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A bst raet 
The detection of moving objects is important in many  tasks. 
Previous approaches to  this problem can be broadly divided 
into two classes: 2D algorithms which apply when the scene 
can be approximated by a flat surface and/or when the cam- 
era is  only undergoing rotations and zooms, and 3 0  algo- 
rithms which work well only when significant depth varia- 
tions are present an the scene and the camera is translating. 
In  this paper, we describe a unified approach to  handling 
moving object detection in both 2D and 30 scenes, with a 
strategy to  gracefully bridge the gap between those two ex- 
tremes. Our approach is based on  a stratification of the 
moving object detection problem into scenarios and corre- 
sponding techniques which gradually increase in their com- 
plexity. Moreover, the computations required for  the solu- 
tion to  the problem at one complexity level become the ini- 
tial processing step for  the solution at the next complexity 
level. 

1 Introduction 
The 2D motion observed in an image sequence is 

caused by 3D camera motion (the ego-motion) and by 
3D motions of independently moving objects. The key 
step in moving object detection is accounting for the 
camera-induced image motion. After compensation for 
camera-induced image motion, the remaining residual 
motions must be due to  moving objects. 

The camera induced image motion depends both on 
the ego-motion parameters and the depth of each point 
in the scene. Estimating all of these physical param- 
eters to  account for the camera-induced motion is, in 
general, an inherently ambiguous problem [l]. When 
the scene contains large depth variations, these pa- 
rameters can be recovered [18, 2, 14, 19, 20, 61. We 
refer to  these scenes as 3D scenes. However, in 2D 
scenes (namely when the scene is roughly planar, or 
distant from the camera, or when the camera is not 
translating), the recovery of the 3D camera and scene 
geometry is usually not robust, or reliable [1]. 3D tech- 
niques are therefore applicable in scenarios containing 
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dense 3D information, and very little independent mo- 
tion. An effective approach to accounting for camera 
induced motion in 2D scenes is to  model the image mo- 
tion in terms of a global 2D parametric transformation 
[lo, 5, 7, 15, 21, 31. These techniques proved to  be 
robust even in the presence of significant amount of in- 
dependent motions. However, the 2D approach cannot 
be applied to  cluttered 3D scenes. 

Therefore, 2D and 3D techniques for detecting mov- 
ing objects address two extreme cases in a continuum of 
scenarios: flat 2D scenes vs. cluttered 3D scenes. Each 
of these two classes of techniques fails on the other ex- 
treme case, or even on the intermediate case (when 3D 
information is sparse relative to  amount of independent 
motion). 

In this paper, we present an approach to  unifying 2D 
and 3D techniques for moving object detection, with a 
strategy to  gracefully bridge the gap between them. We 
present a set of techniques that progressively increase 
in their complexity, ranging from simple 2D techniques, 
to  multi-layer 2D techniques, to  the more complex 3D 
techniques. Moreover, the computations required for 
the solution to  the problem at one complexity level be- 
come the initial processing step for the solution at the 
next Complexity level. In particular, the 2D parametric 
motion compensation forms the basis to  the solution of 
the multiple layer situation, and the single- or multiple- 
2D layered motion compensation forms the basis to  the 
solution of the more general 3D case. Careful treat- 
ment is given to the intermediate case, when 3D in- 
formation is sparse relative to  amount of independent 
motion. 

The goal in taking this approach is to  develop a 
strategy for moving object detection, so that the anal- 
ysis performed is tuned to match the complexity of 
the problem and the availability of information at any 
time. This paper describes the core elements of such 
a strategy. The integration of these elements into a 
single algorithm remains a task for our future research. 
For more details, refer to  [9]. 
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2 2D Scenes 
When the scene viewed from a moving camera is 

planar, or distant enough, or when the camera is not 
translating (only rotating/zooming), then the camera 
induced motion can be modeled by a single global 2D 
parametric transformation between a pair of successive 
image frames: 

4 x 7  Y) plz + p’2y + p5 + p7z2 + p8zy 
p3x -t p4Y + p6 + p7zY + P8Y2 

where ( U ( % ,  y), v(z,  y))  denotes the image velocity at 
the point ( z , y ) .  We refer to  such cases as 2D scenes. 
We use a previously developed method [4, 101 in order 
to compute the 2 0  parametric motion. This technique 
“locks” onto a “dominant” parametric motion between 
an image pair, even in the presence of independently 
moving objects. It does not require prior knowledge 
of their regions of support in the image plane [lo]. 
When the dominant motion is that of the camera, all 
regions corresponding to  static portions of the scene 
are in completely aligned as a result of the 2D image 
warping. Detection of moving objects is therefore per- 
formed by determining local misalignments [ 101 after 
the global 2D parametric registration. 

Figure 1 shows an example of moving object detec- 
tion in a “2D scene”. The camera was both translat- 
ing and rotating (camera jitter). The scene itself was 
not planar, but was distant enough (about 1 km away 
from the camera), for a 2D parametric transformation 
to account for the camera-induced motion between suc- 
cessive frames. Figure 1.e shows the detected moving 
object based on local misalignment analysis [lo]. 

3 Multi-Planar Scenes 
When the camera is translating, and the scene is not 

planar or is not sufficiently distant, then a szngk 2D 
parametric motion (Section 2) is insufficient for mod- 
eling the camera-induced motion. Aligning two images 
with respect to  a dominant  2D parametric transfor- 
mation may bring into alignment a large portion of the 
scene, which corresponds to  a planar (or a remote) part 
of the scene. However, any other (e.g., near) portions of 
the scene that enter the field-of-view cannot be aligned 
by the dominant 2D parametric transformation. These 
out-of-plane scene points, although they have the same 
3D motion as the planar points, have substantially dif- 
ferent induced 2D motions. The differences in 2D mo- 
tions are called 3D parallax motion. Effects of parallax 
are only due to camera translation and 3D scene varia- 
tions. Camera rotation or zoom do not cause parallax 
effects (see Section 4.1). 

Figure 2 shows an example of a sequence where the 
effects of 3D parallax are evident. Figure 2.a and 2.b 

show two frames from a sequence with the same setting 
and scenario described in Figure 1, only in this case a 
frontal hill with bushes (which was much closer to  the 
camera than the background scene) entered the field of 
view (FOV). Figure 2.c displays image regions which 
were found to  be aligned after dominant  2D paramet- 
ric registration (see Section 2). Clearly the global 2D 
alignment accounts for the camera-induced motion of 
the distant portion of the scene, but does no t  account 
for the camera-inducecl motion of the closer portion of 
the scene (the bushes) 

Thus, simple 2D techniques, when applied to  these 
types of scenarios, will not be able to  distinguish be- 
tween the independent car motion and the 3D parallax 
motion of the bush. 

When the scene is piecewise planar, or is constructed 
of a few distinct portions at different depths, then the 
camera-induced motioin can be accounted for by a few 
layers of 2D parametric transformations. This case 
is very typical of outdloor surveillance scenarios, espe- 
cially when the camera FOV is narrow. The multi- 
layered approach is an extension of the simple 2D ap- 
proach, and is implemented using a method similar 
to the sequential method presented in [lo]: First, the 
dominant 2D parametric transformation between two 
frames is detected (Section 2). The two images are 
aligned accordingly, and the misaligned image regions 
are detected and segmented out (Figure 2.c). Next, the 
same 2D motion estimation technique is re-applied, but 
this time only to  the segmented (misaligned) regions 
of the image, to  detect the next  dominant 2D trans- 
formation and its region of support within the image, 
and so on. For each additional layer, the two images 
are aligned according to  the 2D parametric transfor- 
mation of that layer, and the misaligned image regions 
are detected and segmented out (Figure 2.d). Each 
“2D layer” is continuously tracked in time by using the 
obtained segmentation masks. Moving objects are de- 
tected as image regions that are inconsistent with the 
image motion of any O F  the 2D layers. Such an example 
is shown in Figure 2.e. 

A moving object is not detected as a layer by this 
algorithm if it is small. However, if the object is large, 
it may itself be detected as a 2D layer. To avoid this 
problem, additional cues are used to  distinguish be- 
tween moving objects and static scene layers [9]. The 
moving car shown in Figures 1 and 2 was successfully 
and continuously detected over the entire two-minute 
video sequence, which alternated between the single- 
layered case (i.e., no 3D parallax; frontal scene part 
was not visible in the FOV) and the two-layered case 
(i.e., existence of 3D parallax). 
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Figure 1: 2D moving object detection. 
(a-b) T w o  frames in a sequence obtained b y  a translating and rotating camera. The  scene itself was not planar, but was 
distant enough (about 1 k m  away f r o m  the camera) so that effects of 3 0  parallax were negligible. The  scene contained 
a car driving on  a road. (c )  Intensity differences before dominant (background) 2D alignment. (d)  Intensity differences 
after dominant (background) 2D alignment. The 2D alignment 
compensates for  the camera-induced motion, but not for the car's independent motion. (e )  The  detected moving object based 
on local misalignment analysis. The  white region signifies the detected moving object. 

Non-overlapping image boundaries were not processed. 

Figure 2: Layered moving object detection. 
(a,b) Two  frames in a sequence obtained by a translating and rotating camera. The FOV captures a distant portion of the 
scene (hills and road) as well as a frontal poytion of the scene (bushes). The  scene contains a car driving on  a road. (c) The 
zmage region which corresponds to the dominant 2 0  parametric transformation. This region corresponds to the remote part 
of the scene. White regions signify image regions which were misaligned after performing global image registration according 
to the computed dominant 2D parametric transformation. These regions correspond to  the car and the frontal part of the 
scene (the bushes). (d)  The  image region which corresponds to the next detected dominant 2 0  parametric transformation. 
This region corresponds to  the frontal bushes. The  2D transformation was computed b y  applying the 2 0  estimation algorithm 
again, but this t ime only to  the image regions highlighted an white in Fig. 2.c (i.e., only to  image regions inconsistent in 
their image motion with the first dominant 2D parametric transformation). White regions in this figure signify regions 
inconsistent with the bushes' 2D transformation. These correspond to  the car and to the remote parts of the scene. (e)  The 
detected moving object (the car) highlighted in white. 
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4 General 3D Scenes 
While the single and multi-layered parametric reg- 

istration methods are adequate to handle a large num- 
ber of situations, there are cases when the 3D paral- 
lax cannot be modeled by 2D parametric transforma- 
tions. An example is a cluttered scene (typically urban 
scenes or indoor scenes). In this section we present an 
approach to  handling these more complex 3D scenes, 
which builds o n  top  of the 2D analysis. For more de- 
tails see [9]. 
4.1 The Plane+Parallax Decomposition 

The key observation that enables us to  extend the 
2D parametric registration approach to general 3D 
scenes is the following: the plane registration process 
(using the dominant 2D parametric transformation) re- 
moves all effects of camera rotation, zoom, and calibra- 
tion, without explicitly computing t h e m  [ll, 13, 16, 171. 
The residual image motion after the plane registration 
is due only to  the translational motion of the cam- 
era and to  the deviations of the scene structure from 
the planar surface. Hence, the residual motion is an 
epipolar f l ow  field. This observation has led to the so- 
called “plane+parallax” approach to 3D scene analysis 
[12, 11, 13, 16, 17, 81. 
Let 9 = ( X , Y , Z ) T  and 9 = (X‘,Y’,Z’)* denote 
the Cartesian coordinates of a scene point with re- 
spect to  two different camera views, respectively. Let 
p’ = ( x ,  y)* and p’, = (x’,  y’)* respectively denote the 
coordinates of the corresponding image points in the 
two image frames. Let = (T,,T,,T,) denote the 
camera translation between the two views. Let II de- 
note a planar surface in the scene which is registered 
by the 2D parametric registration process mentioned in 
Section 2. It can be shown (see [SI) that  the 2D image 
displacement of the point P can be written as 

a = (p; -5) = U‘, +c, 
where U‘, denotes the planar part of the 2 0  image mo- 
tion (the homography due to 11)1 and p denotes the 
residual planar parallax 2 0  motion. The homography 
due to IT results in a 2D projective image motion that 
can be approximated by Equation (1). When T, # 0: 

- Tz 4 

where p> denotes the image point in the first frame 
which results from warping the corresponding point 
5 in the second image, by the 2D parametric trans- 
formation of the plane II. The 2 0  image coordinates 
of the epipole (or the focus-of-expansion, FOE) in the 
first frame are denoted by e‘, and dk is the perpen- 
dicular distance from the second camera center to the 

U‘, = (P’ - p;) ; F =  y,(e - p;) (2) 
d, 

reference plane (see [e,]). y is a measure of the 3D 
projective structure of the point @. In the case when 
T, = 0, the parallax motion p has a slightly different 
form: p = $-<, where i = (T,,T,)*. 

Since the residual parallax displacements after 2D 
planar alignment are clue to  the camera translational 
component alone, they form a radial field centered at 
the epipole/FOE. Violations in the epipolar constraint 
[18] can therefore be used to  detect independently mov- 
ing objects. Such a method, however, depends criti- 
cally on the ability to accurately estimate the epipole. 
Epipole estimation can be very unreliable, in particu- 
lar when the scene contains sparse parallax information 
and significant independent m o t i o n  of objects in the 
scene. In the following section we develop an approach 
to moving object detection by directly comparing the 
parallax motion of pairs of points without estzmating 
the epipole. 
4.2 The parallax based rigidity constraint 

Given the planar-parallax displacement vectors pi 
and p> of two image points pi and p> that  belong to  
the static background scene, their relative 3D projective 
structure is given by (see [SI): 

(3) 

where, as shown in Figure 3, Ap; = p& - p& is the 
vector connecting the ”warped” locations of the corre- 
sponding second frame points (as in Equation (2)) ,  and 
i i ~  signifies a vector perpendicular to  ii. 

A 

P< 
\ 

APW 
\ 

\ 
\ \ 

Figure 3: The pairwise parallax-based shape constraint. 
This figure geometrically illustrates the relative structure 
constraint (Eq. 3): 2 = $~~~~~~ = s. 
Note that this constraint directly relates the relative 

projective structure of two points to  their parallax dis- 
placements alone: no camera parameters, in particular 
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the epipole (FOE), are involved. Neither is any ad- 
ditional parallax information required at other image 
points. Application of this constraint to  the recovery 
of 3D structure of the scene is described in [8]. Here 
we focus on its application t o  moving object detection. 

Since the relative projective structure E is invariant 
to camera motion, therefore, using Equation (3), for 
any two frames j and k (in addition to the reference 
frame) we get: 

the computations required for the solution t o  the prob- 
lem at one complexity level become the initial process- 
ing step for the solution at the next complexity level. 
Finally, we have presented the parallax-based rigidity 
constraint to  detect 3D-inconsistency when 3D paral- 
lax is sparse. This provides a natural way to bridge 
between 2 0  algorithms and 3D algorithms. 
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Figure 4: Moving object detection relying on a single parallax vector. 
(a,b,c) Three image frames from a sequence obtained by a camera translating from left to  right, inducing parallax motion 
of different magnitudes on the house, road, and road-sign. The car moves independently f rom left to right. The middle 
frame (Fig. 4.b) was chosen as the frame of reference. (d)  Differences taken after 2 0  image registration. The detected 2 0  
planar motion was that of the house, and is canceled by the 2 0  registration. All other scene parts that have different 2 0  
motions (i.e., parallax motion or independent motion) are misregistered. (e)  The selected point of reference (a point on 
the road-sign) highlighted by  a white circle. ( f )  The measure of 30-inconsistency of all points in the image with respect to 
the road-sign point. Bright regions indicate violations i n  3 0  rigidity detected over three ,frames with respect to the selected 
road-sign point. These regions correspond to the car. Regions close to the image boundary were ignored. All other regions 
of the image appear to move 30-consistently with the road-sign point. 

" I  

Figure 5: 
(a,b,c) Three image frames from a sequence obtained by a camera mounted on a helicopter (flying f r o m  left to right while 
turning), inducing some parallax motion (of different magnitudes) on the house-roof and trees (bottom of the image), and 
on  the electricity poles (by the road). Three cars move independently on the road. The middle frame (Fig. 5.b) was chosen 
as the frame of reference. (d)  Differences taken after 2 0  image registration. The detected 2 0  planar motion was that of the 
ground surface, and is canceled by  the 2 0  registration. All other scene parts that have different 2 0  motions (i.e., parallax 
motion or independent motion)  are misreqistered. ( e )  The selected point of reference (a  point on a tree at the bottom left 
of the image) highlighted by  a white circle. (f) The measure of 3D-inconsistency of each point in  the image with the tree 
point. Bright regions indicate violations in  3 0  rigidity detected over three frames with respect to the selected tree point. 
These regions correspond to the three cars ( in  the reference image). Regions close to the image boundary were ignored. All 
other regions of the image appear to move 3D-consistently with the tree point. 

Moving object detection relying on a single parallax vector. 
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