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Abstract 
A method for computing the 3D camera motion 

(the ego-motzon) in a static scene is introduced, which 
is based on computing the 2D image motion of a sin- 
gle image region directly from image intensities. The 
computed image motion of this image region is used to 
register the images so that the detected image region 
appears stationary. The resulting displacement field 
for the entzre scene between the registered frames is af- 
fected only by the 3D translation of the camera. After 
canceling the effects of the camera rotation by using 
such 2D image registration, the 3D camera translation 
is computed by finding the focus-of-expansion in the 
translation-only set of registered frames. This step is 
followed by computing the camera rotation to  com- 
plete the computation of the ego-motion. 

The presented method avozds the inherent prob- 
lems in the computation of optical flow and of feature 
matching, and does not assume any prior feature de- 
tection or feature correspondence. 

1 Introduction 
The motion observed in an image sequence can be 

caused by camera motion (ego-motion) and by mo- 
tions of objects moving in the scene. In this paper we 
address the case of a camera moving in a static scene. 
Complete 3D motion estimation is difficult since the 
image motion at every pixel depends, in addition to 
the six parameters of the camera motion, on the depth 
at the corresponding scene point. To overcome this 
difficulty, additional constraints are usually added to 
the motion model or to the environment model. 

3D motion is often estimated from the optical or 
normal flow derived between two frames [l, 12, 221, 
or from the correspondence of distinguished features 
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(points, lines, contours) extracted from successive 
frames [ lo ,  13, 71. Both approaches depend on the 
accuracy of the feature detection, which can not al- 
ways be assured. Methods for computing the ego- 
motion directly from image intensities were also sug- 
gested [ l l ,  141. 

Camera rotations and translations can induce sim- 
ilar image motions [a, 81 causing ambiguities in their 
interpretation. At depth discontinuities, however, it 
is much easier to distinguish between the effects of 
camera rotations and camera translations, as the im- 
age motion of neighboring pixels at different depths 
will have similar rotational components, but differ- 
ent translational components. Motion parallax meth- 
ods use this effect to obtain the 3D camera motion. 
[18, 17, 71. Other methods use motion parallax for 
shape representation and analysis [23, 6, 91. 

In this paper a method for computing the ego- 
motion directly from image intensities is introduced. 
At first only 2D image motion is extracted, and later 
this 2D motion is used to  simplify the computation of 
the 3D ego-motion. 

We use previously developed methods [15, 161 to 
detect and track a single image region and to com- 
pute its 2D parametric image motion. It is important 
to emphasize that the 3D camera motion cannot be 
recovered solely from the 2D parametric image mo- 
tion of a single image region, as there are a couple of 
such 3D interpretations [20]. It was shown that 3D 
motion of a planar surface can be computed from its 
2D affine motion in the image and from the motion 
derivatives [al l ,  but motion derivatives introduce sen- 
sitivity to noise. Moreover, the problem of recovering 
the 3D camera motion directly from the image motion 
field is an ill-conditioned problem, since small errors in 
the 2D flow field usually result in large perturbations 
in the 3D motion [2]. 

To overcome the difficulties and ambiguities in the 
computation of the ego-motion, we introduce the fol- 
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lowing scheme: The first frame is warped towards the 
second frame using the computed 2D image motion at 
the detected image region. This registration cancels 
the effects of the camera rotation for the entire scene, 
and the resulting image displa.cements between the 
t,wo registered frames are due only to the 31) transla- 
tion of t,he camera. This translation is computed by lo- 
cating tjhe FOE (focus-of-expansion) between the two 
registered frames. Once the 3D translation is known it, 
can be used, together with the 2D motion parameters 
of the detected image region, to compute the 3D rotla- 
t,ion of Ihe camera by solving a set of linear equations. 

The 2D image region registration technique used in 
this work allows easy decoupling of the translat,ional 
and rotat,ional motions, as only motion parallax infor- 
ination remains after t,he regishation. As opposed to 
ot.her methods using motion parallax [18, 19, 17, 71, 
our niet,hod does not rely on 2D motion informahn 
compukd near depth cliscontinuities, where it is inac- 
curate, but on motion computed over a n  entire image. 
'The d k c t  of motion parallax is obtained at all scene 
points t,hat are not located on t,he extension of the 3D 
surface which corresponds to the registered image re- 
gion. This gives densr parallax data, as these sew(' 

points need not be adjacent to  the registered 3D sur- 
face. 

The advantage of t,his technique is in its ,simplicity 
and in its robustness. N o  prior detectlion and matching 
are assumed, it requires solving only small sets of l in-  
ear quatioils, and each computational step is stat,rd 
as an overdeterniined problem which is numerically 
stable. 

2 Ego-Motion from 2D Image Motion 
In tliis section we describe the technique for com- 

puting the 3D ego--motion given the 2D paraniet.ric 
motion of a single image region. The method for au- 
tomatically computing t,he 2D motion of a single image 
rcgion is briefly described in Sec. 4 

2.1 Basic Model innd Notations 
Let (X, Y, 2 )  denote the Cartesian coorldinates of 

a scene point with respcict to the camera (see Fig. l ) ,  
and let ( x ,  y) denota(. the corresponding coordinates i n  
thc image plane. The  image plane is locat,ed at, t,he 
focal length: 2 = fc. The perspective projectiori of 
a scene point P = ( X ,  l', Z ) t  on the image ~planc, ;i.t a 
point, pi = ( x ,  Y ) ~  is expressed by: 

A- . = [ ; ] = [  $ ]  
The camera motion has two components: a translation 
T =  (T'x.Ty,Tz)t and a rotation R = ( R x , R y , R z ) t .  

Y 

ryt. Ly 
TX 

{ -+ x 

/ 

z =  $75 
Figure 1: The coordinate system. 

The coordinate system ( X ,  Y, Z) is a t t a c h d  to  t tie c'am- 
era, and the corresponding image coordinates I z, y)  on 
the image plane are located at  2 = f c .  A point I' = 
(X,  Y, Z ) t  in t h r  world is projected ont.0 a n  imagr point 
p =  (z,y)'. T = (Tx,Ty,Tz)' and II =: ( 6 ? , ~ , 6 l y . f 2 z ) ~  
represent the relative translation and rotation of the 
camera in the scene. 

Due to the camera motion the scene poitit P = 
(X,  P, Z ) t  appears to be moving relative to the camera 
with rotpation -0 and translation -T; and IS t1iyf:re 
observed at new world coordinates 1' = (,U 1- L ) t 3  

expressed by 

where M-n is the matrix corresponding to a rot,at,ion 

When the field of view is not, very large and the 
camera motion has a relatiwly small rot,ation [ 11. the 
2D displacement ( U ,  U )  of an image point ( x .  y) i n  the 
image plane can be expressed by ['LO, 31: 

by -a. 

- fc ( + + a y  ) + z y + yf2z - 2? SL + 3:y CLL x. i.] (3) [:I = [ - fc ( 9 - R X  ) - xRz + !/ y - z y + ? I 2  2 
The following is noted from P:q. (3): 

0 Since all translations arc divided by the unknown 
depth 2, only the direction of the translation can 
be recovered, but not it,:, magnitiidr. 

0 The contribution of thc camera rotation t,o the 
displacement of an imagcl point is z n d q w n d e n t  of 
the dept>h Z o f  the corrrsspondilig s e n e  point. 

All points (.Y, Y> Z )  of a plan;tr surface i n  t ,hp 3D scene 
satisfy a plane equation 2 = i l+B.,Y+C.Y, which can 
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be expressed in terms of image coordinates by using 
Eq. (1) as: 

1 
z (4) .- = a + p .x + 7 . y. 

In a similar manipulation to  that in [l], substituting 
Eq. (4) in Eq. (3) yields: 

] (5) 
a + b .  2 + c .  y + g  . z 2  + h . z y  [ : I = [  d + e .  2 + f ' y  + g  . x y +  h . y 2  

where: 

a = -fcaTx - fcs ly  e = -Qz - f JTy  

(6) 
b = CITZ - fc/STx 
c = Q Z  - fc7Tx 
d = - f caT~  + f c Q x  

f 1 ~ T z  - f c f G  
g = - QL + pTz f. 
h = % + 7Tz 

Eq. (5) describes the 2D parametric motion in 
the image plane, expressed by eight parameters 
(a, b ,  c,  d ,  e ,  f, g, h) ,  which corresponds to a general 3D 
motion of a planar surface in the scene, assuming a 
small field of view and a small rotation. We call 
Eq. (5) a pseudo 2 0  projective transformation, since 
under these assumptions, it is a good approximation 
to the 2D projective transformation. 

2.2 General Framework of the Algorithm 
In this section we present a scheme which utilizes 

the robustness of the 2D motion computation for com- 
puting 3D motion between two consecutive frames: 

1 .  A single image region is automatically detected, 
and its 2D parametric image motion is computed 
(Sec. 4). 

2. The two frames are registered according to the 
computed 2D parametric motion of the detected 
image region. This image region stabilization can- 
cels the rotational component of the camera mo- 
tion for the entire scene (Sec. 2.3), and the camera 
translation can now be computed from the focus- 
of-expansion between the two registered frames 
(Sec. 2.4). 

3. The 3D rotation of the camera is now computed 
(Sec. 2.5) given the 2D motion parameters of the 
detected image region and the 3D translation of 
the camera. 

2.3 Eliminating Camera Rotation 

At this stage we assume that a single image region 
with a parametric 2D image motion has been detected, 
and that the 2D image motion of that region has been 
computed. The automatic detection and computation 
of the 2D image motion for planar 3D surfaces is de- 
scribed in Sec. 4. 

Let (u (x ,  y), v(x, y)) denote the 2D image motion 
of the entire scene from frame f1 to frame f2, and 
let (u8(zl y), v,(x, y)) denote the 2D image motion of 
a single image region (the detected image region) be- 
tween the two frames. It was mentioned in Sec. 2.1 
that (u , ,vs )  can be expressed by a 2D parametric 
transformation in the image plane if the image re- 
gion is an image of a planar  surface in the 3D scene 
(Eq. (5)). Let s denote the 3D surface of the detected 
image region, with depths Z,(z,y). Note that only 
the 2D motion parameters ( ~ ~ ( 2 ,  y), w8(x, y)) of the 
planar surface are known. The 3D position or motion 
parameters of the planar surface are still unknown. 
Let fp  denote the frame obtained by warping the en- 
tire frame f1 towards frame f2 according to  the 2D 
parametric transformation ( u s ,  v s )  extended to the en- 
tire frame. This warping will cause the image region 
of the detected planar surface, as well as scene parts 
which are coplanar with i t ,  to be stationary between 
f? and f2.  In the warping process, each pixel ( 2 , ~ )  

in f1 is displaced by (u,(x, y), w,(x, y)) to form fp.  
3D points that are not located on the surface s (i.e., 
Z ( z ,  y) # Z,(x, y)) will not be in registration between 

We will now show that the 2D image motion be- 
tween the registered frames, (fp and f2) is affected 
only by the camera translation T .  

Let PI = ( X I ,  Y I , Z ~ ) ~  denote the 3D scene point 
projected onto pl = (21, ~ 1 ) ~  in f1. According to 
Eq. (1): PI = ( x 1 2 , y 1 2 , Z 1 ) t .  Due to the camera 
motion (Q,T) from frame f1 to frame f2, the point P I  

will be observed in frame f2 at p2 = (22, y~)', which 
corresponds to the 3D scene point P2 = ( X Z ,  Y 2 , 2 ~ ) ~ .  
According to Eq. (2): 

fp and f 2 .  

The warping of f1 by (us ,  .us) to form f: is equivalent 
to applying the camera motion (0 ,T)  to the 3D points 
as though they are all located on the surface s (i.e., 
with depths Z,(x,y)). Let P, denote the 3D point 
on the surface s which corresponds to the pixel (x, y) 
with depth Z3(x1 y). Then: 

After the image warping, P, is observed in fp  at pR = 
(zR, f l ) t ,  which corresponds to a 3D scene point PR. 
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Therefore, according to ISq.  (2) and Eq. (8): 

2, 
21 

P R  = M - n .  P, - T = - .  M - n .  PI - 7' 
~ 

and therefore: 

lising Eq. (7) we get: 

Pz = M - n .  PI -- T 

and therefore: 

b;q. (9) shows that the 31)  motion between P" and f5, 
is not, affected by the camera rotation Q, but only I)y 
its translation T. Moreover, it shows that P" is on 
tht, straight line going through P:! and -T. 'rht,reforc,. 
t,he projection of P R  on the image plane ( p R )  is on t h~ 
st,raight, line going through t,he projection of 1'2 on thc 
itnage plane (i.e., p z )  ancl the projection of -T on t h e  
imagt, plane (which is t h e  FOE). 'This means that 1," 
is found on the radial line emerging from the FOE 
towards p ? .  In other words, the motion between the 
rrgistered frames fp  and f:! (i.e., p R  - p z )  is directcd 
towards, or away from, t,he FOE, and is therefore in- 
duced by t,he camera translation 7' . 

In Fig. 2, the optical flow is displayed before anti 

after registration of two frames according to the coin- 
puted 2L) motion parameters of the image region 
which corresponds to the  wall at the back of the scene. 
'l'he optical flow is given for display purposes only, and 
was n o f  used in the registration. After registraf,ion, 
t,hr, rotational compc1neti.t of the optical flow was can- 
celed for t,he entire scene, and all flow vecbrs point 
[,()wards t,he real FOE (Fig. 2.c). Before registration 
(Fig. 2 .b)  the FOE rnist;tkenly appears to be locilt(>(i 
cllsewherc, (in the middlcb of the frame). This is due 
(,o the ambiguity caused by the rotation around thc 
Y-axis, which visually appears as a translati'on along 
the X-axis. This ambiguity is resolved by the 2D rrg- 
istration. 

2.4 Computing Camera Translation 

Once the rotation is canceled by the registration 
of the di:%rcted image region, the ambiguity between 

Figure 2: The effect of region registration. The real 
FOE is marked by +. 
a )  One of the frames. 
b) The  optical flow between two adjacent frames (be- 
fore registration), overlayed on Fig. 2.a. 
c) The  optical flow after 2D registration of the wall. 
The  flow is induced by pure cnmera translation (after 
the camera rotation was canceled), and points now to 
the correct FOE. 
d )  The  computed depth map Bright regions corre- 
spond to  close objects. 

image motion caused by 3D rotation and that caused 
by 3D translation no longer exists. Having only cam- 
era translation, the flow field is directed to, or away 
from, the FOE. The computation of the 31) transla- 
tion therefore bec,omes overdetermined and numeri- 
cally stable, as the only two unknowns indicate the 
location of the FOE in the image plane. 

'To locate the FOE, the optical flow between the 
registered frames is computed, and the FOE is located 
using a search method similar tm that described in [18]. 
Candidates for the FOE are sampled over a half sphere 
and projected onto the i m a p  plane. For each such 
candidate, a global error measure is computed from 
local deviations of the flow field from the radial lines 
emerging from the candidate €'OE. The search process 
is repeated by refining the sampling (on the sphere) 
around good FOE candidates. After a few refinement 
iterations, the FOE is taken to be the candidate with 
the smallest error. 

Since the problem of locating the FOE in a p u r e l y  
translational flow field is a highly overdetermined 
problem, the computed flow ficld need riot be accurate. 
'This is opposed to most methods which try to com- 
pute the ego-motion from thc flow field, and require 
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an accurate flow field in order t o  resolve the rotation- 
translation ambiguity. 

2.5 Computing Camera Rotation 
Let (a, b ,  c , d ,  e ,  f , g ,  h)  be the 2D motion param- 

eters of the 3D planar surface corresponding to the 
detected image region, as expressed by Eq. (5). Given 
these 2D motion parameters and the 3D translation 
parameters of the camera (Tx, Ty , Tz),  the 3D rota- 
tion parameters of the camera (fix, fir , Qz) (as well 
as the planar surface parameters (a, p, y)) can be ob- 
tained by solving Eq. (6), which is a set of eight linear 
equations in six unknowns. 

jFrom our experience, the parameters g and h in 
the pseudo 2D projective transformation, computed 
by the method described in Sec. 4, are not as reliable 
as the other six parameters (a, 6 ,  c ,  d ,  e ,  f), as g and h 
are second order terms in Eq. (5). Therefore, when- 
ever possible (when the set of Eq. (6) is numerically 
overdetermined), we avoid using the last two equations 
(for g and h) ,  and use only the first six. This yields 
more accurate results. 

As a matter of fact, the only case in which all eight 
equations of (6) must be used to recover the camera 
rotation is the case when the ca_mera translation is 
parallel to the image plane (i.e., T # 0 and TZ = 0). 
This is the only configuration of camera motion in 
which the first six equations of (6) do not suffice for 
retrieving the rotation parameters. However, if only 
the first six equations of (6) are used (i.e., using only 
the reliable parameters a ,  b,  e ,  d, e ,  f, and disregarding 
the unreliable ones, g and h) ,  then only RZ can be re- 
covered in this case. In order to recover the two other 
rotation parameters, Rx  and R y ,  the second order 
terms g and h must be used. This means that for the 
case of an existing translation with Tz = 0, only the 
translation parameters (Tx,  Ty , Tz)  and one rotation 
parameter, RZ  (the rotation around the optical axis), 
can be recovered accurately. The other two rotation 
parameters, RX and a y ,  can only be approximated. 

In all other configurations of camera motion the 
camera rotation can be reliably recovered. 

2.6 Experimental Results 
The camera motion (In cm) between the two 

framesin Fig.2 was: (Tx ,Ty ,Tz)  = (1.7,0.4,12)and 
(Rx ,Ry ,Qz )  = (Oo,-1.80,-30). The computationof 
the 3D motion parameters of the camera (after setting 
Tz = 12) yielded: (Tx ,Ty ,Tz)  = (1.68,0.16,12) and 

Once the 3D motion parameters of the camera 
are computed, the 3D scene structure can be recon- 
structed using a scheme similar to that suggested in 

( R x , R y ,  Rz) = (-0.05', -1.7', -3.25'). 

[ l l ] .  Correspondences between small image patches 
(currently 5 x 5 pixels) are computed only along the 
radial lines emerging from the FOE (taking the rota- 
tions into account). The depth map is computed from 
the magnitude of these displacements. In Fig. 2.d, the 
computed inverse depth map of the scene (h) is 
displayed. 

3 Camera Stabilization 
Once the ego-motion of the camera is determined, 

this information can be used for post-imaging stabi- 
lization of the sequence, as if the camera has been 
mounted on a gyroscopic stabilizer. 

For example, to make perfect stabilization, the im- 
ages can be warped back to the original position of the 
first image to cancel the computed 3D rotations. Since 
rotation is depth-independent, such image warping is 
easy to perform, resulting in a new sequence which 
contains only 3D translations, and looks as if taken 
from a stabilized platform. An example of such sta- 
bilization is shown in Fig. 3.d . Alternatively, the r e  
tations can be filtered by a low-pass filter so that the 
resulting sequence will appear t o  have only smooth 
rotations, but no jitter. 

4 Computing 2D Motion of a Planar 
Surface 

We use previously developed methods [15, 161 in 
order to detect an image region corresponding to a 
planar surface in the scene with its pseudo 2D projec- 
tive transformation. These methods treated dynamic 
scenes, in which there were assumed to be multiple 
moving planar objects. The image plane was seg- 
mented into the differently moving objects, and their 
2D image motion parameters were computed. 

In this work we use the 2D detection algorithm in 
order to detect a single planar surface and its 2D image 
motion parameters. Due to camera translation, planes 
at  different depths or orientations will have different 
2D motions in the image plane, and will therefore be 
identified as differently moving planar objects. When 
the scene is not piecewise planar, but contains planar 
surfaces, the 2D detection algorithm still detects the 
image motion of its planar regions. 

In this section we describe very briefly how the tech- 
nique for detecting multiple moving planar objects 
locks onto the one planar object and its 2D motion 
parameters. More details appear in [15, 161. 

The projected 2D image motion ( ~ ( 2 ,  y),  w(x, y) of 
a planar moving object in the scene can be approxi- 
mated by the 2D parametric transformation of Eq. (5). 
If the support R of this planar object were known in 



Figure 3: Camera Stabilization. 
a) One of the frames in the sequence. 
h) The average of two fra.mes, having both rotation arid 
translation. The white lines display the image motion. 
c )  The average of the two frames after registration of 
the shirt. Only effects of camera translation remain. 
d )  T h e  average of the two frames after recovering thc. 
cgo-motion, and canceling the camera rotation. This 
results in a stabilized pair of images. 

the image plane, then it would be simple to estiinate 
its 2D parametric image motion ( U )  21) between tc\o 
5uccessive frames, 1 ( x ,  y, t )  and I ( z >  y, t + 1) ’I his 
could be  done b j  computing the eight parameters 
( a ,  b ,  c,  d,  e ,  f, g, h )  of  the transformation ( U >  U )  (stv’ 
1k1 (5) 1 which minimize. the following error function 
<)\.er the region of support R [I61 

E r r ( t ) (  U ,  b ,  c ,  d ,  e,  f5 g ,  h )  = ( u l ,  + + 11 ) ? .  

)ER 
( 1 0 )  

The error minimizat,ion is performed iteratively using 
a Gauss;ian pyramid [4, 15, 161. 

Unfortunately, the rcsgion of support R of a pla- 
nar object, is not known in advance. Applying the er- 
ror minimization technique to the en,tire ima,gc would 
usually yield a meaningless result. 

 this^ however, is not true for simple 2D tram- 
lalions, where t,he 2D motion can be expressed by 
( u ( z ) y ) , v ( z , y ) )  = ( a . d ) .  I t  was shown in [5]  that, 
the rnoliion paraniet,ers of a single translating image 
region can he recovered accurately by minimizing t h e  

error function ~ r r ( ~ ) ( a ,  d )  = C~r,y)(u~x + ~1~ + I , ) ~  
with respect to a and d over the entire image (again. 
using iterations on a multiresolution data structure). 
This can be done even in th(x presence of other niov- 
ing objects in the region of analysis, and with no prior 
knowledge of their regions of support .  This object 
is called the dominant translating object.  and its 211 
translation the dornznant 2D translation. 

In [15, 161 this method wits ext,ended to conipuk 
hiyher order 2D motions (2D affine, 2 D  projt,ctivc) of 
a single planar object among differently nicwing 01)- 
jects. A segment,ation step, which riixrks t,lie rvgioii 
corresponding to  the c o m p u t d  domirialit, 2 D  inotiori, 
was added. This is the region of the dorninant planar 
object in the imagc. 

’I’he schemti for locking ont,o a single  plan^ ot),jc-.ct 
arid its 2D image motion is gradual, where 1,hc coni- 
plexity of the 2 D  motion model is iricrcascd i i i  m c h  
cornput,;ition step, arid the srgineiitatioii o f  t lw pla- 
liar object is refined accordingly. Mor<. dct.aiIs cari 
1 ~ :  found in [16] The 2D mot,iori rnotlels uwd i n  t , h c ,  
gradual locking on a planar object ale listed below in 
increasing coniplexity: 

I .  Translation: 2 paraiiieters. u(z, y) = (1, ~ 

o(s, y) = d.  T h i s  model is applied t,o t,lir frrti7.r 
image to get, an initial iiiotion est,iiiiat.ion. This 
coinputation is followed by segin~ut~ation to oh- 
tain a rough estimate of t.he ol)jtv-t8’s loc:tt,ion. 

2. Affine: 6 parameters, (((2. y )  == ( I  + b.r + cy,  
V ( T ,  y) = d + e.l: + f y .  ‘Tliis niotlc:l is applied only 
t,o t,he segmented region ohtaincd i n  tlir, t.ransla- 
tion computation step, i o  get, an afiiic, approsi- 
mation of t81w object’s motion. The prrvioiis 
mentation is refined accordingly. 

3 .  A Moving planar surface ( a  pseudo 2D 1)ro- 
jectivc transformat,ion): 8 parariiet.ers [ I  , 31 (see 
Eq. ( 5 ) ) .  U(T,  y) = a -t bx + C,y + y.c’ + h a : y ,  
V ( T )  y) = d +  ex + f y  + gxy + hy2.  This rriotIc,I is 
applied 1.0 the previously segmrrit,d region to fur- 
thrr refine the 2D motion cstiniatiori of t,he plaiiar 
object, and its segmental ion. 

5 Concluding Remarks 
A method is for computitig ego-iriot,ion in stat.ic 

scenes was introduced. At first. a n  irriage rcgion cor- 
responding tjo a planar surfxe in t,hc swne is tie- 
t e c t d ,  and its 2D motion p;iramc>t.ers lwtwcen sur- 
cessive frames are comput.ed. The 21) traiisforitiat ion 
is then used for image warping:, which cancels [,he rota- 
tional component of the 31) caiiiera motion for t,he ~ 7 1 -  

tire scene, and reduces the problem to pure 3D trans- 
lation. The  3D translation :t,he FOE) is cornput,etl 
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from the registered frames, and then the 3D rotation 
is computed by solving a small set of linear equations. 

It was shown that the ego-motion can be recovered 
reliably in all cases, except for two: The case of an  
entirely planar scene, and the case of an  ego-motion 
with a translation in the z-y plane only. The first case 
cannot be uniquely resolved by humans either, due to 
a visual ambiguity. In the second case it was shown 
that only the translation parameters of the camera and 
the rotation around its optical axis can be recovered 
accurately. The panning parameters (rotation around 
the z and y axes) can only be roughly estimated in 
this special case. In all other configurations of camera 
motion the ego-motion can be reliably recovered. 

The advantage of the presented technique is in its 
simplicity, and in the robustness and stability of each 
computational step. The choice of an  initial 2D mo- 
tion model enables efficient motion computation and 
numerical stability. There are no severe restrictions 
on the ego-motion or on the structure of the environ- 
ment. Most steps use only image intensities, and the 
optical flow is used only for extracting the FOE in the 
case of pure 3D translation, which does not require ac- 
curate optical flow. The inherent problems of optical 
flow and of feature matching are therefore avoided. 
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