfrak{X}} X^0
\]

and

\[
S^n := S^0 \times_S \cdots \times_S S^0
\]

Let \(X' = (X\bullet)^\wedge_S S\bullet \).

In case that \(S^0 \to S \) is a field extension \(E/F \), the presentation \(X' \to \mathfrak{X} \) will satisfy (*)

Construction

Let \(\mathbb{U}_n \subset \mathbb{A}^{n+1} \) be the variety of all monic separable polynomials of degree \(\leq n \). Let \(\mathbb{U}_n^0 := \{(p, x) \in \mathbb{U}_n \times \mathbb{A}^1 | p(x) = 0 \} \).

Let \(X' = (X\bullet \times \mathbb{U}_n)^\wedge_{\mathbb{U}_n} \mathbb{U}_n\bullet \).
The main construction

Construction

Let $X^0 \to \mathfrak{X}$ be a presentation of a stack over a scheme S. Let $S^0 \to S$ be a finite etale cover.

Let

$$X^n := X^0 \times \mathfrak{X} \cdots \times \mathfrak{X} X^0$$

and

$$S^n := S^0 \times S \cdots \times S S^0$$

Let $X' = (X^\bullet)^{\wedge}_S S^\bullet$.

In case that $S^0 \to S$ is a field extension E/F, The presentation $X' \to \mathfrak{X}$ will satisfy (*)

Construction

Let $U_n \subset \mathbb{A}^{n+1}$ be the variety of all monic separable polynomials of degree $\leq n$. Let $U_n^0 := \{(p, x) \in U_n \times \mathbb{A}^1 | p(x) = 0\}$.

Let $X' = (X^\bullet \times U_n)^{\wedge}_{U_n} U^\bullet_n$. The presentation $X' \to \mathfrak{X}$ will satisfy (*) for all field extensions E/F of degree $\leq n$.
Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then, under suitable assumptions on \mathcal{X} or F, for any surjection $\phi : X \to \mathcal{X}$ there is an integer n s.t.

$$\mathcal{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))$$

Proof. We prove the theorem by analyzing the following special cases:

- \mathcal{X} is a scheme
- \mathcal{X} is an algebraic space
- $\mathcal{X} = BG$ when G is a flat group scheme over a scheme S.
- $\mathcal{X} = BG$ when G is a flat group scheme over an algebraic space S.
- \mathcal{X} is a gerb.

The general case.
Theorem (A.-Avni 2019)

Let \(\mathfrak{X} \) be an algebraic stack. Then, under suitable assumptions on \(\mathfrak{X} \) or \(F \), for any surjection \(\phi: X \to \mathfrak{X} \) there is an integer \(n \) s.t.

\[
\mathfrak{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))
\]

Proof.

We prove the theorem by analyzing the following special cases:
Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then, under suitable assumptions on \mathfrak{X} or F, for any surjection $\phi : X \to \mathfrak{X}$ there is an integer n s.t.

$$\mathfrak{X}(F) \subset \bigcup_{\dim F \leq n} \phi_E(X(E))$$

Proof.

We prove the theorem by analyzing the following special cases:

- \mathfrak{X} is a scheme
Almost surjective presentations

Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then, under suitable assumptions on \mathcal{X} or F, for any surjection $\phi: X \to \mathcal{X}$ there is an integer n s.t.

$$\mathcal{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))$$

Proof.

We prove the theorem by analyzing the following special cases:

- \mathcal{X} is a scheme
- \mathcal{X} is an algebraic space
Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then, under suitable assumptions on \mathcal{X} or F, for any surjection $\phi : X \to \mathcal{X}$ there is an integer n s.t.

$$\mathcal{X}(F) \subset \bigcup_{\dim F \leq n} \phi_E(X(E))$$

Proof.

We prove the theorem by analyzing the following special cases:

- \mathcal{X} is a scheme
- \mathcal{X} is an algebraic space
- $\mathcal{X} = BG$ when $G \to S$ is a flat group scheme over a scheme S.
Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then, under suitable assumptions on \mathcal{X} or F, for any surjection $\phi : X \to \mathcal{X}$ there is an integer n s.t.

$$\mathcal{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))$$

Proof.

We prove the theorem by analyzing the following special cases:

- \mathcal{X} is a scheme
- \mathcal{X} is an algebraic space
- $\mathcal{X} = BG$ when $G \to S$ is a flat group scheme over a scheme S.
- $\mathcal{X} = BG$ when $G \to S$ is a flat group scheme over an algebraic space S.
Almost surjective presentations

Theorem (A.-Avni 2019)

Let \mathcal{X} be an algebraic stack. Then, under suitable assumptions on \mathcal{X} or F, for any surjection $\phi : X \to \mathcal{X}$ there is an integer n s.t.

$$\mathcal{X}(F) \subseteq \bigcup_{\dim_F E \leq n} \phi_E(X(E))$$

Proof.

We prove the theorem by analyzing the following special cases:

- \mathcal{X} is a scheme
- \mathcal{X} is an algebraic space
- $\mathcal{X} = BG$ when $G \to S$ is a flat group scheme over a scheme S.
- $\mathcal{X} = BG$ when $G \to S$ is a flat group scheme over an algebraic space S.
- \mathcal{X} is a gerb.
Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then, under suitable assumptions on \mathfrak{X} or F, for any surjection $\phi : X \to \mathfrak{X}$ there is an integer n s.t.

$$\mathfrak{X}(F) \subset \bigcup_{\dim F \leq n} \phi_E(X(E))$$

Proof.

We prove the theorem by analyzing the following special cases:

- \mathfrak{X} is a scheme
- \mathfrak{X} is an algebraic space
- $\mathfrak{X} = BG$ when $G \to S$ is a flat group scheme over a scheme S.
- $\mathfrak{X} = BG$ when $G \to S$ is a flat group scheme over an algebraic space S.
- \mathfrak{X} is a gerb.
- The general case.