Point-wise surjective presentations of stacks, or why I am not afraid of (infinity) stacks anymore.

A. Aizenbud

Weizmann Institute of Science

Joint with Nir Avni

http://www.wisdom.weizmann.ac.il/~aizenr/

Let a group G act on a space X. In representation theory we are often interested in objects on X which are G-invariant.

伺き くほき くほう

Let a group G act on a space X. In representation theory we are often interested in objects on X which are G-invariant.

The collection of these objects usually does not depend directly on *G* and *X* but only on the "quotient" $G \setminus X$.

伺 とく ヨ とく ヨ と

Let a group G act on a space X. In representation theory we are often interested in objects on X which are G-invariant.

The collection of these objects usually does not depend directly on *G* and *X* but only on the "quotient" $G \setminus X$.

This quotient is a groupoid or a (geometric/algebraic) stack.

伺 とく ヨ とく ヨ と

Groupoids

ヘロン 人間 とくほど くほとう

æ

A groupoid is a (usually small) category where all morphisms are isomorphisms.

ヘロン ヘアン ヘビン ヘビン

A groupoid is a (usually small) category where all morphisms are isomorphisms.

Examples

イロト 不得 とくほと くほとう

∃ 9900

A groupoid is a (usually small) category where all morphisms are isomorphisms.

Examples

• For a group *G*, define the groupoid *BG* to be the groupoid with one object *pt* and *Aut*(*pt*) = *G*.

ヘロン 人間 とくほ とくほ とう

A groupoid is a (usually small) category where all morphisms are isomorphisms.

Examples

- For a group *G*, define the groupoid *BG* to be the groupoid with one object *pt* and *Aut*(*pt*) = *G*.
- For a group G acting on a space X, define the groupoid G\X to be the groupoid whose set of objects is X and

$$Mor(x, y) = \{g|gx = y\}$$

ヘロト ヘアト ヘビト ヘビト

Groupoid objects

A groupoid object in the category of schemes is the following data:

・ 同 ト ・ ヨ ト ・ ヨ ト

• Schemes Ob, Mor

・ 同 ト ・ ヨ ト ・ ヨ ト

- Schemes Ob, Mor
- Smooth morphisms $s, t : Mor \rightarrow Ob$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Schemes Ob, Mor
- Smooth morphisms $s, t : Mor \rightarrow Ob$
- Morphisms:

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Schemes Ob, Mor
- Smooth morphisms $s, t : Mor \rightarrow Ob$
- Morphisms:
 - $i: Ob \rightarrow Mor$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Schemes Ob, Mor
- Smooth morphisms $s, t : Mor \rightarrow Ob$
- Morphisms:
 - $i: Ob \rightarrow Mor$
 - $inv : Mor \rightarrow Mor$

(画) (目) (日)

- Schemes Ob, Mor
- Smooth morphisms $s, t : Mor \rightarrow Ob$
- Morphisms:
 - $i: Ob \to Mor$
 - $inv : Mor \rightarrow Mor$
 - $comp : Mor \times_{Ob} Mor \rightarrow Mor$ where the fiber product $Mor \times_{Ob} Mor$ is taken w.r.t. the morphisms $t : Mor \rightarrow Ob$ and $s : Mor \rightarrow Ob$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Schemes Ob, Mor
- Smooth morphisms $s, t : Mor \rightarrow Ob$
- Morphisms:
 - $i: Ob \rightarrow Mor$
 - $inv : Mor \rightarrow Mor$
 - $comp : Mor \times_{Ob} Mor \rightarrow Mor$ where the fiber product $Mor \times_{Ob} Mor$ is taken w.r.t. the morphisms $t : Mor \rightarrow Ob$ and $s : Mor \rightarrow Ob$
- s.t. for any scheme S the tuple

(Ob(S), Mor(S), s(S), t(S), i(S), inv(S), comp(S))

is a groupoid.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → の Q ()

A functor between two groupoid objects (*Ob*, *Mor*) and (Ob', Mor') is a pair of morphisms $Ob \rightarrow Ob'$ and $Mor \rightarrow Mor'$ that satisfy some conditions.

通 とう ぼう うきょう

A functor between two groupoid objects (*Ob*, *Mor*) and (*Ob'*, *Mor'*) is a pair of morphisms $Ob \rightarrow Ob'$ and $Mor \rightarrow Mor'$ that satisfy some conditions.

The collection of groupoid objects is a 2-category.

通 とう ぼう うきょう

æ

A functor between two groupoid objects (*Ob*, *Mor*) and (*Ob'*, *Mor'*) is a pair of morphisms $Ob \rightarrow Ob'$ and $Mor \rightarrow Mor'$ that satisfy some conditions.

The collection of groupoid objects is a 2-category. By (restricted) Yoneda's Lemma any groupoid object \mathcal{X} can be thought of as a functor from the category of schemes to the 2-category of groupoids:

$$\mathcal{X}(S) = Funct(S, \mathcal{X}).$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

E DQC

A functor between two groupoid objects (*Ob*, *Mor*) and (*Ob'*, *Mor'*) is a pair of morphisms $Ob \rightarrow Ob'$ and $Mor \rightarrow Mor'$ that satisfy some conditions.

The collection of groupoid objects is a 2-category. By (restricted) Yoneda's Lemma any groupoid object \mathcal{X} can be thought of as a functor from the category of schemes to the 2-category of groupoids:

$$\mathcal{X}(S) = Funct(S, \mathcal{X}).$$

Problem

The notion of a functor between two groupoid objects is not local on the source.

A functor between two groupoid objects (*Ob*, *Mor*) and (*Ob'*, *Mor'*) is a pair of morphisms $Ob \rightarrow Ob'$ and $Mor \rightarrow Mor'$ that satisfy some conditions.

The collection of groupoid objects is a 2-category. By (restricted) Yoneda's Lemma any groupoid object \mathcal{X} can be thought of as a functor from the category of schemes to the 2-category of groupoids:

$$\mathcal{X}(S) = Funct(S, \mathcal{X}).$$

Problem

The notion of a functor between two groupoid objects is not local on the source. Namely, if $\mathcal{X} = U_1 \cup U_2$ is an open cover and $\phi_i : U_i \to \mathcal{Y}$ are two functors which become isomorphic when restricted to the intersection, we sometimes cannot find an extension to a functor $\mathcal{X} \to \mathcal{Y}$

Solution - Stackification.

★ Ξ → ★ Ξ → ...

æ

Solution - Stackification.

Definition

Given a groupoid \mathcal{X} , we can define a functor \mathfrak{X} from the category of schemes to the 2-category of groupoids in the following way:

A ►

э

Solution - Stackification.

Definition

Given a groupoid \mathcal{X} , we can define a functor \mathfrak{X} from the category of schemes to the 2-category of groupoids in the following way: The objects of $\mathfrak{X}(S)$ are given by an (etale) open cover $S' \to S$ and an object of $\mathcal{X}(S')$ together with certain compatibility data.

A E > A E >

Solution - Stackification.

Definition

Given a groupoid \mathcal{X} , we can define a functor \mathfrak{X} from the category of schemes to the 2-category of groupoids in the following way: The objects of $\mathfrak{X}(S)$ are given by an (etale) open cover $S' \to S$ and an object of $\mathcal{X}(S')$ together with certain compatibility data. Functors which are obtained in such a way are called algebraic stacks.

個 とくき とくき とう

Solution - Stackification.

Definition

Given a groupoid \mathcal{X} , we can define a functor \mathfrak{X} from the category of schemes to the 2-category of groupoids in the following way: The objects of $\mathfrak{X}(S)$ are given by an (etale) open cover $S' \to S$ and an object of $\mathcal{X}(S')$ together with certain compatibility data. Functors which are obtained in such a way are called algebraic stacks.

Remark

Not all algebraic stacks can be obtained in such a way. In order to obtain all of them, one has to allow Mor to be an algebraic space (and not just a scheme).

Solution - Stackification.

Definition

Given a groupoid \mathcal{X} , we can define a functor \mathfrak{X} from the category of schemes to the 2-category of groupoids in the following way: The objects of $\mathfrak{X}(S)$ are given by an (etale) open cover $S' \rightarrow S$ and an object of $\mathcal{X}(S')$ together with certain compatibility data. Functors which are obtained in such a way are called algebraic stacks.

Remark

Not all algebraic stacks can be obtained in such a way. In order to obtain all of them, one has to allow Mor to be an algebraic space (and not just a scheme). An algebraic space is an algebraic stack whose automorphism groups are trivial.

Solution - Stackification.

Definition

Given a groupoid \mathcal{X} , we can define a functor \mathfrak{X} from the category of schemes to the 2-category of groupoids in the following way: The objects of $\mathfrak{X}(S)$ are given by an (etale) open cover $S' \rightarrow S$ and an object of $\mathcal{X}(S')$ together with certain compatibility data. Functors which are obtained in such a way are called algebraic stacks.

Remark

Not all algebraic stacks can be obtained in such a way. In order to obtain all of them, one has to allow Mor to be an algebraic space (and not just a scheme). An algebraic space is an algebraic stack whose automorphism groups are trivial. For this purpose one can use algebraic stacks that are obtained using the construction above.

Main results

Problem

The functor $\mathcal{X}(S) \to \mathfrak{X}(S)$ is fully faithful, but even in the case when S is a spectrum of a field, it is not necessarily essentially surjective.

Main results

Problem

The functor $\mathcal{X}(S) \to \mathfrak{X}(S)$ is fully faithful, but even in the case when S is a spectrum of a field, it is not necessarily essentially surjective.

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then \mathfrak{X} can be represented by a groupoid $\mathcal{X} = (Ob, Mor) s.t.$

<ロト <回ト < 国ト < 国ト = 国

Main results

Problem

The functor $\mathcal{X}(S) \to \mathfrak{X}(S)$ is fully faithful, but even in the case when S is a spectrum of a field, it is not necessarily essentially surjective.

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then \mathfrak{X} can be represented by a groupoid $\mathcal{X} = (Ob, Mor)$ s.t.

 The functor X(F) → X(F) is an equivalence of categories if F is a finite field or a real closed field (or a PAC field).

Problem

The functor $\mathcal{X}(S) \to \mathfrak{X}(S)$ is fully faithful, but even in the case when S is a spectrum of a field, it is not necessarily essentially surjective.

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then \mathfrak{X} can be represented by a groupoid $\mathcal{X} = (Ob, Mor)$ s.t.

- The functor X(F) → X(F) is an equivalence of categories if F is a finite field or a real closed field (or a PAC field).
- If X is QCA, (i.e. the automorphism groups of its object are linear) then the functor X(F) → X(F) is an equivalence for any perfect field F.

Problem

The functor $\mathcal{X}(S) \to \mathfrak{X}(S)$ is fully faithful, but even in the case when S is a spectrum of a field, it is not necessarily essentially surjective.

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then \mathfrak{X} can be represented by a groupoid $\mathcal{X} = (Ob, Mor) s.t.$

- The functor X(F) → X(F) is an equivalence of categories if F is a finite field or a real closed field (or a PAC field).
- If X is QCA, (i.e. the automorphism groups of its object are linear) then the functor X(F) → X(F) is an equivalence for any perfect field F.

996

Remark

One can replace in the above theorem the field F with any henselian ring with residue field F.

A morphism $X^0 \to \mathfrak{X}$ of a scheme to an algebraic stack is called a presentation, if for any scheme *S* the morphism $X^0 \times_{\mathfrak{X}} S \to S$ is smooth and surjective.

A morphism $X^0 \to \mathfrak{X}$ of a scheme to an algebraic stack is called a presentation, if for any scheme *S* the morphism $X^0 \times_{\mathfrak{X}} S \to S$ is smooth and surjective.

• Given a presentation $X^0 \to \mathfrak{X}$ we can define $X^1 := X^0 \times_{\mathfrak{X}} X_0$. The pair (X^0, X^1) forms a groupoid object.

E → < E → </p>

A morphism $X^0 \to \mathfrak{X}$ of a scheme to an algebraic stack is called a presentation, if for any scheme *S* the morphism $X^0 \times_{\mathfrak{X}} S \to S$ is smooth and surjective.

- Given a presentation $X^0 \to \mathfrak{X}$ we can define $X^1 := X^0 \times_{\mathfrak{X}} X_0$. The pair (X^0, X^1) forms a groupoid object.
- More generally one can define Xⁿ := X⁰ ×_X ··· ×_X X⁰. The collection Xⁿ forms a simplicial object.

프 에 에 프 어

A morphism $X^0 \to \mathfrak{X}$ of a scheme to an algebraic stack is called a presentation, if for any scheme *S* the morphism $X^0 \times_{\mathfrak{X}} S \to S$ is smooth and surjective.

- Given a presentation $X^0 \to \mathfrak{X}$ we can define $X^1 := X^0 \times_{\mathfrak{X}} X_0$. The pair (X^0, X^1) forms a groupoid object.
- More generally one can define Xⁿ := X⁰ ×_𝔅 ··· ×_𝔅 X⁰. The collection Xⁿ forms a simplicial object.

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then there is a presentation $X \to \mathfrak{X}$ s.t. the functor $X(F) \to \mathfrak{X}(F)$ is essentially surjective,

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A morphism $X^0 \to \mathfrak{X}$ of a scheme to an algebraic stack is called a presentation, if for any scheme *S* the morphism $X^0 \times_{\mathfrak{X}} S \to S$ is smooth and surjective.

- Given a presentation $X^0 \to \mathfrak{X}$ we can define $X^1 := X^0 \times_{\mathfrak{X}} X_0$. The pair (X^0, X^1) forms a groupoid object.
- More generally one can define Xⁿ := X⁰ ×_𝔅 ··· ×_𝔅 X⁰. The collection Xⁿ forms a simplicial object.

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then there is a presentation $X \to \mathfrak{X}$ s.t. the functor $X(F) \to \mathfrak{X}(F)$ is essentially surjective, under suitable assumptions on \mathfrak{X} or F.

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

ヨンドヨン

э

Let \mathfrak{X} be an algebraic stack. Then for any presentation $X \to \mathfrak{X}$ there is an integer n s.t. for any $x \in \mathfrak{X}(F)$ there is a field extension E/F of degree $\leq n$ s.t. x lies in the essential image of $X(E) \to \mathfrak{X}(E)$,

Let \mathfrak{X} be an algebraic stack. Then for any presentation $X \to \mathfrak{X}$ there is an integer n s.t. for any $x \in \mathfrak{X}(F)$ there is a field extension E/F of degree $\leq n$ s.t. x lies in the essential image of $X(E) \to \mathfrak{X}(E)$, under suitable assumptions on \mathfrak{X} or F.

Let \mathfrak{X} be an algebraic stack. Then for any presentation $X \to \mathfrak{X}$ there is an integer n s.t. for any $x \in \mathfrak{X}(F)$ there is a field extension E/F of degree $\leq n$ s.t. x lies in the essential image of $X(E) \to \mathfrak{X}(E)$, under suitable assumptions on \mathfrak{X} or F.

Main construction:

Proposition

Let \mathfrak{X} be an algebraic stack. Then for any presentation $X \to \mathfrak{X}$ there is an integer n s.t. for any $x \in \mathfrak{X}(F)$ there is a field extension E/F of degree $\leq n$ s.t. x lies in the essential image of $X(E) \to \mathfrak{X}(E)$, under suitable assumptions on \mathfrak{X} or F.

Main construction:

Proposition

Given a presentation φ : X → X and a field extension E/F we can modify it to a presentation ψ : X' → X s.t.

 $({}^{*})\psi_{F}(X'(F)) \supset \phi_{E}(X(E)) \cap \mathfrak{X}(F)$

Let \mathfrak{X} be an algebraic stack. Then for any presentation $X \to \mathfrak{X}$ there is an integer n s.t. for any $x \in \mathfrak{X}(F)$ there is a field extension E/F of degree $\leq n$ s.t. x lies in the essential image of $X(E) \to \mathfrak{X}(E)$, under suitable assumptions on \mathfrak{X} or F.

Main construction:

Proposition

Given a presentation φ : X → X and a field extension E/F we can modify it to a presentation ψ : X' → X s.t.

 $(*) \psi_{F}(X'(F)) \supset \phi_{E}(X(E)) \cap \mathfrak{X}(F)$

 Moreover, given an integer n one can find a presentation
 φ : X' → X s.t. condition (*) will be satisfied for any field extension
 E/F of degree ≤ n.

Let \mathfrak{X} be an algebraic stack. Then for any presentation $X \to \mathfrak{X}$ there is an integer n s.t. for any $x \in \mathfrak{X}(F)$ there is a field extension E/F of degree $\leq n$ s.t. x lies in the essential image of $X(E) \to \mathfrak{X}(E)$, under suitable assumptions on \mathfrak{X} or F.

Main construction:

Proposition

Given a presentation φ : X → X and a field extension E/F we can modify it to a presentation ψ : X' → X s.t.

 $(*) \psi_{F}(X'(F)) \supset \phi_{E}(X(E)) \cap \mathfrak{X}(F)$

- Moreover, given an integer n one can find a presentation φ : X' → X s.t. condition (*) will be satisfied for any field extension E/F of degree ≤ n.
- In general, the construction of X' does not give a scheme but only an algebraic space; however, if X is an algebraic space and X is affine then X' is a scheme.

Definition

A. Aizenbud Point-wise surjective presentations of stacks 10/13

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔄

Definition

Let X, Y be schemes. Consider the functor X^Y: Schemes → sets defined by

 $X^{Y}(S) = Hom(Y \times S, X)$

< 回 > < 回 > < 回 > .

Definition

Let X, Y be schemes. Consider the functor X^Y: Schemes → sets defined by

$$X^{Y}(S) = Hom(Y \times S, X)$$

• More generally, if X, Y are S-schemes we can define $X_S^{\wedge}Y$: Schemes_S \rightarrow sets by

$$X_{S}^{\wedge}Y(T) = Hom(Y \times_{S} T, X)$$

伺 とく ヨ とく ヨ と

Definition

Let X, Y be schemes. Consider the functor X^Y: Schemes → sets defined by

$$X^{Y}(S) = Hom(Y \times S, X)$$

More generally, if X, Y are S-schemes we can define X[∧]_SY : Schemes_S → sets by

$$X_{S}^{\wedge}Y(T) = Hom(Y \times_{S} T, X)$$

It make sense to require the following:

伺 とく ヨ とく ヨ と

Definition

Let X, Y be schemes. Consider the functor X^Y: Schemes → sets defined by

$$X^{Y}(S) = Hom(Y \times S, X)$$

More generally, if X, Y are S-schemes we can define X[∧]_SY : Schemes_S → sets by

$$X_{S}^{\wedge}Y(T) = Hom(Y \times_{S} T, X)$$

It make sense to require the following:

• Y is flat over S,

通 とくほ とくほ とう

Definition

Let X, Y be schemes. Consider the functor X^Y: Schemes → sets defined by

$$X^{Y}(S) = Hom(Y \times S, X)$$

More generally, if X, Y are S-schemes we can define X[∧]_SY : Schemes_S → sets by

$$X_{S}^{\wedge}Y(T) = Hom(Y \times_{S} T, X)$$

It make sense to require the following:

- Y is flat over S,
- Y is proper over S,

Definition

Let X, Y be schemes. Consider the functor X^Y: Schemes → sets defined by

$$X^{Y}(S) = Hom(Y \times S, X)$$

More generally, if X, Y are S-schemes we can define X[∧]_SY : Schemes_S → sets by

$$X_{S}^{\wedge}Y(T) = Hom(Y \times_{S} T, X)$$

It make sense to require the following:

- Y is flat over S,
- Y is proper over S,
- Y is finite over S.

A. Aizenbud Point-wise surjective presentations of stacks 11/13

<ロト <回 > < 注 > < 注 > 、

If Y is etale over S then X[^]_SY is representable by an algebraic space.

ヘロト 人間 ト ヘヨト ヘヨト

- If Y is etale over S then X[^]_SY is representable by an algebraic space.
- If in addition X is quasi-projective then X[^]_SY is representable by a scheme.

ヘロト ヘアト ヘビト ヘビト

- If Y is etale over S then X[^]_SY is representable by an algebraic space.
- If in addition X is quasi-projective then X[^]_SY is representable by a scheme.

Corollary

Given 2 diagrams of schemes of the same type, we can define the internal hom between them.

ヘロン 人間 とくほ とくほ とう

Construction

Let $X^0 \to \mathfrak{X}$ be a presentation of a stack over a scheme S. Let $S^0 \to S$ be a finite etale cover. Let

$$X^n := X^0 \times_{\mathfrak{X}} \cdots \times_{\mathfrak{X}} X^0$$

and

$$S^n := S^0 \times_S \cdots \times_S S^0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $X' = (X^{\bullet})^{\wedge}_{S}S^{\bullet}$.

Construction

Let $X^0 \to \mathfrak{X}$ be a presentation of a stack over a scheme S. Let $S^0 \to S$ be a finite etale cover. Let

$$\boldsymbol{X}^n \coloneqq \boldsymbol{X}^0 \times_{\mathfrak{X}} \cdots \times_{\mathfrak{X}} \boldsymbol{X}^0$$

and

$$S^n := S^0 \times_S \cdots \times_S S^0$$

Let $X' = (X^{\bullet})^{\wedge}_{S}S^{\bullet}$.

In case that $S^0 \to S$ is a field extension E/F, The presentation $X' \to \mathfrak{X}$ will satisfy (*).

Construction

Let $X^0 \to \mathfrak{X}$ be a presentation of a stack over a scheme S. Let $S^0 \to S$ be a finite etale cover. Let

$$\boldsymbol{X}^n \coloneqq \boldsymbol{X}^0 \times_{\mathfrak{X}} \cdots \times_{\mathfrak{X}} \boldsymbol{X}^0$$

and

$$S^n := S^0 \times_S \cdots \times_S S^0$$

Let $X' = (X^{\bullet})^{\wedge}_{S}S^{\bullet}$.

In case that $S^0 \to S$ is a field extension E/F, The presentation $X' \to \mathfrak{X}$ will satisfy (*).

Construction

Let $\mathbb{U}_n \subset \mathbb{A}^{n+1}$ be the variety of all monic separable polynomials of degree $\leq n$.

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Construction

Let $X^0 \to \mathfrak{X}$ be a presentation of a stack over a scheme S. Let $S^0 \to S$ be a finite etale cover. Let

 $X^n := X^0 \times_{\mathfrak{X}} \cdots \times_{\mathfrak{X}} X^0$

and

$$S^n := S^0 \times_S \cdots \times_S S^0$$

Let $X' = (X^{\bullet})^{\wedge}_{S}S^{\bullet}$.

In case that $S^0 \to S$ is a field extension E/F, The presentation $X' \to \mathfrak{X}$ will satisfy (*).

Construction

Let $\mathbb{U}_n \subset \mathbb{A}^{n+1}$ be the variety of all monic separable polynomials of degree $\leq n$. Let $\mathbb{U}_n^0 := \{(p, x) \in \mathbb{U}_n \times \mathbb{A}^1 | p(x) = 0\}.$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Construction

Let $X^0 \to \mathfrak{X}$ be a presentation of a stack over a scheme S. Let $S^0 \to S$ be a finite etale cover. Let

$$\boldsymbol{X}^n \coloneqq \boldsymbol{X}^0 \times_{\mathfrak{X}} \cdots \times_{\mathfrak{X}} \boldsymbol{X}^0$$

and

$$S^n := S^0 \times_S \cdots \times_S S^0$$

Let $X' = (X^{\bullet})^{\wedge}_{S}S^{\bullet}$.

In case that $S^0 \to S$ is a field extension E/F, The presentation $X' \to \mathfrak{X}$ will satisfy (*).

Construction

Let $\mathbb{U}_n \subset \mathbb{A}^{n+1}$ be the variety of all monic separable polynomials of degree $\leq n$. Let $\mathbb{U}_n^0 := \{(p, x) \in \mathbb{U}_n \times \mathbb{A}^1 | p(x) = 0\}.$

Let $X' = (X_{\bullet} \times \mathbb{U}_n)^{\wedge}_{\mathbb{U}_n} \mathbb{U}_n^{\bullet}$.

Construction

Let $X^0 \to \mathfrak{X}$ be a presentation of a stack over a scheme S. Let $S^0 \to S$ be a finite etale cover. Let

$$\boldsymbol{X}^n \coloneqq \boldsymbol{X}^0 \times_{\mathfrak{X}} \cdots \times_{\mathfrak{X}} \boldsymbol{X}^0$$

and

$$S^n := S^0 \times_S \cdots \times_S S^0$$

Let $X' = (X^{\bullet})^{\wedge}_{S}S^{\bullet}$.

In case that $S^0 \to S$ is a field extension E/F, The presentation $X' \to \mathfrak{X}$ will satisfy (*).

Construction

Let $\mathbb{U}_n \subset \mathbb{A}^{n+1}$ be the variety of all monic separable polynomials of degree $\leq n$. Let $\mathbb{U}_n^0 := \{(p, x) \in \mathbb{U}_n \times \mathbb{A}^1 | p(x) = 0\}.$

Let $X' = (X_{\bullet} \times \mathbb{U}_n)_{\mathbb{U}_n}^{\wedge} \mathbb{U}_n^{\bullet}$. The presentation $X' \to \mathfrak{X}$ will satisfy (*) for all field extensions E/F of degree $\leq n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then, under suitable assumptions on \mathfrak{X} or F, for any surjection $\phi : X \to \mathfrak{X}$ there is an integer n s.t.

 $\mathfrak{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))$

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then, under suitable assumptions on \mathfrak{X} or F, for any surjection $\phi : X \to \mathfrak{X}$ there is an integer n s.t.

$$\mathfrak{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))$$

◆□→ ◆御→ ◆注→ ◆注→ □注□

200

Proof.

We prove the theorem by analyzing the following special cases:

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then, under suitable assumptions on \mathfrak{X} or F, for any surjection $\phi : X \to \mathfrak{X}$ there is an integer n s.t.

$$\mathfrak{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))$$

090

Proof.

We prove the theorem by analyzing the following special cases:

• X is a scheme

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then, under suitable assumptions on \mathfrak{X} or F, for any surjection $\phi : X \to \mathfrak{X}$ there is an integer n s.t.

$$\mathfrak{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))$$

◆□→ ◆御→ ◆注→ ◆注→ □注□

200

Proof.

We prove the theorem by analyzing the following special cases:

- X is a scheme
- X is an algebraic space

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then, under suitable assumptions on \mathfrak{X} or F, for any surjection $\phi : X \to \mathfrak{X}$ there is an integer n s.t.

$$\mathfrak{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))$$

Proof.

We prove the theorem by analyzing the following special cases:

- X is a scheme
- X is an algebraic space
- $\mathfrak{X} = BG$ when $G \to S$ is a flat group scheme over a scheme S.

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then, under suitable assumptions on \mathfrak{X} or F, for any surjection $\phi : X \to \mathfrak{X}$ there is an integer n s.t.

$$\mathfrak{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))$$

Proof.

We prove the theorem by analyzing the following special cases:

- X is a scheme
- X is an algebraic space
- $\mathfrak{X} = BG$ when $G \to S$ is a flat group scheme over a scheme S.
- $\mathfrak{X} = BG$ when $G \to S$ is a flat group scheme over an algebraic space *S*.

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then, under suitable assumptions on \mathfrak{X} or F, for any surjection $\phi : X \to \mathfrak{X}$ there is an integer n s.t.

$$\mathfrak{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))$$

Proof.

We prove the theorem by analyzing the following special cases:

- X is a scheme
- X is an algebraic space
- $\mathfrak{X} = BG$ when $G \to S$ is a flat group scheme over a scheme S.
- $\mathfrak{X} = BG$ when $G \to S$ is a flat group scheme over an algebraic space *S*.

・ロシ ・四シ ・ヨシ ・ヨン ヨー

200

• X is a gerb.

Theorem (A.-Avni 2019)

Let \mathfrak{X} be an algebraic stack. Then, under suitable assumptions on \mathfrak{X} or F, for any surjection $\phi : X \to \mathfrak{X}$ there is an integer n s.t.

$$\mathfrak{X}(F) \subset \bigcup_{\dim_F E \leq n} \phi_E(X(E))$$

Proof.

We prove the theorem by analyzing the following special cases:

- X is a scheme
- X is an algebraic space
- $\mathfrak{X} = BG$ when $G \to S$ is a flat group scheme over a scheme S.
- X = BG when G → S is a flat group scheme over an algebraic space S.

- X is a gerb.
- The general case.