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Abstract

We present an example of a function f from {−1, 1}n to the unit
sphere in C with influence bounded by 1 and entropy of |f̂ |2 larger than
1
2 log n. We also present an example of a function f from {−1, 1}n to

R with L2 norm 1, L∞ norm bounded by
√

2, influence bounded by 1
and entropy of f̂2 larger than 1

2 log n.

1 Introduction

We denote by εi : {−1, 1}n → {−1, 1} the projection onto the i-s coordi-
nate: εi(δ1, . . . , δn) = δi. For a subset A of [n] := {1, . . . , n} we denote
WA =

∏
i∈A εi, WA : {−1, 1}n → {−1, 1}. The WA-s are the characters of

the Cantor group {−1, 1}n (with coordintewise multiplication) and form an
orthonormal basis in L2 of the Cantor group equipped with the normalized
counting measure. In most of this note we shall be concerned with functions
from {−1, 1}n into the real numbers, R, but later on we shall also consider
functions into the complex plane, C. These can also be considered as a cou-
ple of real functions. Each such function f : {−1, 1}n → C has a unique
expansion

f =
∑
A⊆[n]

f̂(A)WA,
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where f̂(A) ∈ C are given by

f̂(A) = E(fWA) = 2−n
∑

ε∈{−1,1}n
f(ε)WA(ε).

Note that if f : {−1, 1}n → R, then f̂(A) ∈ R for every A ⊆ [n]. The
orthonormality of the WA-s implies that

‖f‖22 := 2−n
∑

ε∈{−1,1}n
|f(ε)|2 =

∑
A⊆[n]

|f̂(A)|2.

Define the influence of a function f : {−1, 1}n → C by

I(f) =
∑
A⊆[n]

|f̂(A)|2|A| (1)

where for A ⊆ [n], |A| denotes the cardinality of A. This object, especially
for boolean functions, is a deeply studied one and quite influential (but this
is not the reason for the name...) in several directions. We refer to [O] for
some information. A recent paper dealing with the subject is [KKLMS].

The entropy of the sequence |f̂(A)|2 is given by

H(|f̂(A)|2) = −
∑
A⊆[n]

|f̂(A)|2 log |f̂(A)|2. (2)

(0 log 0 := 0). The base of the log does not really matter here (as long as it is
consistent throughout the paper, so the log in the statements of the results is
the same as the one here). For concreteness we take the log to base 2. Note
that if f has L2 norm 1 then the sequence {|f̂(A)|2}A⊆[n] sums up to 1 and
thus this is the usual definition of entropy of this probability distribution,
but we shall use this notation and term also for non normalized functions.

The entropy influence conjecture of Friedgut and Kalai [FK] is that for
some absolute constant K, for all n and all boolean functions f : {−1, 1}n →
{−1, 1}

H(|f̂(A)|2) ≤ KI(f).

For the significance of this conjecture we refer to the original paper [FK], and
to Kalai’s blog [K] (embedded in Tao’s blog) which report on all significant
results concerning the conjecture. [KKLMS] establishes a weaker version of
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the conjecture. Its introduction is also a good source of information on the
problem.

As is well known the conjecture fails if we replace boolean functions with
general real functions (say, normalized to have L2 norm 1): f(ε1, . . . , εn) =
n−1/2

∑n
i=1 εi gives such an example.

In this note we show that the analogous version of the conjecture for two
classes of (L2 normalized) functions which resemble boolean functions fail as
well.

The first class is the set of well bounded real functions on {−1, 1}n. The
second is the complex functions on {−1, 1}n which have modulus 1. The
second example solves a question raised by Gady Kozma some time ago (see
[K], comment from April 2, 2011). More specifically, we prove the following
two theorems:

Theorem 1. For each n = 1, 2, . . . there is a function f : {−1, 1}n → R
with

‖f‖2 = 1 ≤ ‖f‖∞ ≤
√

2, I(f) < 1, and H(f̂ 2) >
n

n+ 1
log n.

Theorem 2. For each n = 1, 2, . . . there is a function f : {−1, 1}n → {z ∈
C; |z| = 1} with

I(f) < 1, and H(|f̂ |2) > n

n+ 1
log n.

Actually, Theorem 1 (with a somewhat different lower bound for H(|f̂ |2)
but still of order log n) follows from Theorem 2 but we prefer to give an easy
independent proof.

The innovative contribution of this note is in the idea of the examples.
The proofs are elementary, easy and self contained. We hope that some
variation of the examples will serve related purposes.

After the first version of this note was posted, Joe Neeman sent me a
simpler proof of Theorem 1 (with different constants). See the remark at
the end of this note. Also, an anonymous referee wrote that theorem 2 was
known to experts but not published. No hint was given for the construction.

Consequently, this note will not be further sent for publication (at least
in the near future).
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2 The main results

Define P0 ≡ Q0 ≡ 1 and, given a sequence {an}∞n=1 ⊂ (0, 1], define Pn, Qn :
{−1, 1}n → R inductively by

Pn+1 = Pn + εn+1an+1Qn, Qn+1 = εn+1an+1Pn −Qn, n = 0, 1, . . . (3)

The definition is inspired by that of the Rudin–Shapiro polynomials. Actu-
ally, for the constant sequence an = 1 for all n, Pn and Qn are Rudin–Shapiro
polynomials. These are functions Rn : {−1, 1}n → R all having all Fourier–
Walsh coefficients of absolute value one (and in particular ‖Rn‖2 = 2n/2) and
‖Rn‖∞ ≤

√
2‖Rn‖2. These of course are no good for our purposes as 2−n/2Rn

has influence equals to n/2 and Fourier entropy n.

Proposition 1. For all n = 1, 2, . . . , |Pn|2 + |Qn|2 is a constant function,

|Pn|2 + |Qn|2 ≡ 2
n∏

i=1

(1 + a2i ), (4)

‖Pn‖2 = ‖Qn‖2 =
n∏

i=1

(1 + a2i )
1/2, (5)

n∏
i=1

(1 + a2i )
1/2 ≤ ‖Pn‖∞, ‖Qn‖∞ ≤

√
2

n∏
i=1

(1 + a2i )
1/2. (6)

For each A ⊆ [n],

P̂n(A)2 = Q̂n(A)2 =
∏
i∈A

a2i . (7)

Proof: By Induction, starting from n = 0. (4) holds for n = 0 (or check
for n = 1, if the case n = 0 bothers you). Assume it holds for n then by (3),

|Pn+1|2 + |Qn+1|2 = (1 + a2n+1)(|Pn|2 + |Qn|2) ≡ 2
n+1∏
i=1

(1 + a2i ).

(5) holds for n = 0. Assume it holds for n then the orthogonality of Pn and
εn+1Qn implies

‖Pn+1‖22 = ‖Pn‖22 + a2n+1‖Qn‖22 = ‖Qn‖22 + a2n+1‖Pn‖22 = ‖Qn+1‖22.
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The second equality in (5) now follows from (4).
(6) follows from (4) and (5).

The last assertion of the Proposition, (7), follows easily from the inductive
definition. (The proof of Theorem 2 below contains a proof of a more general
assertion.)

Proposition 2. For each n = 1, 2, . . .

I(Pn) = I(Qn) =
n∑

i=1

a2i

n∏
j 6=i

(1 + a2j). (8)

Proof: Note first that for each two functions R, S : {−1, 1}n → R and
a ∈ R, if we put T = R + aεn+1S, i.e., T (ε1, . . . , εn+1) = R(ε1, . . . , εn) +
aεn+1S(ε1, . . . , εn), then

I(T ) = I(R) + a2(I(S) + ‖S‖22). (9)

We now prove (8) by induction. I(P0) = I(Q0) = 0 (and I(P1) = I(Q1) =
a21). Assume (8) then by (9) and (5),

I(Pn+1) = I(Pn) + a2n+1(I(Qn) +
n∏

i=1

(1 + a2i ))

=
n∑

i=1

a2i
∏

1≤j≤n,j 6=i

(1 + a2j) + a2n+1

n∑
i=1

a2i
∏

1≤j≤n,j 6=i

(1 + a2j) + a2n+1

n∏
i=1

(1 + a2i )

=
n∑

i=1

a2i
∏

1≤j≤n+1,j 6=i

(1 + a2j) + a2n+1

n∏
i=1

(1 + a2i ) =
n+1∑
i=1

a2i
∏

1≤j≤n+1,j 6=i

(1 + a2j).

(10)

The proof for I(Qn+1) is almost identical.

Remark 1. It follows that putting K =
∑n

i=1 a
2
i ,

I(Pn) = I(Qn) < KeK .

Proposition 3. For each n = 1, 2, . . .

H(P̂ 2
n) = H(Q̂2

n) = −
n∑

i=1

( ∏
1≤j≤n,j 6=i

(1 + a2j)

)
a2i log a2i . (11)
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Proof: By the last assertion of Proposition 1

H(P̂ 2
n) = −

∑
A⊆[n]

(∏
j∈A

a2j

)
log

(∏
i∈A

a2i

)

= −
∑
A⊆[n]

(∏
j∈A

a2j

)∑
i∈A

log a2i = −
n∑

i=1

(log a2i )
∑
A,i∈A

∏
j∈A

a2j

= −
n∑

i=1

a2i (log a2i )
∑
A,i∈A

∏
j∈A\{i}

a2j = −
n∑

i=1

a2i (log a2i )
∏
j 6=i

(1 + a2j).

Theorem 1. For each n = 1, 2, . . . there is a function f : {−1, 1}n → R
with

‖f‖2 = 1 ≤ ‖f‖∞ ≤
√

2, I(f) < 1, and H(f̂ 2) >
n

n+ 1
log n.

Proof: Note that for any g : {−1, 1}n → R and a ∈ R,

I(ag) = a2I(g) and H(âg2) = a2H(ĝ2)− (a2 log a2)‖g‖22. (12)

Put

f =
Pn

‖Pn‖2
=

n∏
i=1

(1 + a2i )
−1/2Pn.

(The last equation is by (5).) Then ‖f‖2 = 1 and ‖f‖∞ ≤
√

2 (by (6)). By
the rescaling (12), (8) and (11),

I(f) =
n∑

i=1

a2i
1 + a2i

,

and

H(f̂ 2) = −
n∑

i=1

a2i
1 + a2i

log a2i − log
n∏

i=1

(1 + a2i )
−1

>
−1

1 + max1≤i≤n a2i

n∑
i=1

a2i log a2i .
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The choice ai = 1/
√
n, i = 1, . . . , n, gives

I(f) < 1 and H(f̂ 2) >
1

1 + n−1
log n.

Remark 2. The functions produced above have expectations different from
zero. It is easy to rectify this by looking instead at εn+1f : {−1, 1}n+1 → R.
The function g = εn+1f has the same L2, L∞ and H(ĝ2) as f and I(g) =
I(f) + 1 < 2.

We denote by S1 the unit sphere in R2: S1 = {z ∈ C; |z| = 1}

Theorem 2. For each n = 1, 2, . . . there is a function f : {−1, 1}n → S1

with
I(f) < 1, and H(|f̂ |2) > n

n+ 1
log n.

Proof: Complex functions satisfy a similar scaling property to (12): For
any g : {−1, 1}n → C and a ∈ C,

I(ag) = |a|2I(g) and H(|âg|2) = |a|2H(|ĝ|2)− (|a|2 log |a|2)‖g‖22. (13)

Also, the absolute values of the Fourier–Walsh coefficients are preserved un-
der taking conjugates and in particular,

H(|ˆ̄g|2) = H(|ĝ|2). (14)

Put

fn =
1√

2
∏n

i=1(1 + a2i )
1/2

(Pn + ıQn).

By (4) fn : {−1, 1} → S1. By (13) and (8),

I(fn) =
n∑

i=1

a2i
1 + a2i

. (15)

To evaluate H(|f̂n|2) notice first that, for each of the four functions F 1
n =

Pn + ıQn, F
2
n = Pn − ıQn, F

3
n = Qn + ıPn and F 4

n = Qn − ıPn, each of the
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four sets {|F̂ k
n (A)|2}A⊆[n], k = 1, 2, 3, 4, is equal to {2

∏
i∈A a

2
i }A⊆[n]. More

precisely, for each A ⊆ [n] and k = 1, 2, 3, 4,

|F̂ k
n (A)| =

√
2
∏
i∈A

|ai|.

This is easily proved by induction on n: Assuming the assertion for n then
by (3),

F 1
n+1 = Pn − ıQn + εn+1an+1(Qn + ıPn) = F 2

n + εn+1an+1F
3
n .

Let A ⊆ [n+ 1]. If A ⊆ [n] then

F̂ 1
n+1(A) = F̂ 2

n(A)

and by the induction hypothesis (for F 2
n), |F̂ 1

n+1(A)| =
√

2
∏

i∈A |ai|. If A 6⊆
[n] then n+ 1 ∈ A and

F̂ 1
n+1(A) = an+1F̂ 3

n(A \ {n+ 1})

and by the induction hypothesis (for F 3
n), |F̂ 1

n+1(A)| = |an+1|
√

2
∏

i∈A\{n+1} |ai| =√
2
∏

i∈A |ai|. This proves the needed assertion for F 1
n . The other three cases

are proved similarly.
It follows from (the proof of) Proposition 3 that

H

∣∣∣∣∣ ̂Pn + ıQn√
2

∣∣∣∣∣
2
 = −

n∑
i=1

( ∏
1≤j≤n,j 6=i

(1 + a2j)

)
a2i log a2i .

Now, just as in the proof of Theorem 1, using (13), we get the bound

H(|f̂n|2) >
−1

1 + max1≤i≤n a2i

n∑
i=1

a2i log a2i .

The choice ai = 1/
√
n, i = 1, . . . , n, gives

I(fn) < 1 and H(|f̂n|2) >
n

n+ 1
log n.
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Remark 3. By taking ai-s with higher
∑
a2i one can get examples of func-

tions of the same kind (L2 norm 1, L∞ norm at most
√

2 into R or into
S1) with influence going to infinity with n and entropy of a larger order
of magnitude than the influence. This works as long as the influence is of
smaller order of magnitude than its maximal order, n. More precisely, for
1 < a < n let ai =

√
a/
√
n, i = 1, . . . , n. Then the proofs of Theorems

1 and 2 give functions f : {−1, 1}n → R and g : {−1, 1}n → S1 with
‖f‖2 = ‖g‖2 = 1, ‖f‖∞ ≤

√
2, a/2 < I(f), I(g) < a and

H(f̂ 2), H(|ĝ|2) > a

2
(log n− log a).

So the ratio between the Fourier entropy and the influence tends to infinity
with n whenever a = o(n) (and is of order log n whenever a < nc for some
c < 1).

Remark 4. Joe Neeman pointed out to me that the following is also an
example of a well bounded real function with bounded influence and entropy
of order log n:

f(ε1, . . . , εn) =


(

1√
n

∑n
i=1 εi

)
,
∣∣ 1√

n

∑n
i=1 εi

∣∣ ≤ C

C, 1√
n

∑n
i=1 εi ≥ C,

−C, 1√
n

∑n
i=1 εi ≤ −C.

(Stricktly speaking, one needs to normalize f to have L2 norm exactly 1. This
does not cause any complication.)
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