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Abstract. When a rigid scene is imaged by a moving camera, the set of all displacements of all points across
multiple frames often resides in a low-dimensional linear subspace. Linear subspace constraints have been used
successfully in the past for recovering 3D structure and 3D motion information from multiple frames (e.g., by using
the factorization method of Tomasi and Kanade (1992, International Journal of Computer Vision, 9:137–154)).
These methods assume that the 2D correspondences have been precomputed. However, correspondence estimation
is a fundamental problem in motion analysis. In this paper we show how the multi-frame subspace constraints can
be used for constraining the 2D correspondence estimation process itself.

We show that the multi-frame subspace constraints are valid not only for affine cameras, but also for a variety of
imaging models, scene models, and motion models. The multi-frame subspace constraints are first translated from
constraints on correspondences to constraints directly on image measurements (e.g., image brightness quantities).
These brightness-based subspace constraints are then used for estimating the correspondences, by requiring that all
corresponding points across all video frames reside in the appropriate low-dimensional linear subspace.

The multi-frame subspace constraints are geometrically meaningful, and are not violated at depth discontinu-
ities, nor when the camera-motion changes abruptly. These constraints can therefore replace heuristic constraints
commonly used in optical-flow estimation, such as spatial or temporal smoothness.

Keywords: correspondence estimation, optical-flow, direct (gradient-based) methods, subspace constraints,
factorization

1. Introduction

This paper presents an approach for simultaneous
estimation of dense correspondences across multiple
video frames. Optical flow (or “correspondence”) esti-
mation is usually applied to local image patches. Small
image regions, however, carry very little information
(this is known as the “aperture problem”), and the
optical flow estimates obtained are hence noisy and/or
partial. To overcome this problem, spatial smooth-
ness constraints have been employed (e.g., Horn and
Schunck (1981) and Anandan (1989)). However, these
smoothness constraints are heuristic, and are violated
especially at depth discontinuities. For a review and

∗This research was supported by the Israel Science Foundation grant
no. 153/99.

comparison of several of these optical flow techniques
see Barron et al. (1992). Temporal smoothness con-
straints have also been introduced (e.g., Black and
Anandan, 1991). These, however, are violated when
the camera motion changes abruptly.

Other methods overcome the aperture problem
by applying global model constraints (Hanna, 1991;
Hanna and Okamoto, 1993; Bergen et al., 1992; Irani
et al., 1994; Stein and Shashua, 1997; Black and
Anandan, 1996; Bergen et al., 1992). This allows the
use of large analysis windows (often the entire image),
which do not suffer from lack of image information.
These techniques, however, assume an a-priori re-
stricted model of the world or of the camera motion.
For example (Irani et al., 1994; Black and Anandan,
1996; Bergen et al., 1992) assume a planar (or very
distant) world, resulting in constrained 2D parametric
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motion. While these methods are quite robust, they
are restricted to 2D scenarios. The methods of Hanna
(1991), Hanna and Okamoto (1993), Stein and Shashua
(1997), Szeliski and Kang (1995) and Irani et al. (1999)
assume a 3D world with dense 3D parallax, and use the
epipolar constraints to constrain the correspondence es-
timation process. The 3D methods, however, fail when
they are applied to “2D scenes”,1 because 2D scenar-
ios form singular cases for the 3D-based algorithms. A
hierarchy of such global 2D and 3D motion models is
reviewed in Bergen et al. (1992). While these methods
perform well when the restricted model assumptions
are applicable, they fail when these are violated.

Also, most methods for correspondence/flow
estimation have been restricted to pairs of frames.
Those methods that use information from multiple
frames, usually rely on temporal smoothness. The
resulting estimates are hence noisy and are “over-
smoothed”. A few exceptions (e.g., Hanna and
Okamoto (1993), Szeliski and Kang (1995) and Irani
et al. (1999)) exploit geometric consistency across mul-
tiple frames already in the correspondence estimation
process itself, but these methods rely on prior knowl-
edge that the underlying model is a 3D world with
dense 3D parallax, and will not be able to handle 2D
scenarios (flat scenes, distant scenes, or camera on a
tripod).

In this paper we develop a unified approach for si-
multaneously estimating correspondences across mul-
tiple frames by using information from all the frames,
without assuming the prior choice of a model. Our
approach is based on the observation that the set of
all flow-fields across multiple frames (that image the
same rigid scene) reside in a low-dimensional linear
subspace. This is true despite the fact that different
frames in the image sequence are obtained with dif-
ferent camera motions. The subspace constraints pro-
vide the additional constraints needed to resolve the
ambiguity in image regions that suffer from the aper-
ture problem. This is done without resorting to spatial
or temporal smoothness. As opposed to smoothness
constraints, the subspace constraints are geometrically
meaningful, and are not violated at depth discontinu-
ities or when camera-motion changes abruptly.

Linear subspace constraints have been used suc-
cessfully in the past for recovering 3D information
from known 2D correspondences (e.g., Tomasi and
Kanade (1992) and Heeger and Jepson (1992)). In
contrast, we use multi-frame linear subspace con-
straints to constrain the 2D correspondence estimation

process itself, and not for recovering 3D information.
Furthermore, we show that for a variety of world mod-
els (e.g., 2D planar scenes vs. general 3D scenes) and
a variety of camera models (e.g, orthographic cameras
vs. perspective cameras undergoing instantaneous mo-
tion) give rise to subspaces of very similar low dimen-
sionalities. Because we employ subspace constraints
based on the subspace dimensionality alone, these con-
straints can be used without prior knowledge of the
underlying world or camera model.

This paper has four main contributions:

(i) We show that the set of all flow-fields across mul-
tiple frames (that image the same rigid scene) re-
side in a low-dimensional linear subspace. This
is shown for a variety of motion models, scene
models, and imaging models. Section 2 reviews
the general idea, and Appendix A provides the
detailed derivations for the different models.

(ii) We extend the notion of multi-frame subspace
constraints on motion fields to subspace con-
straints directly on image brightness quantities.
These brightness-based subspace constraints are
derived in in Section 3.

(iii) We describe an algorithm which uses these multi-
frame brightness subspace constraints to constrain
the correspondence estimation process itself. In
particular, we show how the two-frame Lucas
and Kanade algorithm (Lucas and Kanade, 1981)
can be extended to a multi-frame multi-point al-
gorithm, which simultaneously uses all available
spatio-temporal information in a short video se-
quence (Section 4).

(iv) We propose an approach to extend the applicabil-
ity of the brightness-based subspace constraints
to some non-linear varieties by employing the
Plane + Parallax model (Section 6).

This work is a generalization of the approach pre-
sented by Zelnik and Irani (2000), where paramet-
ric transformations of planar surfaces (homographies)
were simultaneously estimated across multiple frames
using subspace constraints on the homography param-
eters. In contrast, the work here estimates general flow
fields, and is not restricted to planar worlds. A prelim-
inary version of this paper appeared in Irani (1999).

2. Subspace Constraints on Displacement Fields

Let I1, . . . , IF denote a sequence of F frames taken
by a moving camera with arbitrary 3D motions. All
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frames are of the same size, and contain N pixels.
Let I denote the reference frame in the sequence,
i.e., the frame with respect to which all displacement
fields will be estimated (e.g., the middle frame of the
sequence). Let (ui j , vi j ) denote the displacement of
pixel (xi , yi ) from the reference frame I to frame I j

(i = 1 ..N , j = 1..F). Let U and V denote twoF×N
matrices constructed from the displacements of all the
image points across all frames:

U =




u11, u21, . . . , uN1

u12, u22, . . . , uN2

...

u1F , u2F , . . . , uNF




(1)

V =




v11, v21, . . . , vN1

v12, v22, . . . , vN2

...

v1F , v2F , . . . , vNF




Each row in these matrices corresponds to a single
frame, and each column corresponds to a single point.

We next argue that although the matrices U and V
are large, their ranks are very small. This low-rank
constraint will be exploited to constrain the correspon-
dence estimation. In particular, we identify the ranks of
the following two large matrices: [ U

V ]2F×N (i.e., U and
V are stacked vertically), and [U | V]F×2N (i.e., U and
V are stacked horizontally). Note that each column in
the matrix [ U

V ]2F×N corresponds to the “trajectory” of
a single pixel across all frames, while each row in the
matrix [U | V]F×2N corresponds to the “displacement
field ” of all pixels between two frames (the reference
frame and another frame).

These low-rank constraints are referred to as
“subspace constraints”, as only a few columns (or
rows) suffice to span all other columns (or rows) of
these large matrices. Linear subspace constraints are
not new constraints, and have been successfully used
in the past (e.g, by Tomasi and Kanade (1992)) for fac-
toring known 2D correspondences into the unknown
3D information, namely, the 3D camera motion and the
3D shape. Tomasi and Kanade, however, assumed that
the correspondences were known (i.e., that U and V are
known). In contrast, in our case, we use the knowledge
that the correspondences reside in a low-dimensional
linear subspace (i.e., that the ranks of these matrices
are low) in order to constrain the 2D correspondence
estimation process itself, and not for recovering any

3D information. In Sections 3 and 4 we explain how to
use these low-rank constraints in order to constrain the
estimated correspondences (displacements).

We next derive the upper bounds on the ranks of
these two large matrices under many different imaging
and scene conditions, and show that these ranks are in-
deed low for many real-world scenarios (not only for
affine cameras). It can be shown that the collection of
all points across all views lie in a low-dimensional vari-
ety (Torr, 1998). Under full perspective projection and
discrete views, this variety is non-linear (Anandan and
Avidan, 2000). However, there are two cases in which
this variety is linear: (i) when an “affine” camera model
(Shapiro, 1995) is used (i.e., weak-perspective, or or-
thographic projection). This approximation is valid
when the field of view is very small, and the depth
fluctuations in the scene are small relative to the over-
all depth. (ii) when an “instantaneous motion model”
is used (e.g., Longuet-Higgins and Prazdny (1980)).
This approximation is valid when the camera rotation
is small and the forward translation is small relative to
the depth. The instantaneous model is a good approxi-
mation of the image motion over short video segments.2

In some cases, such as in airborne video, this approxi-
mation is good also for very long sequences. The affine
model (as opposed to the instantaneous motion model)
is not restricted to short sequences, and applies as long
as the field-of-view remains small throughout the en-
tire sequence (e.g., as in the case of camera zoomed in
on an object rotating on a turn-table).

We have derived the linear subspace (rank) con-
straints for these two types of models. In each case we
have considered both a general 3D scene as well as a
planar 2D scene, and calibrated as well as uncalibrated
cameras. The resulting ranks for the various cases are
summarized in Table 1. The derivations of these rank
constraints can be found in Appendix A.

The results summarized in the Table 1 indicate that
regardless of the camera projection model, and regard-
less of whether the scene is 2D (planar) or 3D, the
ranks of the matrices [ U

V ] and [U | V] for short video
sequences are guaranteed to be no more than 9. The
ranks of these matrices are therefore significantly lower
than their actual sizes (2F × N and F × 2N , respec-
tively). We will use these rank constraints alone to
constrain the correspondence estimation process itself.
No 3D information needs to be recovered in this pro-
cess. (The 3D analysis in Appendix A is used only
for deriving the upper bounds on the ranks of these
matrices.)
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Table 1. Upper bounds on the ranks of the matrices [ U
V ] and [U | V] for various camera projection

models, world models, and motion models.

Camera Scene Calibration Other restrictions rank [ U
V ] rank [U | V]

Orthographic/Affine 3D Fixed/Varying None 4 8

Orthographic/Affine 2D Fixed/Varying None 3 6

Perspective 3D Fixed Instantaneous motion 8 6

Perspective 3D Varying Instantaneous motion 9 9

Perspective 2D Fixed Instantaneous motion 6 6

Perspective 2D Varying Instantaneous motion 6 8

In all cases, the rank of these two large matrices never exceeds 9 (and in practice is usually much
smaller—see text).

The actual ranks of these matrices may be even lower
than the derived theoretical upper bounds. This hap-
pens, for example, when the camera motion is spatially
degenerate (e.g., in the case of pure translation, or pure
rotation), or when it is temporally degenerate (e.g., in
the case of uniform motion across the sequence). These
cases are very common in real video sequences. Our
algorithm automatically detects the actual underlying
ranks directly from image brightness quantities, prior to
computing the correspondences (Section 4.3). In other
words, the rank constraint is applied to a sequence of
frames without the need to a-priori determine the under-
lying model, or its degeneracies. Thus, our algorithm
exploits spatial or temporal degeneracies (or smooth-
ness) when these do exist in the data, without making
any prior assumptions about their existence.

3. Subspace Constraints on Image Brightness

The most straightforward way to take advantage of the
subspace constraints in the correspondence estimation
process is to take the following two steps: (a) First com-
pute inter-frame displacements using any existing two-
frame correspondence or flow estimation technique,
and (b) then project the collection of all these flow fields
into the appropriate lower dimensional linear subspace
(i.e., project the large matrices U and V and their com-
pounds onto the closest low-rank matrices). However,
there are two problems with this two-stage approach:
(i) The first step, namely, the unconstrained two-frame
displacement estimation, is notoriously noisy. It will
typically include noisy displacements that cannot be
corrected even by subspace projection. Moreover, if a
significant number of displacement (flow) vectors are
severely corrupted, the estimated subspace itself will
be incorrect, thus damaging all other displacements.

(ii) All displacements are treated equally in the sub-
space projection, without any regard to their reliabi-
lity. Yet, different points are tracked throughout the
sequence with different reliability, depending on their
local underlying image structure. For example, corner
points can be tracked much more reliably than points on
lines. Their estimated displacements should therefore
not be treated equally in the subspace projection.

To avoid these two problems, we propose a one-
stage approach for applying the low-dimensionality
subspace constraints during the correspondence esti-
mation process itself, and not after the fact. This is done
by translating the above subspace constraints, which
are currently defined on displacements, to subspace
constraints on image brightness quantities. These con-
straints will also be shown to inherently give rise to
confidence-weighted subspace projection. In particu-
lar, we derive two different brightness-based subspace
constraints: (i) a point-based constraint, which is a gen-
eralization of the Brightness Constancy Equation into
a multi-point multi-frame constraint (Section 3.1), and
(ii) a region-based constraint, which is a generaliza-
tion of the Lucas and Kanade flow constraint into a
multi-point multi-frame constraint (Section 3.2). The
benefits of using each of these constraints is explained
in Section 4.

3.1. The Generalized Brightness
Constancy Constraint

Let (xi , yi ) be a pixel in the reference frame I ,
whose corresponding pixel in another frame I j is (xi +
ui j , yi + vi j ). The Brightness Constancy Equation,
which is defined on a single pixel between two frames,
states that: I (xi , yi ) = I j (xi + ui j , yi + vi j ). For
small (ui j , vi j ) we make the approximation: I (xi −ui j ,
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yi −vi j ) = I j (xi , yi ). Expanding I to its first-order Tay-
lor series around (xi , yi ), leads to the linearized bright-
ness constancy equation: ui j · Ixi + vi j · Iyi + Iti j =
0,where Ixi , Iy i are the spatial derivative of the refer-
ence frame I at pixel (xi , yi ), and Iti j is the temporal
derivative: Iti j = (I j (xi , yi ) − I (xi , yi )).

However, in practice, the displacement (ui j , vi j ) may
not be small, especially when dealing with multiple
frames. To increase its range of applicability to larger
displacements (ui j , vi j ), the linearization can be ap-
plied within an iterative (coarse-to-fine) refinement
process (Bergen et al., 1992). Let (u0

i j , v
0
i j ) be the cur-

rent estimate of the true displacement (ui j , vi j ) during
an iterative estimation process. Let

�ui j = ui j − u0
i j

(2)
�vi j = vi j − v0

i j

be the residual displacement. The Brightness Con-
stancy Equation can be rewritten as:

I (xi , yi ) = I j (xi + ui j , yi + vi j )

= I j
(
xi + u0

i j + �ui j , yi + v0
i j + �vi j

)
. (3)

For small (�ui j , �vi j ) we make the approximation:3

I (xi − �ui j , yi − �vi j ) = I j
(
xi + u0

i j , yi + v0
i j

)
. (4)

This approximation allows us to perform the lin-
earization on the reference frame4 I (assuming small
(�ui j , �vi j )):

�ui j Ixi + �vi j Iyi + (
I j

(
xi + u0

i j , yi + v0
i j

)
− I (xi , yi )

) = 0 (5)

Because the multi-frame subspace constraints (see
Section 2) are defined on the displacements (ui j , vi j )
and not on the increments (�ui j , �vi j ), we substi-
tute the expression for (�ui j , �vi j ) from Eq. (2) into
Eq. (5), leading to the following form of the brightness
constancy equation, which we will use in throughout
this paper:

ui j · Ixi + vi j · Iyi = −I 0
t i j

, (6)

where,

I 0
ti j

= (
I j

(
xi + u0

i j , yi + v0
i j

) − I (xi , yi ) − u0
i j Ixi

− v0
i j Iyi

)
.

Equation (6) provides a single line constraint on the
two unknowns ui j , vi j , and hence is not sufficient for
uniquely determining the unknown displacement of a
single pixel between two frames.

Let I1, . . . , IF be a sequence of frames, as defined in
Section 2. The collection of all Brightness Constancy
Constraints (Eq. (6)) of all image points across all im-
age frames can be compactly written in a single matrix
form as:

[U | V] (F×2N ) ·
[

FX

FY

]
(2N×N )

= FT(F×N ) (7)

where FX and FY are N × N diagonal matrices with
the spatial x- and y-derivatives of the reference frame
I in their diagonal:

FX =




Ix1 0 . . . 0

0 Ix2 . . . 0
...

0 0 . . . IxN




FY =




Iy1 0 . . . 0

0 Iy2 . . . 0
...

0 0 . . . IyN




and FT is an F ×N matrix of the temporal derivatives
(of all image points across all frames) estimated at the
current stage of the iterative process, namely:

FT =




−I 0
t11

−I 0
t21

. . . −I 0
tN1

−I 0
t12

−I 0
t22

. . . −I 0
tN2

...

−I 0
t1F −I 0

t2F . . . −I 0
tNF




The matrices FX, FY, and FT, contain only measurable
image quantities. The matrices U and V contain all
the unknown displacements. Note that all flow-vectors
corresponding to a single scene point share the same
spatial derivatives Ixi , Iyi (as these are computed in the
reference frame I , and are independent of the other
frame j). However, their temporal derivatives Iti j do
vary from frame to frame (and in every iteration). We
refer to the multi-point multi-frame Eq. (7) as the the
Generalized Brightness Constancy Equation.

Note that when no additional information on [U | V]
is used, then Eq. (7) is no more than the collection
of all the individual two-frame brightness constancy



178 Irani

equations of Eq. (6). However, this matrix formulation
allows us to apply rank constraints directly to measur-
able image quantities. For example, rank([U | V]) ≤ r
implies that rank(FT) ≤ r . We can therefore apply the
rank constraint directly to the data matrix FT prior to
solving for the displacements U and V. This formu-
lation, as well as the one which is next described in
Section 3.2, form the basis for our direct multi-point
multi-frame algorithm, which is described in Section 4.
There are two important observations we would like to
stress:

Observation-I: Subspace Constraints on Normal Flow:
Note that the matrix FT is no more than the collec-
tion of all the individual scaled normal flow values
{−Iti j }. It is easy to see from Eq. (6) that −Iti j is a
scaled normal flow:

−Iti j = ui j · Ixi + vi j · Iyi = (ui j , vi j ) · ∇ Ii

namely, the projection of the displacement vector
(ui j , vi j ) onto the direction of the gradient ∇ Ii (the
normal), scaled by the gradient magnitude. This
means that the subspace constraints are valid not
only on the collection of displacements {(ui j , vi j )},
but also on the collection of normal-flows {(ui j , vi j )·
∇ Ii }. This, of course, is an advantage, as the
normal-flows can be computed much more reliably
than the full flow-vectors. One manifestation of the
normal-flow information is in the measurement ma-
trix FT above. Moreover, the normal-flow is scaled
by the gradient magnitude. This leads to the next
observation.

Observation-II: Confidence-Weighted Subspace Pro-
jection: From Eq. (7) we can see that applying
the rank constraint to FT is in fact geometrically
equivalent to applying the rank constraint directly
to the displacements matrix [U | V], but after first
weighting the individual displacements (ui j , vi j )
with their corresponding directional “confidences”
(Ixi , Iyi ). A larger horizontal derivative Ixi indicates
a more confident ui j , and similarly a larger vertical
derivative Iyi indicates a more confident vi j . This
means that more reliable displacements will have
more influence in the subspace projection process,
while less reliable displacements will have smaller
influence. Therefore, applying the rank constraint
to FT has the effect of confidence-weighted sub-
space projection of all the displacements, yet this is
done prior to computing the correspondences, hence

avoiding the errors introduced in two-frame flow-
estimation methods.

While the matrix FT contains point-based measure-
ments, we next show how the above analysis can be
extended to confidence-weighted subspace constraints
on region-based measurements.

3.2. The Generalized Lucas & Kanade Constraint

Lucas and Kanade (1981) extended the pixel-based
brightness constancy constraints of Eq. (6) to a local
region-based constraint, by assuming a uniform dis-
placement in very small windows (typically 3 × 3 or
5 × 5). Then, for each pixel (xi , yi ), they solve for
its displacement vector (ui j , vi j ) by minimizing the
following local error measure E(ui j , vi j ) within its
neighborhood (window) Wi :

E(ui j , vi j ) =
∑
k∈Wi

(
ui j · Ixk + vi j · Iyk + I 0

tk j

)2

(The Lucas and Kanade equation was slightly modified
to fit our iterative notation). Differentiating the error
E(ui j , vi j ) with respect to ui j and vi j , and setting these
derivatives to zero, yields a set of two linear equations
in the two unknown displacement components (ui j , vi j )
for each pixel:

[ui jvi j ]1×2 ·
[

ai bi

bi ci

]
2×2

= [gi j hi j ]1×2 (8)

where ai , bi , ci , gi j , hi j are measurable image qua-
ntities:

ai =
∑

k

(Ixk )2, bi =
∑

k

(Ixk · Iyk ), ci =
∑

k

(Iyk )2,

gi j = −
∑

k

(
Ixk · I 0

tk j

)
, hi j = −

∑
k

(
Iyk · I 0

tk j

)
.

ai , bi , ci are point-dependent quantities computed in
the reference image I , and are independent of the frame
(time) j . gi j , hi j depend on both the point i and the
frame j .

Equation (8) provides two equations on the two
unknowns ui j , vi j , as opposed to Eq. (6), which pro-
vides only one equation. This is because of the uniform-
displacement assumption within the local windows.
While this assumption imposes a type of local smooth-
ness constraint, it only affects the accuracy of the flow
estimation within the small window, but does not prop-
agate these errors to other image regions (as opposed
to global smoothness (e.g., Horn and Schunck (1981)).
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The vector (ui j , vi j ) therefore has a unique solution
when the coefficient matrix [ ai bi

bi ci
] is not singular (e.g.,

for corners and textured areas). For image regions
where the local information is insufficient (e.g., edges),
the matrix will be singular. In these regions the flow
vector (ui j , vi j ) cannot be uniquely determined even
by the Lucas and Kanade algorithm. Under Gaussian
noise assumptions, the matrix [ ai bi

bi ci
] in Eq. (8) can be

shown to be the posterior inverse covariance matrix of
the estimated flow vector (ui j , vi j ).

Now, considering multiple-points over multiple-
frames. As in the case of the Generalized Brightness
Constancy Eq. (7), all the flow-vectors (ui j , vi j ) from
a reference pixel (xi , yi ) in I to all other frames I j

( j = 1..F) share the same coefficient (inverse co-
variance) matrix [ ai bi

bi ci
] in their two-frame Lucas and

Kanade constraints (Eq. (8)). Hence, all the Lucas and
Kanade constraints on all points (i = 1..N ) across all
frames ( j = 1..F) can be compactly written in a single
matrix form as:

[U | V](F×2N ) ·
[

A B
B C

]
(2N×2N )

= [G | H](F×2N ) (9)

where U and V are as defined in Eq. (1). The three
N ×N diagonal matrices A, B, C are constructed from
the coefficient values ai , bi , ci , respectively:

A =




a1 0 . . . 0

0 a2 . . . 0
...

0 0 . . . aN


 B =




b1 0 . . . 0

0 b2 . . . 0
...

0 0 . . . bN




C =




c1 0 . . . 0

0 c2 . . . 0
...

0 0 . . . cN




The twoF ×N matrices G and H are constructed from
the values gi j , hi j :

G =




g11 g21 . . . gN1

g12 g22 . . . gN2

...

g1F g2F . . . gNF




H =




h11 h21 . . . hN1

h12 h22 . . . hN2

...

h1F h2F . . . hNF




We refer to the multi-point multi-frame Eq. (9) as the
the Generalized Lucas and Kanade Equation.

When no additional information on [U | V] is used,
then Eq. (9) is no more than the collection of all the
individual two-frame equations of Eq. (8). However,
as before, if we know that rank([U | V]) ≤ r , it en-
tails that rank([G | H]) ≤ r . Since [G | H] is a matrix
constructed from known measurable image quantities,
applying the rank constraint to it prior to solving for
[U | V] will constrain the flow estimation process it-
self. The geometric interpretation of this operation is
explained below.

Observation: Covariance-Weighted Subspace Projec-
tion: From Eq. (9) we can see that applying the rank
constraint to [G | H] is in fact equivalent to apply-
ing the rank constraint directly to the displacements
matrix [U | V], but after first weighting the individ-
ual displacements (ui j , vi j ) with their correspond-
ing individual inverse covariance matrices [ ai bi

bi ci
].

Applying the rank constraint to [G | H] therefore has
the effect of covariance-weighted subspace projec-
tion5 of all the displacements, yet this is done prior
to computing the correspondences, hence avoiding
the errors introduced in two-frame flow-estimation
methods. While the confidence-weighted subspace-
projection presented in Section 3.1 is founded
on a point-based directional-confidence measure
(namely, the spatial gradient measured at each pixel),
here the confidence-weighted subspace-projection is
founded on a region-based directional-confidence
measure (namely, the inverse covariance matrix mea-
sured at each pixel). This means that more reliable
local image regions (“features”) will have more in-
fluence in the subspace projection process, while less
reliable image regions will have smaller influence.
In general, we found the region-based subspace con-
straint to be more robust than the point-based con-
straint. This is used to constrain the correspondence
estimation process which is described in Section 4.

4. A Multi-Frame Multi-Point Algorithm

We first explain the significance of using subspace con-
straints on both matrices [U | V] and [ U

V ]. The subspace
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constraint on [U | V] is used for cleaning noise in the
image-measurements in a confidence-weighted man-
ner (Section 4.1). However, the subspace constraint on
[U | V] alone is not sufficient for resolving the aperture
problem. The subspace constraint on [ U

V ] is therefore
also employed, in order to resolve the aperture prob-
lem (Section 4.2). An example of how both constraints
can be integrated into a single multi-point multi-frame
correspondence estimation algorithm is described in
Section 4.3. The use of these subspace constraints,
however, is more general and is not limited to this par-
ticular algorithm. The issue of automatic rank detection
is discussed in Section 4.4.

The subspace constraints can be applied either to the
point-based measurements (matrix FT) or the region-
based measurements (matrix [G | H]), leading to two
slightly different algorithms. Both possibilities will be
discussed in Sections 4.1 and 4.2 with their advantages
and disadvantages. However, we found the region-
based algorithm to be more robust, and is therefore the
algorithm we have used to produce the results reported
in this paper. This is also the algorithm summarized in
Section 4.3.

4.1. Noise Reduction in Image Measurements

Let r1 denote the actual rank of [U | V]. We know that
r1 ≤ 9 (see Table 1), but in practice, the actual rank
of these matrices may be significantly lower than the
theoretical upper bound of 9. According to Eqs. (7)
and (9), the ranks of the measurement matrices FT and
[G | H], should also be at most r1. In practice, due to
noise in image brightness, these matrices usually have
higher ranks. However, inspection of the rate of decay
of the singular values of these measurement matrices
allows us to automatically detect their actual rank (see
Section 4.4). The matrices FT and [G | H], are hence
projected onto lower-rank matrices F̂T and [Ĝ | Ĥ] of
rank r1, thus cleaning the image measurements from
noise, and automatically detecting the actual rank of
[U | V].

The rank-reduction process inhibits noisy measure-
ments in the measurement matrices. It can be directly
applied either to the point-based measurements FT, or
to the region-based measurements [G | H], and cor-
responds to applying confidence-weighted subspace
projection on the flow vectors prior to computing them
(see Sections 3.1 and 3.2).

One source of noise in the brightness-based mea-
surement matrices (FT or [G | H]) is the violation of

the brightness constancy constraint at occluded pixels.
However, boundary pixels are very sparse relative to
the total number of pixels in the image, and therefore
the resulting increase in the rank of FT or [G | H] can
be treated as noise, and is handled by the subspace
projection. (Note that the subspace constraints on dis-
placements fields are geometrically meaningful also at
depth discontinuities, and are therefore useful for han-
dling such violations of the brightness-based subspace
constraints.)

While inhibiting the noise in the image measure-
ments improves the quality of the recovered correspon-
dences significantly, the rank constraint on the matrix
[U | V] alone does not suffice to resolve the aperture
problem, even when applied directly to U and V. For
example, let (ui1, vi1) . . . (uiF , viF ) be the displace-
ments of a point i across all frames. Then the i-th
column in the matrix U is [ui1 . . . uiF ]t , and the
i-th column in the matrix V is [vi1 . . . viF ]t . If we now
multiply the i-th column of U by an arbitrary scale
factor, and the i-th column of V by a different scale
factor, then the subspace spanned by the columns of
[U | V] remains unchanged (and so does the rank of
the matrix). Such scaling, however, changes the pro-
portion between the u components and the v compo-
nents of the displacements of point i across all frames.
In other words, constraining one component of all dis-
placements of a point i (e.g., the v’s) does not suffice to
uniquely constrain the other component of all displace-
ments of a point i (e.g., the u’s). Similarly, constraining
all the normal-flow values of the (u, v)’s does not suf-
fice to uniquely constrain the tangent-flow values of
these displacements vectors. Therefore, the subspace
constraint on the matrix [U | V] alone does not suffice
to resolve the aperture problem.

This, however, is not the case with the subspace con-
straint on the matrix [ U

V ]. For example, a scaling the i-th
column of U will require a scaling of the i-th column of
V by the same scale factor, in order to maintain the sub-
space of [ U

V ]. We next show how adding the rank con-
straint on the matrix [ U

V ] resolves the aperture problem.

4.2. Eliminating the Aperture Problem

We use the rank constraint on [ U
V ] to determine the

missing components of flow vectors at pixels with in-
sufficient local image structure. Let r2 denote the rank
of [ U

V ] This implies that there is a decomposition:[
U
V

]
(2F×N )

= K(2F×r2) · L(r2×N ) (10)
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The columns of K form a basis which spans the
subspace of all columns of [ U

V ]. The columns of L
are the coefficients in the linear combination (i.e., the
i-th column of L contains the r2 coefficients which are
needed to generate the i-th column of [ U

V ] from the r2

basis columns of K). This decomposition is of course
not unique, as for any invertible r2 × r2 matrix M:
[ U

V ] = (KM−1) · (ML) is also a valid decomposition.
Theoretically, if there are more than r2 pixels whose
correspondences across all frames can be reliably com-
puted, and whose trajectories across all frames are lin-
early independent, then these r2 trajectories could be
used to generate a basis K. In practice, we use all avail-
able information from all reliable points to produce the
best basis. This is explained next.

Let S0 be a set of all the highly reliable pixels in the
reference frame, namely, those pixels that have enough
local image structure (i.e., pixels whose 2 × 2 inverse
covariance matrix [ ai bi

bi ci
] is non-singular). Let [Ĝ0 | Ĥ0]

be matrix containing only the columns in [Ĝ | Ĥ] (of
Eq. (9)) that correspond to the pixels in S0. Similarly,
let [ A0 B0

B0 C0
] be the corresponding submatrix of [ A B

B C ].
In general, [ A B

B C ] is not invertible (due to pixels which
suffer from the aperture problem). However, because
all the individual 2 × 2 inverse covariance matrices
[ ai bi

bi ci
] in S0 are non-singular, the matrix [ A0 B0

B0 C0
] is now

invertible. We can therefore estimate the displacements
of all the reliable pixels (i.e., of all pixels in S0) across
all frames by solving:

[U0 | V0] = [Ĝ0 | Ĥ0] ·
[

A0 B0

B0 C0

]−1

(Note that because of the diagonal structure of
A0, B0, C0, the matrix [ A0 B0

B0 C0
]−1 consists of the compo-

nents of the individual inverse 2×2 matrices [ ai bi
bi ci

]−1,

and can therefore be easily estimated without having
to invert the large matrix).

The columns of the reliable trajectories [ U0

V0
] are used

to generate a basis K. This is done by taking the first
r2 eigenvectors corresponding to the r2 largest eigen-
values of the smaller 2F × 2F matrix ([ U0

V0
] · [ U0

V0
]T ).

In fact, the actual rank r2 of [ U
V ] (which is usually

lower than the theoretical upper bound of 9) is auto-
matically detected by inspection of the rate of decay of
the eigenvalues (see Section 4.4).

Once a basis K has been computed, the only
remaining unknowns are the components of the coeffi-
cient matrix L. Determining L determines both U and
V uniquely, and thus resolves the aperture problem.

Therefore, once a basis K has been computed, the
number of unknowns shrinks from the original number
of 2FN unknowns (i.e., the unconstrained displace-
ments {(ui j , vi j )}) to N r2 unknowns, which is the size
of the unknown coefficient-matrix L (see Eq. (10)).
In other words, once the number of frames F exceeds
r2
2 (F > r2

2 ), then there is already a reduction in the num-
ber of unknowns. Since r2 ≤ 9, therefore for video se-
quences of five or more frames (F ≥ 5) there is already
a reduction in the number of unknowns.

In practice, in short video sequences the rank is
usually much smaller than 9. This is because the cam-
era motion from frame to frame does not tend to be
fully three dimensional. It tends to be dependent (often
uniform), and hence usually does not span the full-
ranked subspace. Note, however, that we do not make
such an assumption a-priori, but automatically detect
these cases. Therefore, a reduction in the number of
unknowns is usually achieved for fewer frames than
five.

We next show how the unknown coefficient matrix L
is computed. Let K = [ KU

KV
], where KU and KV are the

upper and lower halves of the matrix K. Then according
to Eq. (10):

U = KUL, V = KVL (11)

Plugging the decomposition of Eq. (11) into Eq. (7)
leads to a set of FN linear equations in the N r2

unknowns:

[KUL | KVL] ·
[

FX

FY

]
= F̂T. (12)

This set of equations is over-constrained if the number
of equations (determined by the size of F̂T) exceeds
the number of unknowns (determined by the size of L),
which happens when the number of frames F exceeds
the rank r2. Once again, since r2 ≤ 9, and in practice
for short video sequences is usually much smaller than
9, therefore for very few frames the system becomes
over-determined.

Note that both U and V share the same coefficients
L in the decomposition of the matrix [ U

V ] (which is not
the case in the decomposition of the matrix [U | V]).
Equation (12) combines the constraints on both ma-
trices into a single matrix equation. This is the key to
resolving the aperture problem, as the unknown coeffi-
cient matrix L is computed directly from the matrix F̂T

in Eq. (12), i.e., directly from normal flow information
(which is the only reliable information for pixels which
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suffer from the aperture problem). However, once L
and K are known, U and V can be uniquely determined
from Eq. (11).

This bears resemblance to the epipolar line-
constraint, which, when combined with the brightness
constancy constraint, uniquely resolves the aperture
problem (Hanna and Okamoto, 1993; Szeliski and
Kang, 1995; Irani et al., 1999; Stein and Shashua,
1997). However, unlike the epipolar constraint, our
constraint is implicit, does not require the recovery of
the epipolar geometry. It applies both to “2D scene”
(where the induced motion is a homography and ex-
plicit epipolar geometry cannot be recovered, such as
in Fig. 2), as well as to “3D scenes” (where 3D parallax
is also induced in the video sequence, such as in Fig. 1).

When the underlying motion model is known (e.g.,
a 2D or a 3D model), explicit geometric constraints
can be (and have been) used to constrain the corre-
spondence estimation across multiple frames. For ex-
ample, explicit epipolar constraints have been used in
the case of “3D scenes” (e.g., Hanna and Okamoto
(1993), Szeliski and Kang (1995), Irani et al. (1999)
and Stein and Shashua (1997)), and explicit paramet-
ric constraints on homographies have been used in

Figure 1. Real image sequence (the NASA coke-can sequence). (a) One frame from a 27-frame sequence of a forward moving camera in a
3D scene. (b) Flow field generated with the two-frame Lucas and Kanade algorithm. Note the errors in the right hand side, where there is
depth discontinuity (pole in front of sweater), as well as the aperture problem. (c) The flow field for the corresponding frame generated by the
multi-frame constrained algorithm. Note the good recovery of flow in those regions. (d, e) The flow magnitude at every pixel. This display
provides a higher resolution display of the error. Note the clear depth discontinuities in the multi-frame flow image. The flow values on the coke
can are very small, because the camera FOE is in that area.

the case of “2D scenes” (e.g., Zelnik-Manor and Irani
(2000)). These explicit geometric constraints usually
provide tighter constraints on the displacement fields
than our implicit linear subspace constraints. The ex-
plicit constraints, however, are scene-specific (i.e., are
applicable either to 2D or to 3D scenes, but not to
both), and thus require prior model selection. The sub-
space constraints, on the other hand, can handle both
types of scenes, and thus provide a unified approach to
correspondence estimation in 2D and 3D scenes.

Similarly, plugging the decomposition of Eq. (11)
into Eq. (9) leads to an alternative set of linear equa-
tions, with twice as many equations (2FN equations,
determined by the size of [Ĝ | Ĥ]) in the same number
of unknowns (the N r2 unknown components of L):

[KUL | KVL] ·
[

A B
B C

]
= [Ĝ | Ĥ]. (13)

This set of equations is thus over-constrained if the
number of frames F is larger than r2

2 .
Each of the two abovementioned options (the

point-based and the region-based) has its advantages:
The region-based approach of Eq. (13) is numerically
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Figure 2. Synthetic sequence with ground truth—a quantitative comparison. (a) One out of a 10-frame sequence. The sequence was synthetically
generated by applying a set of 3-D consistent homographies to warp a single image. This provides ground truth on the flow. (b, c) Error maps
showing magnitudes of residual errors between the ground truth flow and the computed flow field. (b) Shows errors for the two-frame Lucas and
Kanade algorithm. (c) Shows errors for the multi-frame constrained algorithm for the corresponding frame. Brighter values correspond to larger
errors. (d) A histogram of the errors in both flow fields. Flow values at image boarders were ignored. In the multi-frame method almost all errors
are smaller than 0.2 pixel, and all are smaller than 0.5 pixel. In the two-frame method, most flow vectors have an error of at least 0.5 pixel. (e)
The image regions for which the errors in the two-frame method exceeded 1.0 pixel. These, as expected, correspond to areas which suffer from
the aperture problem. The subspace constrained algorithm accurately recovered the flow even in those regions.

more stable, because of the local confidence-weighted
averaging over the small (3 × 3 or 5 × 5) windows
from the Lucas & Kanade algorithm, and because
there are twice as many equations. But this benefit
comes with the price of lower spatial resolution in
the recovery of displacement fields. On the other
hand, the point-based approach of Eq. (12) provides
half as many equations, but allows for higher spatial
resolution in the displacement field, since it does not
use the small window averaging. In our experiments
we found that it was preferable to trade high resolution
information for numerical stability.

Note that there is a significant difference between
using window averaging for increased numerical sta-
bility, and using smoothness constraints as a necessary
constraint without which the problem is under-
determined (such as in the case of Horn and Schunk
(1981), or in the case of the two-frame Lucas and
Kanade (1981)). In the former case (our case), the
necessary constraints are already provided by the sub-
space constraints. The window averaging only adds
further conditioning to the problem, but is not a
necessity.

In the current implementation of our algorithm
we used the region-based approach of Eq. (13). The
algorithm is summarized next.

4.3. A Summary of the Multi-Point
Multi-Frame Algorithm

1. Construct a Gaussian pyramid for all image frames.
2. For each iteration in each pyramid level do:

(a) Compute matrices A, B, C, G, H.
(b) Project [G | H] onto lower-rank (r1) matrix

[Ĝ | Ĥ].
(c) Compute reliable displacement estimates only

for reliable points:

[U0 | V0] = [Ĝ0 | Ĥ0] ·
[

A0 B0

B0 C0

]−1

.

(d) Compute an r2-dimensional basis K from the
columns of [ U0

V0
]

(e) Linearly solve for the unknown matrix L us-
ing either Eq. (12) (Generalized Brightness
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Constancy) or Eq. (13) (Generalized Lucas and
Kanade). [we used Eq. (13)]

(f) Compute the displacements from K and L using
Eq. (11): Û = KUL and V̂ = KVL

3. Keep iterating to refine Û and V̂.

Step (b) reduces noise in the measurements using the
multi-frame subspace constraints, while steps (d)–(f)
eliminate the aperture problem using the multi-frame
subspace constraints.

Step (d) bears resemblance to the recovery of the
motion matrix in Tomasi and Kanade (1992). However,
there are a few significant distinctions between these
two approaches: Here we use the subspace constraints
to estimate dense flow. This is done even for points
which suffer from the aperture problem. Furthermore,
our approach is valid also for the singular “2D scenes”,
where explicit epipolar geometry and 3D information
(i.e., 3D motion and 3D shape) cannot be recovered
from uncalibrated views. The reader is further referred
to Irani and Anandan (2000), which suggests an alter-
native approach to overcoming the aperture problem
within this framework using covariance-weighted sub-
space projection of only [U | V], without the need for
recovering the intermediate matrix6 K .

When all the subspace-projection related steps are
eliminated (i.e., only steps (a) and (c) are kept), then the
algorithm reduces to the 2-frame unconstrained Lucas
and Kanade algorithm7 as if it is applied repeatedly and
independently to many frames. This is with the excep-
tion that in the Lucas and Kanade algorithm, step (c)
is applied to all pixels (and not only of the reliable
ones): [Û | V̂] = [G | H] · [ A B

B C ]+, where [ A B
B C ]+ is

the pseudo-inverse of the matrix [ A B
B C ] (as in general

[ A B
B C ] is not invertible; note that for the reliable pix-

els: [ A0 B0

B0 C0
]+ = [ A0 B0

B0 C0
]−1), and [G | H] is the noisy

measurement matrix (and not the noise-cleaned matrix
[Ĝ | Ĥ], as in Step (c) above).

We examined the utility of the multi-frame subspace
constraints by comparing the multi-frame multi-
point subspace-constrained algorithm to the 2-frame
unconstrained version of the Lucas and Kanade algo-
rithm (both implemented as explained above). Using
the same basic algorithm in the two cases allows us to
isolate and evaluate the true effects of subspace projec-
tion on the accuracy of the flow estimation, as all other
parameters in the two algorithms are the same.

Figures 1 and 2 show such comparisons. The com-
parison is done both for real data (Fig. 1), as well as
for synthetic data with ground truth (Fig. 2). The two

examples also show the applicability of the algorithm
both to 2D and to 3D scenarios, without prior knowl-
edge of the model: Fig. 1 is an example of a “3D scene”,
where the camera performs forward translation with
induced 3D parallax. Figure 2 is an example of a “2D
scene”, where the induced image motion is a pure 2D
parametric transformation. For further details regard-
ing the results, see figure captions. Note that because
the subspace constraints are global constraints, they
can resolve the aperture problem even when that ex-
ceeds the size of a local window, whereas the 2-frame
unconstrained version of the Lucas and Kanade cannot
handle such global aperture problems (e.g., see the pole
in Fig. 1).

The algorithm described above shows how the 2-
frame Lucas and Kanade flow estimation algorithm
can be extended into a multi-point multi-frame con-
strained flow estimation algorithm, by incorporating
the brightness-based subspace constraints. However,
the brightness-based subspace constraints presented in
Section 3 are not necessarily restricted to this particular
algorithm. They could similarly be used to extend other
2-frame flow estimation algorithms into corresponding
multi-frame constrained flow estimation algorithms.

4.4. Automatic Rank Detection

Step (b) of the algorithm of Section 4.3 projects
matrices onto lower-rank matrices, according to the
ranks defined in Section 2. In practice, however, the
actual rank of these matrices (with some allowed noise
tolerance) may be much smaller than the theoretical
upper bound r1 (e.g., in cases of degenerate camera
motions or degenerate scene structures). We automati-
cally detect the actual rank of these matrices: Let M be
a k × l matrix, with a known upper bound r on its rank,
and an actual rank rM (rM ≤ r ). The rank reduction
(i.e., subspace projection) of M is done by applying
Singular Value Decomposition (SVD) (Golub and Van
Loan, 1996) to M. Let λ1 ≥ λ2 ≥ · · · ≥ λm be the sin-
gular values of M (where m = min(k, l)). We check
for the existence of a lower rank r ′ such that (λr ′+1)2

(λ1)2 < ε,
where ε allows for some noise tolerance (we usually
choose ε ≈ 1%). rM is set to be: rM := min(r, r ′). All
singular values other than the rM largest ones are then
set to zero (i.e., λrM +1 := 0, λrM +2 := 0, . . . λm := 0),
and the matrices produced in the SVD step (now with
the new singular values) are re-composed, yielding a
matrix M̂ of rank rM (which is closest to M in the Frobe-
nius norm). Step (d) of the algorithm of Section 4.3 uses
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the same SVD procedure to estimate a spanning basis
K. For more details see Tomasi and Kanade (1992) and
Shapiro (1995).

5. The Applicability of the Subspace Approach

The application of subspace constraints to brightness
variations for the purpose of correspondence estima-
tion, requires addressing two issues: (i) the variety
spanned by the correspondences (motions) of all points
across all frames is generally non-linear, and (ii) the
image intensities are non-linear functions of image po-
sitions. In order to apply our linear subspace projection
approach, we must use linear approximations both of
the motion variety, as well as of the image brightness
function. This section discusses these approximations
and the conditions under which they are satisfied.

5.1. The Motion Approximation

The upper bounds on the ranks of the two large dis-
placement matrices [U | V]F×2N and [ U

V ]2F×N , which
we derived in Section 2 (Table 1), range from 3 to
9. In order for the subspace projection process to
significantly control the correspondence estimation,
these ranks must be much smaller than the matrices
dimensions F and N (i.e., the number of frames and
the number of points, respectively). Since the number
of points in an image is typically very large (on the or-
der of a few hundreds of thousands of pixels per image),
the bound on the rank of these matrices is determined
by the number of frames. This number, however, is
restricted by the range of applicability of the underly-
ing motion model. For example, the instantaneous mo-
tion model assumes small camera rotations and small
forward translation, while the affine model assumes a
very narrow field of view and a very shallow scene (see
Appendix A). These assumption are often not valid in
long sequences.

However, when the camera performs pure transla-
tion (as was the case in Figs. 1 and 2), but not nec-
essarily uniform or smooth over time, then: (i) the in-
stantaneous motion approximation is valid for longer
sequences, (i.e., a large F), and (ii) the upper-bounds
on the ranks of the displacement matrices are much
smaller. For example, for the case of a fixed focal length
and general camera translation (which could change ar-
bitrarily from frame to frame), the upper bound ranks
are:8 rank([U | V]) ≤ 3 and rank([ U

V ]) ≤ 3 (as opposed

to 6 and 8, respectively, when small camera rotation is
also allowed).

There are other typical scenarios where the ranks
of the displacement matrices are very small, leading
to powerful subspace constraints. One such example
is when the camera motion is uniform (i.e., constant
over time) or simply temporally smooth. Although spa-
tially the motion between successive frames could be
quite complex (translation + zoom + small rotation),
temporally it is degenerate (i.e., the rows of the matri-
ces are linearly dependent), leading to very low ranks
(as low as 1 in the case of uniform motion over time).

5.2. The Gradient Approximation

When the observed image brightness of a scene point
does not change significantly as a result of (small)
camera motion, then:

I (xi , yi ) ≈ I j (xi + ui j , yi + vi j )

= I j
(
xi + u0

i j + �ui j , yi + v0
i j + �vi j

)
,

where (u0
i j , v

0
i j ) is an estimate of the displacement

(ui j , vi j ) (e.g., known from the previous iteration in
an iterative estimation process; see Section 3), and
(�ui j , �vi j ) is the residual unknown displacement.
This brightness constraint, however, is implicit and
non-linear in the unknown residual displacements
(�ui j , �vi j ). It is therefore common to use the linear
approximation of this constraint, which is of the form:

[�ui j�vi j ]∇ Ii j + It i j = 0, (14)

where ∇ Ii j is the spatial gradient of frame I j at pixel
(xi + u0

i j , yi + v0
i j ). This approximation is valid when

(�ui j , �vi j ) is very small. In order to extend the appli-
cability of this constraint to larger motions, it is usually
used within a multi-scale coarse-to-fine iterative esti-
mation process (e.g., see Bergen et al. (1992), Irani et al.
(1994), Hanna (1991), Stein and Shashua (1997) and
Black and Anandan (1996)). This tends to extend the
range of recoverable displacements to approximately
10% of the image size.

However, the linearization of Eq. (14) alone does not
suffice for deriving Eqs. (7) and (9), in which the critical
transition is made from applying subspace constraints
on image displacements, to applying them directly on
image brightness quantities. The fact that the brightness
matrices FT or [G | H] have low ranks, was derived
from the low-rank bounds of the displacement matrix
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[U | V], by factoring out the shared image derivative
matrices [ FX

FY
] or [ A B

B C ], respectively. (See Eq. (7) or
Eq. (9), respectively.) For the derivatives to be shared
by all frames, we further replaced the approximation
of Eq. (14), where ∇ Ii j could theoretically be different
for every frame, with the following approximation:

[�ui j �vi j ]∇ Ii + It i j ≈ 0, (15)

where ∇ Ii is now shared by all frames. In other words,
we have approximated the gradient ∇ Ii j (the gradient
of frame I j at pixel (xi + u0

i j , yi + v0
i j )) with the gradi-

ent ∇ Ii (the gradient of the reference frame I at pixel
(xi , yi )). The transition from Eq. (14) to Eq. (15) is
valid if:

∇ I j
(
xi + u0

i j , yi + v0
i j

) ≈ ∇ I (xi , yi ),

or in short: ∇ Ii j ≈ ∇ Ii . (16)

Equation (15) is essentially the same as Eq. (6) in
Section 3.1, and the gradient approximation of Eq. (16)
is equivalent to the assumption made in the transition
from Eq. (3) to Eq. (4) in Section 3.1.

We next analyze the conditions under which the gra-
dient approximation of Eq. (16) is valid. Let δ∇i j =
∇ Ii j − ∇ Ii . Then the term neglected in the transition
from Eq. (14) to Eq. (15) is

[�ui j�vi j ] δ∇i j .

This inner-product is negligible (i.e., [�ui j�vi j ]δ∇i j

� [�ui j�vi j ]∇ Ii ) if one of the following conditions
holds:

Figure 3. Effects of rotation and translation on the gradient approximation of Eq. (16). Pixel (xi , yi ) in image I corresponds to pixel (xi +
u0

i j , yi + v0
i j ) in image I j . (a) When the image translates, the gradient does not change its orientation. Therefore, assuming similar photometric

properties between the images (e.g., brightness constancy), ∇ I j (xi + u0
i j , yi + v0

i j ) ≈ ∇ I (xi , yi ). Hence, the gradient approximation of Eq. (16)
is valid in this case. (b) When the image rotates, the gradient changes its orientation. Therefore, ∇ I j (xi + u0

i j , yi + v0
i j ) �= ∇ I (xi , yi ). Hence,

the gradient approximation of Eq. (16) is not valid under rotations.

(i) [�ui j�vi j ] ⊥ δ∇i j , or,
(ii) ‖δ∇i j‖ � ‖∇ Ii‖.

Condition (i) depends on the local orientation of the
underlying image structure, and therefore cannot be
guaranteed to hold everywhere in the image. Condition
(ii), on the other hand, can be guaranteed to hold ev-
erywhere in the image for some types of image mo-
tions. For example, when the camera only translates,
edges do not change their orientations. In such cases
‖δ∇i j‖ � ‖∇ Ii‖, and the approximation of Eq. (15) is
therefore valid. This is illustrated in Fig. 3(a). The same
is also true for the case of forward translation, when TZ

(the forward translation) is small relative to the distance
Z to the scene (although large enough to induce 3D
parallax), such as in the case of NASA sequence used
in Fig. 1. Similarly, the gradient approximation is valid
for small image scaling (e.g., due to small changes in
the camera focal length), as the orientations of the edges
remain the same, and the magnitudes of the gradients do
not change significantly. However, the gradient approx-
imation is violated when the camera rotates. In the case
of a rotating camera, edges change their orientations,
leading to different gradient orientations (although per-
haps of the same magnitude) of corresponding points.
This is illustrated in Fig. 3(b). In such cases ‖δ∇i j‖ is
no longer negligible, which implies that the approxi-
mation used in Eq. (15) is not valid for sequences with
non-negligible camera rotation.

Note that this restriction on the camera rotation is
even stronger than the small-rotation restriction of the
instantaneous motion model (see Appendix A). We
have indeed observed that the algorithm performs well
for sequences obtained by a translating camera (e.g.,
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Figs. 1 and 2), but degrades rapidly for rotations. This
restricts the applicability of the current algorithm (of
Section 4) to sequences where the camera primarily
translates (unconstrained translation, but no rotation).
However, we will show next how we can extend the ap-
plicability of our algorithm to more general scenarios.

6. Extending the Applicability
of Subspace Constraints

In Section 5 we reviewed the conditions under which
the basic subspace-constrained correspondence esti-
mation is applicable. We next show how the applica-
bility of subspace constraints can be extended beyond
these conditions, to handle cases of complex camera
motions (including large rotation and scaling), where
the induced displacements span highly non-linear va-
rieties, and where the brightness gradients vary in
orientation over time.

6.1. The “Plane + Parallax” Approach

Let � be an arbitrary planar surface in the scene, which
is visible in all frames. A homography (a 2D projective
transformation) of � can be estimated9 between the
reference frame I and frame I j ∀ j . These homogra-
phies are used to stabilize (align) all the frames in the
sequence with respect to that planar surface. The only
residual motion after plane alignment will be due to
residual planar-parallax displacements of scene points
which are off the plane � (see Irani et al. (1998), Irani
and Anandan (1996), Irani and Anandan (1999) and
Kumar et al. (1994), Sawhney (1994), Shashua and
Navab (1994), Irani et al. (1997) and Criminisi et al.
(1998)). Let {I ∗

j }F
j=1 be the plane-aligned sequence (the

reference frame I remains unchanged after the 2D sta-
bilization). It was shown (e.g., Irani et al. (1999) and
Kumar et al. (1994)) that after plane alignment, the
residual planar-parallax displacements (i.e., the dis-
placements between I and I ∗

j ) are:

[
ui j

vi j

]
= − γi

1 + γiεz j

(
εz j

[
xi

yi

]
−

[
εx j

εy j

])
(17)

where (xi , yi ) are (as before) the coordinates of a pixel
in the reference frame I , γi = Hi

Zi
represents its 3D

structure, where Hi is the perpendicular distance (or
“height”) of the point i from the reference plane �, and
Zi is its depth with respect to the reference camera.

(εx j , εy j , εz j ) denotes the epipole in projective co-
ordinates. The above formulation is true both for the
calibrated as well as for the uncalibrated case. (All
unknown calibration parameters are folded into the
epipole and into the canceled homography. In the nor-
malized calibrated case, (εx j , εy j , εz j ) would corre-
spond to the Euclidean 3D camera translation (tX j ,

tY j , tZ j )).
After the alignment of the reference plane �, the

residual image motion of Eq. (17) is due only to the
translational part of the camera motion, and to the de-
viations of the scene structure from the planar surface.
All effects of rotations and of changes in calibration
within the sequence are captured by the homography
(e.g., see Irani and Anandan (1996) and Irani et al.
(1999)). The elimination of the homography (via im-
age warping) reduces the problem from the general
uncalibrated unconstrained case to the simpler case of
pure translation with fixed (unknown) calibration.

Although the original sequence may contain large
rotations and strong projective effects, resulting in a
highly non-linear variety, this non-linearity is mostly
captured by the plane homography. The residual planar-
parallax displacements can be approximated well by a
linear subspace with very low dimensionality. This is
shown next.

The residual planar-parallax displacements in
Eq. (17) are exact equations (i.e., no approximation
was made). In theory, these displacements do not nec-
essarily span a linear subspace. However, when the
following relation holds:

γiεz j � 1 (18)

then these displacements do span a linear subspace,
since in such cases Eq. (17) reduces to:[

ui j

vi j

]
= −γi

(
εz j

[
xi

yi

]
−

[
εx j

εy j

])
, (19)

which has a bilinear form. In Appendix B we show that
the planar-parallax displacements of Eq. (19) reside in
3-dimensional linear subspaces, i.e.,:

rank([U | V]) ≤ 3 and rank

([
U
V

])
≤ 3.

For complete derivations, see Appendix B.
The condition in Eq. (18) (γiεz j = Hi

Zi
εz j � 1), which

gave rise to the bilinear form of Eq. (19), is satisfied if
at least one of the following two conditions holds:
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Either: (i) Hi � Zi , namely, the scene is shallow (i.e.,
the distance Hi of the scene point from the reference
plane � is much smaller than its distance Zi from
the camera. This condition is usually satisfied if the
plane lies within the scene, and the camera is not too
close to it),

Or: (ii) εz j � Zi (or in the calibrated case, tZ j � Zi ),
namely, the forward motion of the camera is small
relative to its distance from the scene, which is often

Figure 4. Applying the algorithm to estimate planar-parallax displacements. (a, b) Two images (first and last) from a 6-image sequence
obtained by a hand-held still camera moving forward in a 3D scene (this is the “block” sequence from Kumar et al. (1994)). The sequence was
then plane-stabilized by aligning the ground plane (the carpet) across all frames. (c) Flow field (planar-parallax displacements) within the plane-
stabilized sequence estimated using the unconstrained two-frame Lucas and Kanade algorithm. (d) Flow field (planar-parallax displacements) of
the corresponding frame estimated by the multi-frame subspace-constrained algorithm. (e, f ) The corresponding flow magnitudes at every pixel.

the case within short temporal segments of real video
sequences.

Note that the assumption in Eq. (18) is significantly
less restrictive than either the assumptions of the affine
camera approximation or the instantaneous perspective
motion approximation (see Appendix A). Condition (i)
above (i.e., Hi � Zi ) is a subset of the conditions re-
quired in the orthographic model approximation, and
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condition (ii) above (i.e., εz j � Zi , or tZ j � Zi ) is a
subset of the conditions required in the perspective
instantaneous model approximation. Furthermore, the
approximation suggested in Eq. (18) does not put any
restrictions on the camera rotation. It allows for large
camera rotations and for unknown changes in camera
calibration, since these effects are fully captured by the
homographies of the reference plane �. This model is
therefore valid for much longer video sequences (larger
number of frames F) than the affine or the instantaneous
perspective models.

The Plane + Parallax decomposition therefore
provides a means for extending the applicability of
our brightness-based subspace constrained estimation,
as it does not suffer from either of the two limitations
mentioned in Section 5:

(i) The subspace constraints in the plane-stabilized
sequence are powerful constraints, since the ranks
of the residual planar-parallax displacement matri-
ces are very small (≤3) relative to the number of
frames, regardless of the complexity of the camera
motion and regardless of the (unknown) changes in
camera calibration.

(ii) After plane alignment, the planar-parallax dis-
placements induce pure translational motion
fields. Therefore, the brightness-based subspace
constraints with the gradient approximation of
Eq. (16) are applicable.

The limitation of the plane + parallax approach
is in the need for good prior alignment of the video
frames with respect to a planar surface. This requires
that a real physical plane exist in the scene and cap-
ture a reasonably-sized image region, in order to guar-
anty accurate plane alignment across all frames. Such
a plane does not exist in every scene. However, in-
door scenes often contain many man-made planes,
such as walls, windows, floors, etc. In outdoor scenes:
a road, a boulevard of trees, or—for all practical
purposes—a distant enough portion of the scene, can
serve the purpose of a planar surface for estimating the
homographies.10

Figure 4 shows an example of applying the multi-
frame subspace-constrained estimation on an indoor
sequence obtained by a hand-held camera (this is the
“block” sequence from Kumar et al. (1994)). The ref-
erence plane used for alignment was the carpet, which
was automatically detected and aligned using the tech-
nique of Irani et al. (1994) for dominant 2D parametric
motion estimation.

7. Conclusion

In this paper we presented an approach for using
multi-frame subspace constraints for constraining a
2D correspondence estimation process, while exploit-
ing all available spatio-temporal information in a short
video sequence. In particular, the paper has four main
contributions:

1. We showed that the set of all flow-fields across
multiple video frames (that image the same rigid
scene) reside in a low-dimensional linear subspace.
This was shown for several motion models, scene
models, and imaging models.

2. We extended the notion of multi-frame subspace
constraints on motion fields to subspace constraints
directly on image brightness quantities.

3. We showed how these brightness-based subspace
constraints can be used as additional constraints
to further constrain the correspondence estimation
process. In particular, we showed how the two-
frame Lucas and Kanade algorithm can be ex-
tended into a multi-frame multi-point algorithm.
However, the brightness-based subspace constraints
are not necessarily restricted to this particular al-
gorithm. They could similarly be used to extend
other 2-frame flow estimation algorithms into cor-
responding multi-frame constrained flow estimation
algorithms.

4. While the brightness-based subspace constraints are
powerful when they are applicable, their applicabil-
ity is restricted. We identify these restrictions, and
propose an approach to extend the applicability of
the brightness-based subspace constraints beyond
these restrictions and to some non-linear varieties
by employing the Plane + Parallax model.

Appendix A: Ranks for Various World Models,
Motion Models, and Camera Models

In this appendix we derive the ranks (subspace con-
straints) of the two large matrices [ U

V ]2F×N (the “tra-
jectory” matrix) and [U | V]F×2N (the “displacement-
field” matrix). We show that these matrices have low
ranks under many different conditions. In particular,
we derive the rank constraints for two “linear” camera
models: (i) an “affine” camera (Shapiro, 1995) which
is obtained by linearizing the projection process (i.e.,
a camera with weak-perspective, para-perspective, or
orthographic projection), and (ii) a perspective camera
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undergoing small camera rotation and small forward
translation (i.e., the “instantaneous motion model”
(Longuet-Higgins and Prazdny, 1980)). For each of
these two camera models, we examine the ranks for
a general 3D scene as well as for a planar 2D scene.
We also check the effect of varying the camera calibra-
tion (focal length) on these ranks.

A 3D scene point (Xi , Yi , Zi ) is observed at pixel (xi ,

yi ) in the reference frame I . Let �t j = (tX j , tYj , tZ j )
denote the camera translation between frame I and
frame I j , and let �
 j = (
X j , 
Yj , 
Z j ) denote the
camera rotation between the two frames. Let Rj be the
rotation matrix corresponding to �
 j . This scene point
is therefore observed in frame I j at pixel (xi j , yi j ) with
new world coordinates (Xi j , Yi j , Zi j ), where,




Xi j

Yi j

Zi j


 = R j ·




Xi

Yi

Zi


 + �t j (20)

We will derive the upper bounds on the ranks of
the two large matrices of induced-displacements [ U

V ]
and [U | V], in a manner similar to Tomasi and Kanade
(1992). We will show that for various scenarios and
under various conditions, each of these two large ma-
trices can be decomposed into a bilinear product of
two smaller matrices M · P, where M is only frame-
dependent (contains the camera motion information),
and P is point-dependent (contains the shape informa-
tion). The number of columns of M (which is also
the number of rows of P) will be shown to be small.
This number will determine the upper bound on the
rank of the original decomposed matrix (namely, [ U

V ]
or [U | V]). It is important to note that the derivations
of the structure of the matrices M and P is used only
for obtaining the upper bounds on the ranks of [ U

V ] or
[U | V]. At no point in the correspondence estimation
process (Section 4) is any 3D information required or
estimated. Only the knowledge of the upper bounds on
the ranks of the two large correspondence matrices (as
summarized in Table 1) is used.

1. Affine Camera—3D Scene: Tomasi and Kanade
(1992) and Shapiro (1995) showed that in the case
of an affine camera, corresponding image points
across all image frames reside in a 4-dimensional
linear subspace. (With some additional manipula-
tion of fixating a point, it can be reduced to 3.) The
derivation of the subspace constraints for pixel dis-
placements (as opposed to pixel positions) is very

similar to the derivation in Tomasi and Kanade
(1992) and Shapiro (1995). To make the paper self-
contained, we provide this derivation for the sim-
pler orthographic case. The reader is referred to
Shapiro (1995) for the weak-perspective and para-
perspective cases.

In the orthographic projection model:

[
ui j

vi j

]
2×1

=
[

xi j − xi

yi j − yi

]
=

[
Xi j − Xi

Yi j − Yi

]

=
[(

R11 j − 1
)

R12 j R13 j tX j

R21 j

(
R22 j − 1

)
R23 j tY j

]
2×4

×




Xi

Yi

Zi

1




4×1

(21)

where Rkl j
is the value of rotation matrix R j at row k

and column l. Since the camera motion is common
to all points between frame I and frame I j , then
Eq. (21) can be extended to multiple points:

[
u1 j , u2 j , . . . , uN j

v1 j , v2 j , . . . , vN j

]
2×N

=
[(

R11 j − 1
)

R12 j R13 j tX j

R21 j

(
R22 j − 1

)
R23 j tY j

]
2×4

× P(4×N ) (22)

where

P =




X1, X2, . . . , XN

Y1, Y2, . . . , YN

Z1, Z2, . . . , ZN

1, 1, . . . , 1




4×N

.

Because the matrix P is invariant to the camera mo-
tion, and is only point-dependent, it is common to all
frames. Hence, Eq. (22) can be extended to multiple
frames:[

U
V

]
(2F×N )

=
[

MU

MV

]
(2F×4)

P(4×N ) (23)

where the j-th row of the matrix MU(F×4) is

(MU ) j = [(
R11 j − 1

)
R12 j R13 j tX j

]
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and the j-th row of the matrix MV(F×4) is

(MV ) j = [
R21 j

(
R22 j − 1

)
R23 j tY j

]
.

Equation (23) therefore implies that for the or-
thographic case, the ranks of the matrices U, V,
and [ U

V ] are all at most 4 (could be reduced to
an upper-bound of 3 with the proper point fixa-
tion; see Tomasi and Kanade (1992) and Shapiro
(1995)). A similar constraint can also be derived
for the uncalibrated affine camera (see Shapiro
(1995)).
Similarly,

[ U V ](F×2N ) = [ MU MV ](F×8)

×
[

P 0

0 P

]
(8×2N )

(24)

The rank of the matrix [U | V ] is therefore at most
8 for the orthographic case (could be reduced to
an upper-bound of 6 with proper point fixation).
A similar constraint can also be derived for the
uncalibrated affine camera.
To summarize, in the case of an affine camera, the
upper bounds on the ranks of the two large matrices
of displacements are:

rank

([
U
V

])
≤ 4 and rank([U | V]) ≤ 8.

2. Affine Camera—Planar (2D) Scene: When the
scene is planar, Zi can be written as a function of
Xi and Yi : Zi = α + β · Xi + γ · Yi . Replacing Zi

in Eqs. (23) and (24) with (α + β · Xi + γ · Yi ), and
regrouping the terms, leads to the following lower
rank constraints:

rank

([
U
V

])
≤ 3 and rank([U | V]) ≤ 6.

3. Perspective Camera—Instantaneous Motion, 3D
Scene: In the perspective model: xi j = f j

Xi j

Zi j
, and

yi j = f j
Yi j

Zi j
, where f j is the focal length of the

camera at frame I j . Longuet-Higgins and Prazdny
(1980) showed that in the instantaneous case, when
the rotation angle is small and the forward transla-
tion is small (i.e., tZ � Z ), the 2D displacement can

be well approximated by:

[
ui j

vi j

]
= 1

Zi


 f tX j − tZ j xi

f
f j

f tY j − tZ j yi
f
f j




+


 − 
X j

f j
xi yi + 
Y j f + 
Y j

f j
xi

2 − 
Z j yi + xi

(
1 − f

f j

)
− 
X j

f j
y2

i − 
X j f + 
Y j
f j

xi yi + 
Z j xi + yi

(
1 − f

f j

)



(25)

where f, f j are the focal lengths of frames I, I j ,
respectively.11 We will next investigate the ranks
for two cases: the case when the focal length varies
across the sequence, and the case when it is kept
fixed across the sequence (but unknown).

(a) Varying Focal Length (3D Scene): Using
Eq. (25), the displacement components (ui j , vi j )
of pixel (xi , yi ) from the reference frame I to
frame I j can be rewritten as a bilinear product:[

ui j

vi j

]
2×1

=
[

(MU ) j

(MV ) j

]
2×9

Pi (9×1)

where

Pi =
[

1 xi yi
1
Zi

xi
Zi

yi
Zi

x2
i y2

i (xi yi )
] T

is a point-dependent column vector (i = 1..N ),
and

(MU ) j =
[
− f 
Y j

(
1 − f

f j

)
− 
Z j f tX j

− f
f j

tZ j 0

Y j

f j
0 − 
X j

f j

]
(MV ) j =

[
− f 
X j 
Z j

(
1 − f

f j

)
f tY j 0

− f
f j

tZ j 0 − 
X j

f j


Y j

f j

]
are frame-dependent row vectors ( j = 1..F ).
Therefore, all flow vectors of all points across
all frames can be expressed as a bilinear product
of matrices:[

U
V

]
(2F×N )

=
[

MU

MV

]
(2F×9)

P(9×N ) (26)

where the i-th column of P is the vector Pi ,
and the j-th row of MU and MV are the vectors
(MU ) j and (MV ) j , respectively. Equation (26)
implies that rank([ U

V ]) ≤ 9.
Similarly, we can analyze the rank of [U | V]:

[ui j vi j ]1×2 = M j (1×9) [(PX )i (PY )i ]9×2
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where,

M j =
[


X j

f j


Y j

f j
f 
X j f 
Y j 
Z j

f tX j f tY j

f
f j

tZ j

(
1 − f

f j

)]

is a frame-dependent row vector, and

(PX )i

=
[
−xi yi x2

i 0 1 − yi
1
Zi

0 − xi
Zi

xi

]T

(PY )i

=
[
−y2

i xi yi − 1 0 xi 0 1
Zi

− yi
Zi

yi

]T

are point-dependent column vectors. This leads
to the following matrix equation for all points
and all frames:

[U | V](F×2N ) = M(F×9) [PX | PY](9×2N ) (27)

where the i-th column of PX and PY are (PX )i

and (PY )i , respectively, and the j-th row of M
is M j .
To summarize, when both the focal length and
the camera motion change across the sequence,
then:

rank([U | V]) ≤ 9 and rank

([
U
V

])
≤ 9.

(b) Constant Focal Length (3D Scene): When the
camera motion changes but the focal length re-
mains constant (but unknown) across the se-
quence, namely, ∀ j f j = f , then the ranks of
these matrices are lower. In that case:[

U
V

]
(2F×N )

=
[

MU

MV

]
(2F×8)

P(8×N ) (28)

where,

Pi =
[

xi yi
f

Zi

xi
Zi

yi
Zi

xi yi
f

(
f + x2

i
f

)
(

f + y2
i
f

)]T

(MU ) j

=
[
0 − 
Z j tX j − tZ j 0 − 
X j 
Y j 0

]
(MV ) j

=
[

Z j 0 tY j 0 − tZ j 
Y j 0 − 
X j

]

Similarly,

[U | V](F×2N ) = M(F×6) [PX | PY](6×2N ) (29)

where,

M j =
[

X j 
Y j 
Z j tX j tY j tZ j

]
(PX )i

=
[
− xi yi

f

(
f + x2

i
f

)
− yi

f
Zi

0 − xi
Zi

]T

(PY )i

=
[
−

(
f + y2

i
f

)
xi yi

f
xi 0

f

Zi
− yi

Zi

]T

Therefore, when the focal length of the cam-
era remains constant (but unknown) across the
sequence, and only the camera motion varies,
then:

rank([U | V]) ≤ 6 and rank

([
U
V

])
≤ 8.

4. Perspective Camera—Instantaneous Motion,
Planar (2D) Scene: When the scene is planar, then
in the perspective case 1

Zi
can be written as in Adiv

(1985): 1
Zi

= α′ + β ′ · xi + γ ′ · yi . Substituting this
expression into Eq. (25) and regrouping the terms
leads to simpler bilinear forms with the following
rank constraints:

(a) Constant Focal Length (Planar Scene):

rank

([
U
V

])
≤ 6 and rank([U | V]) ≤ 6

(b) Varying Focal Length (Planar Scene):

rank

([
U
V

])
≤ 6 and rank([U | V]) ≤ 8.

Appendix B: Ranks of Planar-Parallax
Displacements

In Section 6 we derived the linear approximation to the
planar-parallax displacements (see Eq. (19)). We will
next derive the ranks of the planar-parallax displace-
ment matrices [ U

V ] and [U | V]. Equation (19) can be
rewritten as a bilinear product:[

ui j

vi j

]
2×1

=
[

(MU ) j

(MV ) j

]
2×3

Pi (3×1)
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where

Pi = [ γi −γi xi −γi yi ]T

is a point-dependent column vector (i = 1..N ), and

(MU ) j = [ εX j εZ j 0 ]

(MV ) j = [ εY j 0 εZ j ]

are frame-dependent row vectors ( j = 1..F ). There-
fore, all planar parallax displacements of all points
across all (plane-aligned) frames can be expressed as a
bilinear product of matrices:[

U
V

]
(2F×N )

=
[

MU

MV

]
(2F×3)

P(3×N ) (30)

where the i-th column of P is the vector Pi , and the j-th
row of MU and MV are the vectors (MU ) j and (MV ) j ,
respectively. Equation (30) implies that rank([ U

V ]) ≤ 3.
Similarly, we can analyze the rank of [U | V]:

[ui j vi j ]1×2 = M j (1×3) [(PX )i (PY )i ]3×2

where,

M j = [
εX j εY j εZ j

]
is a frame-dependent row vector, and

(PX )i = [ γi 0 −γi xi ]T

(PY )i = [ 0 γi −γi yi ]T

are point-dependent column vectors. This leads to the
following matrix equation for all points and all frames:

[U | V](F×2N ) = M(F×3) [PX | PY](3×2N ) (31)

where the i-th column of PX and PY are (PX )i and
(PY )i , respectively, and the j-th row of M is M j .

To summarize, the planar-parallax displacements
reside in 3-dimensional linear subspaces, even for ex-
tended sequences (large number of frames F ) and
for uncalibrated cameras (with unknown changing
calibration):

rank([U | V]) ≤ 3 and rank

([
U
V

])
≤ 3.
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Notes

1. By “2D scenes” we refer to cases when the scene is either very
distant from the camera, or when the world is planar, or when the
camera is not translating (i.e., only rotating and zooming, such
as with a camera mounted on a tripod). See Irani and Anandan
(1998) for a more complete explanation of the distinction made
between “2D scenes” and “3D scene”.

2. Choosing the reference frame as the middle frame extends the
applicability of the model to twice as many frames.

3. The underlying assumption here is that if an image point (xi , yi )
in frame I corresponds to the image point (xi +u0

i j +�ui j , yi +
v0

i j + �vi j ) in frame I j , then for small (�ui j , �vi j ) we can
assume that the image point (xi − �ui j , yi − �vi j ) in frame I
will approximately correspond to the image point (xi +u0

i j , yi +
v0

i j ) in frame I j . Although this is an approximation, it becomes
more and more accurate in the iterative refinement process, as
(�ui j , �vi j ) becomes smaller and smaller with each iteration.

4. This approximation is often made in direct methods (e.g., see
Bergen et al. (1992)), and is usually done for computational effi-
ciency. It allows to linearize I around the point (xi , yi ), which is
kept fixed throughout the iterative-warp refinements, instead of
linearizing frame I j around the point (xi + u0

i j , yi + v0
i j ), which

gets updated at every iteration. Therefore, the spatial deriva-
tives need to be estimated only once on the reference image,
and not repeatedly at every iteration. In our multi-frame case the
computational efficiency issue is even more pronounced, as the
reference frame I is shared by all other frames I j ( j = 1..F ).
Hence, the spatial derivatives need to be estimated only once on
the reference frame, regardless of the number of frames in the
sequence.

5. The observation that the individual matrices [ ai bi
bi ci

] can be
viewed as inverse “covariance matrices”, and that the sub-
space projection on [G | H] can therefore be interpreted as a
“covariance-weighted subspace projection,” was pointed out to
me by P. Anandan. This point is further elaborated and general-
ized in Irani and Anandan (2000). For a more complete analysis
of Bayesian models in Low-level Vision see Szeliski (1990).

6. Although the problem addressed in Irani and Anandan (2000)
was a different one (not the estimation of 2D correspondences,
but rather the recovery of 3D motion dense 3D structure and from
correspondences with very high degrees of directional uncer-
tainty (including pure normal flow)), the same basic idea used in
Irani and Anandan (2000) can also be applied here for constrain-
ing the 2D correspondence estimation itself, without recovering
K . This would lead to a slightly different algorithm than the one
described above in the“Summary of the Algorithm”.

7. Or more precisely, the iterative coarse-to-fine version of Lucas
and Kanade algorithm as described in Bergen et al. (1992).

8. These ranks are obtained by setting �
 j = 0 in Eqs. (28) and (29)
of Appendix A. See also Appendix B for a similar model.

9. Homography estimation is a much simpler problem than general
correspondence estimation, as it is described by a few (at most 9)
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global parameters. Since the image patch contains many pixels,
this is usually a well-posed problem. Bergen et al. (1992), Irani
et al. (1994) and Black and Anandan (1996) are some examples
of methods for estimating 2D parametric transformations.

10. There are methods for automatically “locking onto” a dominant
planar motion in a sequence, without the need to manually spec-
ify its image region (e.g., see Irani et al. (1994)).

11. The original equations in Longuet-Higgins and Prazdny (1980)
were derived for a fixed focal length. However, the equation for
the case of changing focal length (Eq. (25)) is straightforward to
derive following the same steps.
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