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Eidelheit’s Theorem

We say that two Banach algebras A and B are isomorphic as
Banach algebras if there is an injective and surjective
homomorphism Φ : A → B such that ‖Φ‖, ‖Φ−1‖ <∞. Φ is
called a Banach algebras isomorphism.
For a Banach space X , L(X ) denotes the Banach algebra of all
bounded linear operators on X .
A theorem of Meier Eidelheit from 1940 states that if L(X ) and
L(Y ) are isomorphic as Banach algebras then X and Y are
isomorphic as Banach spaces. Moreover, if Φ : L(X )→ L(Y ) is
the Banach algebra isomorphism then there is a Banach space
isomorphism U : X � Y such that for all A ∈ L(X )

Φ(A) = UAU−1.
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Eidelheit

Meier Eidelheit, 1910–1943, was a student of Banach in Lwów
(=Lvov=Lviv).
He was murder in the Holocaust.

We (Bill Johnson, Chris Phillips and I) noticed that digging a bit
into the proof of Eidelheit theorem one can prove a stronger
theorem.
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Main Theorem

Theorem. (JPS)

Let A be a Banach subalgebra of L(X ) and B a Banach
subalgebra of L(Y ). Assume that A ⊇ F (X ) (the finite rank
operators) and that B ⊇ F (Y ). Assume that

Φ : A� B

is a Banach algebra isomorphism.Then, there is an
isomorphism U : X � Y such that for all A ∈ A

Φ(A) = UAU−1.

Moreover ‖U‖ ≤ ‖Φ‖ and ‖U−1‖ ≤ ‖Φ−1‖.

Gideon Schechtman Eidelheit’s Theorem Revisited



Main Theorem 2

Actually, as we’ll see, the continuity of Φ and Φ−1 is automatic
and need not be assumed so a stronger theorem holds

Theorem. (JPS)

Let A be a Banach subalgebra of L(X ) and B a Banach
subalgebra of L(Y ). Assume that A ⊇ F (X ) (the finite rank
operators) and that B ⊇ F (Y ). Assume that

Φ : A� B

is an homomorphism of algebras .Then, Φ and Φ−1 are
bounded and there is an isomorphism U : X � Y such that for
all A ∈ A

Φ(A) = UAU−1.

Moreover ‖U‖ ≤ ‖Φ‖ and ‖U−1‖ ≤ ‖Φ−1‖.
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Corollary

Recall that a (two sided) ideal in L(X ) is a subspace I such that
for all A ∈ I and B ∈ L(X ) AB and BA are in I.

Corollary.

If I and J are closed ideals in L(X ) which are isomorphic as
Banach algebras then I = J .

Proof: Assume I and J are isomorphic as Banach algebras.
Since any ideal in L(X ) contains F (X ) it follows that there is a
Banach space isomorphism U of X onto itself such that
A→ UAU−1 maps I onto J .
If B ∈ J there is an A ∈ I such that

B = UAU−1.

Since I is an ideal B ∈ I. So J ⊆ I. Similarly, I ⊆ J .

Remark: Enough to assume that I and J are homomorphic as
algebras.
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boosting

This corollary can be used to boost several recent theorems
concerning the number of closed ideals in L(X ) for some
classical spaces X .

Theorem. (JPS +)

There is a continuum of closed ideals in L(L1(0,1)) each two of
which are non-isomorphic as Banach algebras. The same
holds for L(C(0,1)) and L(L∞(0,1)).

Theorem. (JS +)

For each 1 < p 6= 2 <∞ there are exactly 2continuum closed
ideals in L(Lp(0,1)) up to isomorphism of Banach algebras.
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boosting

Theorem. (Freeman,Schlumprecht,Zsak +)

For 1 < p < q <∞ there are exactly 2continuum closed ideals in
L(`p ⊕ `q) up to isomorphism of Banach algebras. Same holds
for L(`1 ⊕ `q) and L(`p ⊕ c0).

Remark: In the last three theorems one can replace
“isomorphism of Banach algebras" by “homomorphism of
algebras".

In the rest of this talk I’ll give the, hopefully complete, proof of
the Theorem.
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Lemma

Lemma
The following are equivalent for V0 ∈ L(X ):
1. V0 is of rank at most one.
2. For all V ∈ L(X ) there is a λ ∈ C such that

(VV0)2 = λVV0

3. For all V ∈ L(X ) of rank 2 there is a λ ∈ C such that

(VV0)2 = λVV0.

Proof. 1⇒ 2:
Let V0 be of rank 1. For each V ∈ L(X ), W = VV0 is of rank at
most 1. Assume it is of rank 1. W = x∗ ⊗ x , W (y) = x∗(y)x .

W 2(y) = x∗(y)W (x) = x∗(y)x∗(x)x = x∗(x)W (y).
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Lemma

2⇒ 3 is clear.
3⇒ 1:
Assume that the range of V0 contains two independent vectors
y1 and y2. Let x1 and x2 be such that

V0(x1) = y1, V0(x2) = y2.

Let f1 and f2 be linear functionals such that

f1(y1) = 1, f1(y2) = 0, f2(y1) = 0, f2(y2) = 1

and put
V (x) = f1(x)x2 + f2(x)x1.

Then,
VV0(x1) = x2, VV0(x2) = x1.
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Lemma

VV0(x1) = x2, VV0(x2) = x1.

Since, (VV0)2 = λVV0,

x1 = (VV0)2(x1) = λVV0(x1) = λx2

and thus
y1 = λy2.

A contradiction.
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Proof of the Theorem

Theorem. (JPS)

Let A be a Banach subalgebra of L(X ) and B a Banach
subalgebra of L(Y ). Assume that A ⊇ F (X ) (the finite rank
operators) and that B ⊇ F (Y ). Assume that

Φ : A� B

is a Banach algebra isomorphism.Then, there is an
isomorphism U : X � Y such that for all A ∈ A

Φ(A) = UAU−1.

Moreover ‖U‖ ≤ ‖Φ‖ and ‖U−1‖ ≤ ‖Φ−1‖.
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Proof of the Theorem

Let V0 be a rank one projection:

V0(x) = f0(x)x0

where x0 ∈ X , f0 ∈ X ∗, ‖x0‖ = ‖f0‖ = 1, f0(x0) = 1.
By the Lemma for all V ∈ A there is a λ ∈ C such that

(VV0)2 = λVV0.

Applying Φ we get that for all W ∈ B there is a λ ∈ C such that

(W Φ(V0))2 = λW Φ(V0).

In particular this holds for all W ∈ L(Y ) of rank 2. So, By the
Lemma W0 = Φ(V0) is of rank one. Say,

W0(y) = g0(y)y0,

for some y0 ∈ Y , g0 ∈ Y ∗, ‖y0‖ = 1, ‖g0‖ ≤ ‖Φ‖.
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Proof of the Theorem

V0(x) = f0(x)x0, W0(y) = Φ(V0)(y) = g0(y)y0.

———————————————————————————-
We now define the isomorphism U : X � Y .
Given a z ∈ X choose an arbitrary V ∈ A such that V (x0) = z
and define

U(z) = Φ(V )(y0).

We need to show:
a. U is well defined (doesn’t depend on the choice of V )
b. U is injective
c. U is surjective
d. U is linear
e. U is bounded, ‖U‖ ≤ ‖Φ‖
f. U−1 is bounded, ‖U−1‖ ≤ ‖Φ−1‖
g. For all A ∈ A,

Φ(A) = UAU−1.
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Proof of the Theorem, a. Well defined

V0(x) = f0(x)x0, W0(y) = Φ(V0)(y) = g0(y)y0.

U(z) = Φ(V )(y0) for V such that V (x0) = z.

———————————————————————————-
Assume V1(x0) = V2(x0) = z, V1,V2 ∈ A. Then, for all x ∈ X ,

V1(V0(x)) = f0(x)z = V2(V0(x)).

So, V1V0 = V2V0
and Φ(V1)W0 = Φ(V2)W0, i.e., for all y ∈ Y ,

g0(y)Φ(V1)(y0) = g0(y)Φ(V2)(y0).

So,
Φ(V1)(y0) = Φ(V2)(y0).
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Proof of the Theorem, b. Injectivity

V0(x) = f0(x)x0, W0(y) = Φ(V0)(y) = g0(y)y0.

U(z) = Φ(V )(y0) for V such that V (x0) = z.

———————————————————————————-
Let z1 6= z2. Let V1,V2 ∈ A such that

V1(x0) = z1, V2(x0) = z2.

Then V1V0 6= V2V0, so,

Φ(V1)W0 6= Φ(V2)W0

Implying
Φ(V1)(y0) 6= Φ(V2)(y0)

i.e.,
U(z1) 6= U(z2).
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Proof of the Theorem c. Surjectivity

V0(x) = f0(x)x0, W0(y) = Φ(V0)(y) = g0(y)y0.

U(z) = Φ(V )(y0) for V such that V (x0) = z.

———————————————————————————-
Let y ∈ Y and let W be a rank one operator in B such that
W (y0) = y . Let V ∈ A be such that Φ(V ) = W and let
z = V (x0). Then,

U(z) = Φ(V )(y0) = W (y0) = y .
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Proof of the Theorem d. Linearity

V0(x) = f0(x)x0, W0(y) = Φ(V0)(y) = g0(y)y0.

U(z) = Φ(V )(y0) for V such that V (x0) = z.

———————————————————————————-
Let z1, z2 ∈ X , λ ∈ C. Let V1(x0) = z1, V2(x0) = z2. Then,
(V1 + V2)(x0) = z1 + z2, so,

U(z1+z2) = Φ(V1+V2)(y0) = Φ(V1)(y0)+Φ(V2)(y0) = U(z1)+U(z2).

Also, Since λV1(xo) = λz1,

U(λz1) = Φ(λV1)(y0) = λΦ(V1)(y0) = λU(z1).
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Proof of the Theorem e. boundedness

V0(x) = f0(x)x0, W0(y) = Φ(V0)(y) = g0(y)y0.

U(z) = Φ(V )(y0) for V such that V (x0) = z.

———————————————————————————-
Give z ∈ X let V ∈ A with V (x0) = z, ‖V‖ = ‖z‖. Then,

‖U(z)‖ = ‖Φ(V )(y0)‖ ≤ ‖Φ‖‖V‖ = ‖Φ‖‖z‖.
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Proof of the Theorem f. boundedness of U−1

V0(x) = f0(x)x0, W0(y) = Φ(V0)(y) = g0(y)y0.

U(z) = Φ(V )(y0) for V such that V (x0) = z.

———————————————————————————-
Following c. Let y ∈ Y and let W be a rank one operator in B
such that W (y0) = y , ‖W‖ = ‖y‖. Let V ∈ A be such that
Φ(V ) = W and let z = V (x0). Then,

U(z) = Φ(V )(y0) = W (y0) = y .

‖U−1(y)‖ = ‖z‖ = ‖Φ−1(W )(x0)‖ ≤ ‖Φ−1‖‖W‖ = ‖Φ−1‖‖y‖.
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Proof of the Theorem g. Φ(A) = UAU−1

V0(x) = f0(x)x0, W0(y) = Φ(V0)(y) = g0(y)y0.

U(z) = Φ(V )(y0) for V such that V (x0) = z.

———————————————————————————-
Let z ∈ X and A ∈ A. Let V ∈ A such that V (xo) = z. Then,
AV (x0) = A(z) so,

UA(z) = U(A(z)) = Φ(AV )(y0) = Φ(A)Φ(V )(y0) = Φ(A)U(z).

It follows that
UA = Φ(A)U,

or,
Φ(A) = UAU−1.
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Another theorem

Theorem. (JPS)
Let X and Y be Banach spaces and let A be a Banach
subalgebra of L(X ) containing F (X ). Let

Φ : A → L(Y )

be injective bounded homomorphism.
Then, there is an isomorphism U : X � Y0 ⊆ Y such that for all
A ∈ A

UA = Φ(A)U.

Moreover, for all x ∈ X,

‖Φ‖−1‖x‖ ≤ ‖Ux‖ ≤ ‖Φ‖‖x‖.

Also, if X is complemented in X ∗∗, Y0 is complemented in Y .
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Proposition

Proposition.

Let X and Y be Banach spaces and let Φ : F (X )→ L(Y ) be
injective bounded homomorphism. Then there are U ∈ L(X ,Y )
and W ∈ L(Y ,X ∗∗) such that WV is the natural injection of X
into X ∗∗ and ‖U‖, ‖W‖ ≤ ‖Φ‖.

Proof: Let V0 = f0 ⊗ x0 be a norm one projection in L(X )
(‖f0‖ = ‖x0‖ = f0(x0) = 1). For z ∈ X and h ∈ X ∗ define Az and
Bh by

Az(x) = f0(x)z, Bh(x) = h(x)x0.

Note that Az and Bh are rank one operators, that ‖Az‖ = ‖z‖,
‖Bh‖ = ‖h‖, and that z → Az and h→ Bh are continuous linear
operations. Also, Ax0 = Bf0 = V0.
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Proposition

For all z ∈ X ,h ∈ X ∗ and all x ∈ X ,

BhAz(x) = f0(x)Bh(z) = f0(x)h(z)x0 = h(z)Ax0(x),

i.e., BhAz = h(z)Ax0 .
Fix y0 ∈ Ran(Φ(V0)) and g0 ∈ Y ∗ with ‖g0‖ = ‖y0‖ = g0(y0) = 1
and Define U : X → Y by

U(z) = Φ(Az)(y0), for z ∈ X .

Define also W : Y → X ∗∗ by

W (y)(h) = g0(Φ(Bh)(y)), for h ∈ X ∗.

Note, ‖U‖, ‖W‖ ≤ ‖Φ‖ .
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Proposition

Then, for all z ∈ X ,h ∈ X ∗,

(WU(z))(h) = g0(Φ(Bh)(U(z)) = g0(Φ(Bh)Φ(Az)(y0))

= g0(Φ(BhAz)(y0)) = g0(h(z)Φ(Ax0)(y0))

= h(z)g0(Φ(V0)(y0)) = h(z),

i.e.,
WU(z) = i(z)

where i : X → X ∗∗ is the natural injection.
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Proof of "Another theorem"

Theorem. (JPS)
Let X and Y be Banach spaces and let A be a Banach
subalgebra of L(X ) containing F (X ). Let

Φ : A → L(Y )

be injective bounded homomorphism.
Then, there is an isomorphism U : X � Y0 ⊆ Y such that for all
A ∈ A

UA = Φ(A)U.

Moreover, for all x ∈ X,

‖Φ‖−1‖x‖ ≤ ‖Ux‖ ≤ ‖Φ‖‖x‖.

Also, if X is complemented in X ∗∗, Y0 is complemented in Y .
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Proof of "Another theorem"

Proof: Define U and W as in the proof of the Proposition. If
C ∈ A and z ∈ X then

UC(z) = Φ(ACz)(y0) = Φ(CAz)(y0)

= Φ(C)Φ(Az)(y0) = Φ(C)U(z).

So,
UC = Φ(C)U.

We already showed that ‖Ux‖ ≤ ‖Φ‖‖x‖. To prove the lower
bound, for all z ∈ X ,

‖Φ‖‖Uz‖ ≥ ‖W‖‖Uz‖ ≥ ‖WUz‖ = ‖z‖.

Finally, if P is a projection from X ∗∗ onto X (identified with iX ),
then UPW is a projection from Y onto UX .
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Remarks

• Open: How many closed ideals are there in L(Lp), p 6= 2, up
to Banach space isomorphism?

• Automatic continuity: The main theorem and its corollaries
can be strengthen. The continuity of Φ and Φ−1 is automatic
and need not be assumed.

Theorem. (JPS)

Let A be a Banach subalgebra of L(X ) and B a Banach
subalgebra of L(Y ). Assume that A ⊇ F (X ) (the finite rank
operators) and that B ⊇ F (Y ). Assume that

Φ : A� B

is injective and surjective homomorphism.Then, there is an
isomorphism U : X � Y such that for all A ∈ A

Φ(A) = UAU−1.
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Proof

Proof: Assume first that IX ∈ A. Then, since Φ(IX ) commutes
with all finite rank operators, Φ(IX ) = IY . Assume that there are
An ∈ A, with ‖An‖ = 1 and ‖Φ(An)‖ → ∞. By
Banach–Steinhaus, there is a y0 ∈ Y such that
‖Φ(An)(y0)‖ → ∞ and an g0 ∈ Y ∗ such that
g0(Φ(An)(y0))→∞.
Let A ∈ A be such that Φ(A) = g0 ⊗ y0. Since {AAn} is a
bounded sequence there is a λ0 > 0 such that, if |λ| ≤ λ0,
IX − λAAn are all invertible. It follows that IY − λΦ(A)Φ(An) are
all invertible for |λ| ≤ λ0. But, λn = (g0(Φ(An)(y0)))−1 → 0 and

(IY − λnΦ(A)Φ(An))(y0) = y0 − λng0(Φ(An)(y0))y0 = 0.

A contradiction. So Φ is bounded. Similarly, Φ−1 is bounded.
If IX /∈ A (and then necessarily IY /∈ B) extend Φ naturally to the
algebra generated by A and IX .
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The End
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