Eidelheit's Theorem Revisited

Gideon Schechtman

Godefroy’s Fest June 2022

Based on an observation by Johnson, Phillips and Schechtman

We say that two Banach algebras \mathcal{A} and \mathcal{B} are isomorphic as Banach algebras if there is an injective and surjective homomorphism $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ such that $\|\Phi\|,\left\|\Phi^{-1}\right\|<\infty . \Phi$ is called a Banach algebras isomorphism.
For a Banach space $X, L(X)$ denotes the Banach algebra of all bounded linear operators on X.
A theorem of Meier Eidelheit from 1940 states that if $L(X)$ and $L(Y)$ are isomorphic as Banach algebras then X and Y are isomorphic as Banach spaces. Moreover, if $\Phi: L(X) \rightarrow L(Y)$ is the Banach algebra isomorphism then there is a Banach space isomorphism $U: X \rightarrow Y$ such that for all $A \in L(X)$

$$
\Phi(A)=U A U^{-1} .
$$

Eidelheit

Meier Eidelheit, 1910-1943, was a student of Banach in Lwów (=Lvov=Lviv).
He was murder in the Holocaust.
We (Bill Johnson, Chris Phillips and I) noticed that digging a bit into the proof of Eidelheit theorem one can prove a stronger theorem.

Main Theorem

Theorem. (JPS)

Let \mathcal{A} be a Banach subalgebra of $L(X)$ and \mathcal{B} a Banach subalgebra of $L(Y)$. Assume that $\mathcal{A} \supseteq F(X)$ (the finite rank operators) and that $\mathcal{B} \supseteq F(Y)$. Assume that

$$
\Phi: \mathcal{A} \rightarrow \mathcal{B}
$$

is a Banach algebra isomorphism. Then, there is an isomorphism $U: X \rightarrow Y$ such that for all $A \in \mathcal{A}$

$$
\Phi(A)=U A U^{-1}
$$

Moreover $\|U\| \leq\|\Phi\|$ and $\left\|U^{-1}\right\| \leq\left\|\Phi^{-1}\right\|$.

Main Theorem 2

Actually, as we'll see, the continuity of Φ and Φ^{-1} is automatic and need not be assumed so a stronger theorem holds

Theorem. (JPS)

Let \mathcal{A} be a Banach subalgebra of $L(X)$ and \mathcal{B} a Banach subalgebra of $L(Y)$. Assume that $\mathcal{A} \supseteq F(X)$ (the finite rank operators) and that $\mathcal{B} \supseteq F(Y)$. Assume that

$$
\Phi: \mathcal{A} \rightarrow \mathcal{B}
$$

is an homomorphism of algebras. Then, Φ and Φ^{-1} are bounded and there is an isomorphism $U: X \rightarrow Y$ such that for all $A \in \mathcal{A}$

$$
\Phi(A)=U A U^{-1}
$$

Moreover $\|U\| \leq\|\Phi\|$ and $\left\|U^{-1}\right\| \leq\left\|\Phi^{-1}\right\|$.

Corollary

Recall that a (two sided) ideal in $L(X)$ is a subspace \mathcal{I} such that for all $A \in \mathcal{I}$ and $B \in L(X) A B$ and $B A$ are in \mathcal{I}.

Corollary.

If \mathcal{I} and \mathcal{J} are closed ideals in $L(X)$ which are isomorphic as Banach algebras then $\mathcal{I}=\mathcal{J}$.

Proof: Assume \mathcal{I} and \mathcal{J} are isomorphic as Banach algebras. Since any ideal in $L(X)$ contains $F(X)$ it follows that there is a Banach space isomorphism U of X onto itself such that $A \rightarrow U A U^{-1}$ maps \mathcal{I} onto \mathcal{J}.
If $B \in \mathcal{J}$ there is an $A \in \mathcal{I}$ such that

$$
B=U A U^{-1}
$$

Since \mathcal{I} is an ideal $B \in \mathcal{I}$. So $\mathcal{J} \subseteq \mathcal{I}$. Similarly, $\mathcal{I} \subseteq \mathcal{J}$.
Remark: Enough to assume that \mathcal{I} and \mathcal{J} are homomorphic as algebras.

boosting

This corollary can be used to boost several recent theorems concerning the number of closed ideals in $L(X)$ for some classical spaces X.

Theorem. (JPS +)

There is a continuum of closed ideals in $L\left(L_{1}(0,1)\right)$ each two of which are non-isomorphic as Banach algebras. The same holds for $L(C(0,1))$ and $L\left(L_{\infty}(0,1)\right)$.

Theorem. (JS +)

For each $1<p \neq 2<\infty$ there are exactly $2^{\text {continuum }}$ closed ideals in $L\left(L_{p}(0,1)\right)$ up to isomorphism of Banach algebras.

Theorem. (Freeman,Schlumprecht,Zsak +)

For $1<p<q<\infty$ there are exactly $2^{\text {continuum }}$ closed ideals in $L\left(\ell_{p} \oplus \ell_{q}\right)$ up to isomorphism of Banach algebras. Same holds for $L\left(\ell_{1} \oplus \ell_{q}\right)$ and $L\left(\ell_{p} \oplus c_{0}\right)$.

Remark: In the last three theorems one can replace "isomorphism of Banach algebras" by "homomorphism of algebras".

In the rest of this talk l'll give the, hopefully complete, proof of the Theorem.

Lemma

Lemma

The following are equivalent for $V_{0} \in L(X)$:

1. V_{0} is of rank at most one.
2. For all $V \in L(X)$ there is a $\lambda \in \mathbb{C}$ such that

$$
\left(V V_{0}\right)^{2}=\lambda V V_{0}
$$

3. For all $V \in L(X)$ of rank 2 there is a $\lambda \in \mathbb{C}$ such that

$$
\left(V V_{0}\right)^{2}=\lambda V V_{0}
$$

Proof. $1 \Rightarrow 2$:
Let V_{0} be of rank 1. For each $V \in L(X), W=V V_{0}$ is of rank at most 1 . Assume it is of rank $1 . W=x^{*} \otimes x, W(y)=x^{*}(y) x$.

$$
W^{2}(y)=x^{*}(y) W(x)=x^{*}(y) x^{*}(x) x=x^{*}(x) W(y)
$$

Lemma

$2 \Rightarrow 3$ is clear.
$3 \Rightarrow 1$:
Assume that the range of V_{0} contains two independent vectors y_{1} and y_{2}. Let x_{1} and x_{2} be such that

$$
V_{0}\left(x_{1}\right)=y_{1}, \quad V_{0}\left(x_{2}\right)=y_{2}
$$

Let f_{1} and f_{2} be linear functionals such that

$$
f_{1}\left(y_{1}\right)=1, \quad f_{1}\left(y_{2}\right)=0, \quad f_{2}\left(y_{1}\right)=0, \quad f_{2}\left(y_{2}\right)=1
$$

and put

$$
V(x)=f_{1}(x) x_{2}+f_{2}(x) x_{1}
$$

Then,

$$
V V_{0}\left(x_{1}\right)=x_{2}, \quad V V_{0}\left(x_{2}\right)=x_{1} .
$$

Lemma

$$
V V_{0}\left(x_{1}\right)=x_{2}, \quad V V_{0}\left(x_{2}\right)=x_{1} .
$$

Since, $\left(V V_{0}\right)^{2}=\lambda V V_{0}$,

$$
x_{1}=\left(V V_{0}\right)^{2}\left(x_{1}\right)=\lambda V V_{0}\left(x_{1}\right)=\lambda x_{2}
$$

and thus

$$
y_{1}=\lambda y_{2}
$$

A contradiction. ■

Proof of the Theorem

Theorem. (JPS)

Let \mathcal{A} be a Banach subalgebra of $L(X)$ and \mathcal{B} a Banach subalgebra of $L(Y)$. Assume that $\mathcal{A} \supseteq F(X)$ (the finite rank operators) and that $\mathcal{B} \supseteq F(Y)$. Assume that

$$
\Phi: \mathcal{A} \rightarrow \mathcal{B}
$$

is a Banach algebra isomorphism. Then, there is an isomorphism $U: X \rightarrow Y$ such that for all $A \in \mathcal{A}$

$$
\Phi(A)=U A U^{-1}
$$

Moreover $\|U\| \leq\|\Phi\|$ and $\left\|U^{-1}\right\| \leq\left\|\Phi^{-1}\right\|$.

Let V_{0} be a rank one projection:

$$
V_{0}(x)=f_{0}(x) x_{0}
$$

where $x_{0} \in X, f_{0} \in X^{*},\left\|x_{0}\right\|=\left\|f_{0}\right\|=1, \quad f_{0}\left(x_{0}\right)=1$. By the Lemma for all $V \in \mathcal{A}$ there is a $\lambda \in \mathbb{C}$ such that

$$
\left(V V_{0}\right)^{2}=\lambda V V_{0}
$$

Applying Φ we get that for all $W \in \mathcal{B}$ there is a $\lambda \in \mathbb{C}$ such that

$$
\left(W \Phi\left(V_{0}\right)\right)^{2}=\lambda W \Phi\left(V_{0}\right)
$$

In particular this holds for all $W \in L(Y)$ of rank 2. So, By the Lemma $W_{0}=\Phi\left(V_{0}\right)$ is of rank one. Say,

$$
W_{0}(y)=g_{0}(y) y_{0}
$$

for some $y_{0} \in Y, g_{0} \in Y^{*},\left\|y_{0}\right\|=1,\left\|g_{0}\right\| \leq\|\Phi\|$.

$$
V_{0}(x)=f_{0}(x) x_{0}, \quad W_{0}(y)=\Phi\left(V_{0}\right)(y)=g_{0}(y) y_{0} .
$$

We now define the isomorphism $U: X \rightarrow Y$.
Given a $z \in X$ choose an arbitrary $V \in \mathcal{A}$ such that $V\left(x_{0}\right)=z$ and define

$$
U(z)=\Phi(V)\left(y_{0}\right) .
$$

We need to show:
a. U is well defined (doesn't depend on the choice of V)
b. U is injective
c. U is surjective
d. U is linear
e. U is bounded, $\|U\| \leq\|\Phi\|$
f. U^{-1} is bounded, $\left\|U^{-1}\right\| \leq\left\|\Phi^{-1}\right\|$
g. For all $A \in \mathcal{A}$,

$$
\Phi(A)=U A U^{-1} .
$$

$$
\begin{gathered}
V_{0}(x)=f_{0}(x) x_{0}, \quad W_{0}(y)=\Phi\left(V_{0}\right)(y)=g_{0}(y) y_{0} . \\
U(z)=\Phi(V)\left(y_{0}\right) \text { for } V \text { such that } V\left(x_{0}\right)=z .
\end{gathered}
$$

Assume $V_{1}\left(x_{0}\right)=V_{2}\left(x_{0}\right)=z, \quad V_{1}, V_{2} \in \mathcal{A}$. Then, for all $x \in X$,

$$
V_{1}\left(V_{0}(x)\right)=f_{0}(x) z=V_{2}\left(V_{0}(x)\right) .
$$

So, $V_{1} V_{0}=V_{2} V_{0}$ and $\Phi\left(V_{1}\right) W_{0}=\Phi\left(V_{2}\right) W_{0}$, i.e., for all $y \in Y$,

$$
g_{0}(y) \Phi\left(V_{1}\right)\left(y_{0}\right)=g_{0}(y) \Phi\left(V_{2}\right)\left(y_{0}\right) .
$$

So,

$$
\Phi\left(V_{1}\right)\left(y_{0}\right)=\Phi\left(V_{2}\right)\left(y_{0}\right) .
$$

$$
\begin{gathered}
V_{0}(x)=f_{0}(x) x_{0}, \quad W_{0}(y)=\Phi\left(V_{0}\right)(y)=g_{0}(y) y_{0} \\
U(z)=\Phi(V)\left(y_{0}\right) \text { for } V \text { such that } V\left(x_{0}\right)=z
\end{gathered}
$$

Let $z_{1} \neq z_{2}$. Let $V_{1}, V_{2} \in \mathcal{A}$ such that

$$
V_{1}\left(x_{0}\right)=z_{1}, \quad V_{2}\left(x_{0}\right)=z_{2}
$$

Then $V_{1} V_{0} \neq V_{2} V_{0}$, so,

$$
\Phi\left(V_{1}\right) W_{0} \neq \Phi\left(V_{2}\right) W_{0}
$$

Implying

$$
\Phi\left(V_{1}\right)\left(y_{0}\right) \neq \Phi\left(V_{2}\right)\left(y_{0}\right)
$$

i.e.,

$$
U\left(z_{1}\right) \neq U\left(z_{2}\right)
$$

$$
\begin{gathered}
V_{0}(x)=f_{0}(x) x_{0}, \quad W_{0}(y)=\Phi\left(V_{0}\right)(y)=g_{0}(y) y_{0} . \\
U(z)=\Phi(V)\left(y_{0}\right) \text { for } V \text { such that } V\left(x_{0}\right)=z .
\end{gathered}
$$

Let $y \in Y$ and let W be a rank one operator in \mathcal{B} such that $W\left(y_{0}\right)=y$. Let $V \in \mathcal{A}$ be such that $\Phi(V)=W$ and let $z=V\left(x_{0}\right)$. Then,

$$
U(z)=\Phi(V)\left(y_{0}\right)=W\left(y_{0}\right)=y .
$$

Proof of the Theorem d. Linearity

$$
\begin{gathered}
V_{0}(x)=f_{0}(x) x_{0}, \quad W_{0}(y)=\Phi\left(V_{0}\right)(y)=g_{0}(y) y_{0} . \\
U(z)=\Phi(V)\left(y_{0}\right) \text { for } V \text { such that } V\left(x_{0}\right)=z .
\end{gathered}
$$

Let $z_{1}, z_{2} \in X, \quad \lambda \in \mathbb{C}$. Let $V_{1}\left(x_{0}\right)=z_{1}, \quad V_{2}\left(x_{0}\right)=z_{2}$. Then, $\left(V_{1}+V_{2}\right)\left(x_{0}\right)=z_{1}+z_{2}$, so,
$U\left(z_{1}+z_{2}\right)=\Phi\left(V_{1}+V_{2}\right)\left(y_{0}\right)=\Phi\left(V_{1}\right)\left(y_{0}\right)+\Phi\left(V_{2}\right)\left(y_{0}\right)=U\left(z_{1}\right)+U\left(z_{2}\right)$.
Also, Since $\lambda V_{1}\left(x_{0}\right)=\lambda z_{1}$,

$$
U\left(\lambda z_{1}\right)=\Phi\left(\lambda V_{1}\right)\left(y_{0}\right)=\lambda \Phi\left(V_{1}\right)\left(y_{0}\right)=\lambda U\left(z_{1}\right) .
$$

$$
\begin{gathered}
V_{0}(x)=f_{0}(x) x_{0}, \quad W_{0}(y)=\Phi\left(V_{0}\right)(y)=g_{0}(y) y_{0} . \\
U(z)=\Phi(V)\left(y_{0}\right) \text { for } V \text { such that } V\left(x_{0}\right)=z .
\end{gathered}
$$

Give $z \in X$ let $V \in \mathcal{A}$ with $V\left(x_{0}\right)=z,\|V\|=\|z\|$. Then,

$$
\|U(z)\|=\left\|\Phi(V)\left(y_{0}\right)\right\| \leq\|\Phi\|\|V\|=\|\Phi\|\|z\| .
$$

$$
\begin{gathered}
V_{0}(x)=f_{0}(x) x_{0}, \quad W_{0}(y)=\Phi\left(V_{0}\right)(y)=g_{0}(y) y_{0} . \\
U(z)=\Phi(V)\left(y_{0}\right) \text { for } V \text { such that } V\left(x_{0}\right)=z .
\end{gathered}
$$

Following c. Let $y \in Y$ and let W be a rank one operator in \mathcal{B} such that $W\left(y_{0}\right)=y, \quad\|W\|=\|y\|$. Let $V \in \mathcal{A}$ be such that $\Phi(V)=W$ and let $z=V\left(x_{0}\right)$. Then,

$$
\begin{gathered}
U(z)=\Phi(V)\left(y_{0}\right)=W\left(y_{0}\right)=y . \\
\left\|U^{-1}(y)\right\|=\|z\|=\left\|\Phi^{-1}(W)\left(x_{0}\right)\right\| \leq\left\|\Phi^{-1}\right\|\|W\|=\left\|\Phi^{-1}\right\|\|y\| .
\end{gathered}
$$

Proof of the Theorem g. $\Phi(A)=U A U^{-1}$

$$
\begin{gathered}
V_{0}(x)=f_{0}(x) x_{0}, \quad W_{0}(y)=\Phi\left(V_{0}\right)(y)=g_{0}(y) y_{0} . \\
U(z)=\Phi(V)\left(y_{0}\right) \text { for } V \text { such that } V\left(x_{0}\right)=z .
\end{gathered}
$$

Let $z \in X$ and $A \in \mathcal{A}$. Let $V \in \mathcal{A}$ such that $V\left(x_{0}\right)=z$. Then, $A V\left(x_{0}\right)=A(z)$ so,

$$
U A(z)=U(A(z))=\Phi(A V)\left(y_{0}\right)=\Phi(A) \Phi(V)\left(y_{0}\right)=\Phi(A) U(z) .
$$

It follows that

$$
U A=\Phi(A) U,
$$

or,

$$
\Phi(A)=U A U^{-1} .
$$

Another theorem

Theorem. (JPS)

Let X and Y be Banach spaces and let \mathcal{A} be a Banach subalgebra of $L(X)$ containing $F(X)$. Let

$$
\Phi: \mathcal{A} \rightarrow L(Y)
$$

be injective bounded homomorphism.
Then, there is an isomorphism $U: X \rightarrow Y_{0} \subseteq Y$ such that for all $A \in \mathcal{A}$

$$
U A=\Phi(A) U
$$

Moreover, for all $x \in X$,

$$
\|\Phi\|^{-1}\|x\| \leq\|U x\| \leq\|\Phi\|\|x\|
$$

Also, if X is complemented in $X^{* *}, Y_{0}$ is complemented in Y.

Proposition

Proposition.

Let X and Y be Banach spaces and let $\Phi: \overline{F(X)} \rightarrow L(Y)$ be injective bounded homomorphism. Then there are $U \in L(X, Y)$ and $W \in L\left(Y, X^{* *}\right)$ such that $W V$ is the natural injection of X into $X^{* *}$ and $\|U\|,\|W\| \leq\|\Phi\|$.

Proof: Let $V_{0}=f_{0} \otimes x_{0}$ be a norm one projection in $L(X)$ $\left(\left\|f_{0}\right\|=\left\|x_{0}\right\|=f_{0}\left(x_{0}\right)=1\right)$. For $z \in X$ and $h \in X^{*}$ define A_{z} and B_{h} by

$$
A_{z}(x)=f_{0}(x) z, \quad B_{h}(x)=h(x) x_{0} .
$$

Note that A_{z} and B_{h} are rank one operators, that $\left\|A_{z}\right\|=\|z\|$, $\left\|B_{h}\right\|=\|h\|$, and that $z \rightarrow A_{z}$ and $h \rightarrow B_{h}$ are continuous linear operations. Also, $A_{x_{0}}=B_{f_{0}}=V_{0}$.

Proposition

For all $z \in X, h \in X^{*}$ and all $x \in X$,

$$
B_{h} A_{z}(x)=f_{0}(x) B_{h}(z)=f_{0}(x) h(z) x_{0}=h(z) A_{x_{0}}(x)
$$

i.e., $B_{h} A_{z}=h(z) A_{x_{0}}$.

Fix $y_{0} \in \operatorname{Ran}\left(\Phi\left(V_{0}\right)\right)$ and $g_{0} \in Y^{*}$ with $\left\|g_{0}\right\|=\left\|y_{0}\right\|=g_{0}\left(y_{0}\right)=1$ and Define $U: X \rightarrow Y$ by

$$
U(z)=\Phi\left(A_{z}\right)\left(y_{0}\right), \quad \text { for } \quad z \in X
$$

Define also $W: Y \rightarrow X^{* *}$ by

$$
W(y)(h)=g_{0}\left(\Phi\left(B_{h}\right)(y)\right), \quad \text { for } \quad h \in X^{*}
$$

Note, $\|U\|,\|W\| \leq\|\Phi\|$.

Proposition

Then, for all $z \in X, h \in X^{*}$,

$$
\begin{aligned}
(W U(z))(h) & =g_{0}\left(\Phi\left(B_{h}\right)(U(z))=g_{0}\left(\Phi\left(B_{h}\right) \Phi\left(A_{z}\right)\left(y_{0}\right)\right)\right. \\
& =g_{0}\left(\Phi\left(B_{h} A_{z}\right)\left(y_{0}\right)\right)=g_{0}\left(h(z) \Phi\left(A_{x_{0}}\right)\left(y_{0}\right)\right) \\
& =h(z) g_{0}\left(\Phi\left(V_{0}\right)\left(y_{0}\right)\right)=h(z),
\end{aligned}
$$

i.e.,

$$
W U(z)=i(z)
$$

where $i: X \rightarrow X^{* *}$ is the natural injection.

Proof of "Another theorem"

Theorem. (JPS)

Let X and Y be Banach spaces and let \mathcal{A} be a Banach subalgebra of $L(X)$ containing $F(X)$. Let

$$
\Phi: \mathcal{A} \rightarrow L(Y)
$$

be injective bounded homomorphism.
Then, there is an isomorphism $U: X \rightarrow Y_{0} \subseteq Y$ such that for all $A \in \mathcal{A}$

$$
U A=\Phi(A) U
$$

Moreover, for all $x \in X$,

$$
\|\Phi\|^{-1}\|x\| \leq\|U x\| \leq\|\Phi\|\|x\|
$$

Also, if X is complemented in $X^{* *}, Y_{0}$ is complemented in Y.

Proof: Define U and W as in the proof of the Proposition. If $C \in \mathcal{A}$ and $z \in X$ then

$$
\begin{aligned}
U C(z) & =\Phi\left(A_{C z}\right)\left(y_{0}\right)=\Phi\left(C A_{z}\right)\left(y_{0}\right) \\
& =\Phi(C) \Phi\left(A_{z}\right)\left(y_{0}\right)=\Phi(C) U(z) .
\end{aligned}
$$

So,

$$
U C=\Phi(C) U
$$

We already showed that $\|U x\| \leq\|\Phi\|\|x\|$. To prove the lower bound, for all $z \in X$,

$$
\|\Phi\|\|U z\| \geq\|W\|\|U z\| \geq\|W U z\|=\|z\|
$$

Finally, if P is a projection from $X^{* *}$ onto X (identified with $i X$), then UPW is a projection from Y onto $U X$.

Remarks

- Open: How many closed ideals are there in $L\left(L_{p}\right), p \neq 2$, up to Banach space isomorphism?
- Automatic continuity: The main theorem and its corollaries can be strengthen. The continuity of Φ and Φ^{-1} is automatic and need not be assumed.

Theorem. (JPS)

Let \mathcal{A} be a Banach subalgebra of $L(X)$ and \mathcal{B} a Banach subalgebra of $L(Y)$. Assume that $\mathcal{A} \supseteq F(X)$ (the finite rank operators) and that $\mathcal{B} \supseteq F(Y)$. Assume that

$$
\Phi: \mathcal{A} \rightarrow \mathcal{B}
$$

is injective and surjective homomorphism. Then, there is an isomorphism $U: X \rightarrow Y$ such that for all $A \in \mathcal{A}$

$$
\Phi(A)=U A U^{-1}
$$

Proof

Proof: Assume first that $I_{X} \in \mathcal{A}$. Then, since $\Phi\left(I_{X}\right)$ commutes with all finite rank operators, $\Phi\left(I_{X}\right)=I_{Y}$. Assume that there are $A_{n} \in \mathcal{A}$, with $\left\|A_{n}\right\|=1$ and $\left\|\Phi\left(A_{n}\right)\right\| \rightarrow \infty$. By
Banach-Steinhaus, there is a $y_{0} \in Y$ such that $\left\|\Phi\left(A_{n}\right)\left(y_{0}\right)\right\| \rightarrow \infty$ and an $g_{0} \in Y^{*}$ such that $g_{0}\left(\Phi\left(A_{n}\right)\left(y_{0}\right)\right) \rightarrow \infty$.
Let $A \in \mathcal{A}$ be such that $\Phi(A)=g_{0} \otimes y_{0}$. Since $\left\{A A_{n}\right\}$ is a bounded sequence there is a $\lambda_{0}>0$ such that, if $|\lambda| \leq \lambda_{0}$, $I_{X}-\lambda A A_{n}$ are all invertible. It follows that $I_{Y}-\lambda \Phi(A) \Phi\left(A_{n}\right)$ are all invertible for $|\lambda| \leq \lambda_{0}$. But, $\lambda_{n}=\left(g_{0}\left(\Phi\left(A_{n}\right)\left(y_{0}\right)\right)\right)^{-1} \rightarrow 0$ and

$$
\left(I_{Y}-\lambda_{n} \Phi(A) \Phi\left(A_{n}\right)\right)\left(y_{0}\right)=y_{0}-\lambda_{n} g_{0}\left(\Phi\left(A_{n}\right)\left(y_{0}\right)\right) y_{0}=0 .
$$

A contradiction. So Φ is bounded. Similarly, Φ^{-1} is bounded. If $I_{X} \notin \mathcal{A}$ (and then necessarily $I_{Y} \notin \mathcal{B}$) extend Φ naturally to the algebra generated by \mathcal{A} and I_{X}.

The End

