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A weak version of the ε-Dvoretzky conjecture for

normed spaces

Bo’az Klartag and Tomer Novikov

Abstract

We prove a weak version of the ε-Dvoretzky conjecture for normed spaces, showing the

existence of a subspace of Rn of dimension at least c log n/| log ε| in which the given norm

is ε-close to a norm obeying a large discrete group of symmetries (“1-unconditional norm”).

1 Introduction

Dvoretzky’s theorem [6, 7] is a fundamental result in the theory of high-dimensional normed

spaces that was proved circa 1960. Conjectured earlier by Grothendieck [10] and by others

(see [6]), this theorem is formulated as follows:

Theorem 1.1 (Dvoretzky’s theorem). Let || · || be a norm in R
n and let 0 < ε < 1/2.

Suppose that k is an integer that satisfies

n ≥ exp

(

Ck
| log ε|

ε

)

, (1)

where C > 0 is a certain universal constant. Then there exists a k-dimensional subspace

E ⊆ R
n and r > 0 such that for all x ∈ E,

(1− ε)r|x| ≤ ||x|| ≤ (1 + ε)r|x|

where | · | is the standard Euclidean norm in R
n.

Theorem 1.1 can be reformulated as stating that any centrally-symmetric convex body

K ⊆ R
n has a central k-dimensional section that is nearly spherical.

The estimate (1) is taken from Paouris and Valettas [17], and it improves upon an earlier

bound by Schechtman [19] by a factor that is logarithmic in ε, which in turn improves upon

an estimate by Gordon [9] by a factor which is nearly 1/ε. All of these proofs utilize a highly

influential approach by V. Milman to Dvoretzky’s theorem which emphasizes the role of the

concentration of measure phenomena, and which has found applications in several branches

of mathematics [14, 16].

However, the dependence on 1/ε in the estimate (1) is exponential. It was suggested

by Milman [13] that the actual dependence on ε in Dvoretzky’s theorem should perhaps be
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polynomial. This is the conjectural almost-isometric variant of Dvoretzky’s theorem. This

conjecture holds true in the case when k = 2 (see [13]) or when the norm ‖ · ‖ is assumed

1-symmetric, i.e., when

∥

∥(±xπ(1), . . . ,±xπ(n))
∥

∥ = ‖(x1, . . . , xn)‖

for all vectors (x1, . . . , xn) ∈ R
n, for any permutation π ∈ Sn and for any choice of

signs. See Bourgain-Lindenstrauss [3], Tikhomirov [21] and Fresen [8] for analysis of the

1-symmetric case.

All proofs of Theorem 1.1 for general k rely heavily on probability and analysis, for

example through the use of P. Lévy’s concentration inequality for Lipschitz functions on the

high-dimensional sphere [15]. On the other hand, the proof for the case k = 2, which is

attributed to Gromov by Milman [13], is purely topological. As for the case k ≥ 3, there

is hope that a proof employing topological tools could lead to better dependence on ε in

Theorem 1.1. See also Burago, Ivanov and Tabachnikov [4] for a discussion of possible

topological approaches to Dvoretzky’s theorem and their shortcomings.

Our main result relies on elementary topological tools in order to make advances towards

the almost-isometric variant of Dvoretzky’s theorem. Unfortunately, we do not obtain a full

rotational symmetry but only the so-called “1-unconditional symmetries”. A norm ‖·‖ in R
n

is “unconditional” with respect to the orthonormal basis (e1, . . . , en) if for any x1, . . . , xn ∈
R and any choice of signs,

∥

∥

∥

∥

∥

n
∑

i=1

±xiei

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

i=1

xiei

∥

∥

∥

∥

∥

.

Thus the norm ‖ · ‖ admits a symmetry group with 2n elements. We say that a norm defined

in a subspace of Rn is unconditional if there exists an orthonormal basis in this subspace

with respect to which it is unconditional.

Theorem 1.2. Let || · || be a norm in R
n and let 0 < ε < 1/2. Suppose that k ≥ 2 is an

integer that satisfies

n ≥
(

C

ε

)3(k−1)

(2)

for a certain universal constant C > 0. Then there exists a k-dimensional subspace E ⊆ R
n

and an unconditional norm ‖| · ‖| in the subspace E such that for all x ∈ E,

(1− ε)‖|x‖| ≤ ||x|| ≤ (1 + ε)‖|x‖|.

While the dependence on 1/ε in Theorem 1.2 is only polynomial, as desired, the expo-

nent 3(k − 1) in (2) is non-optimal. It may be replaced by α(k − 1) for any α > 2 at the

expense of modifying the value of the universal constant C > 0 from Theorem 1.2, as can

be seen from the proof. It is likely possible to replace the “unconditional” symmetries of

the norm ‖| · ‖| in Theorem 1.2 by other commutative groups of symmetries, such as cyclic

permutations of the coordinates. See also Makeev [12] and Burago, Ivanov and Tabachnikov

[4]. However, we do not know how to obtain a discrete group of symmetries such as the
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group of permutations Sn, or its 2-Sylow subgroup, while keeping the dependence on 1/ε
polynomial.

Theorem 1.1 and Theorem 1.2 should be compared with the results of Alon and Milman

[1] that show in particular that any normed space of sufficiently high dimension contains a k-

dimensional subspace that is ε-close either to ℓk2 or to ℓk∞. The dependence on ε here is worse

than that of Theorem 1.2, and it seems to us that the results of [1] are not directly applicable

in the case where, say, ε ≤ 1/ log2 n where n is the dimension of the given normed space.

On the other hand, when ε is a fixed constant that is not allowed to depend on the dimension,

Alon and Milman [1] yield a stronger conclusion than that of Theorem 1.2, allowing k to be

as large as exp(c
√
log n) and yielding a subspace isomorphic to ℓk2 or to ℓk∞. The argument

from [1] was simplified by Talagrand [20] and the results of [1] were used by Schechtman

[19] and by Paouris and Valettas [17] in their proof of Theorem 1.1.

In this paper we write 〈·, ·〉 for the standard Euclidean product in R
n, and |x| =

√

〈x, x〉.
By log we refer to the natural logarithm. Throughout this text we use the letters c, C, C̃ etc.

to denote positive universal constants, that may be explicitely computed in principle, whose

value may change from one line to the next.

Acknowledgements. Supported by a grant from the Israel Science Foundation (ISF). This

paper is based on an M.Sc. thesis written by the second named author under the supervision

of the first named author at the Weizmann Institute of Science. We thank Roman Karasev

for noting an error in an earlier version of this manuscript.

2 Unconditional symmetries

Consider the group (Z/2Z)k ∼= {±1}k . This group acts on the Stiefel manifold Wn,k of

k-frames in R
n by switching the signs of the frame vectors, i.e.,

g.(U1, . . . , Uk) = (g1U1, . . . , gkUk) for (U1, . . . , Uk) ∈ Wn,k, (g1, . . . , gk) ∈ {±1}k
(3)

where U1, . . . , Uk ∈ R
n is a k-frame. A linear action of a group G on R

ℓ (i.e., a representa-

tion) is fixed-point-free if there is no vector 0 6= x ∈ R
ℓ with g.x = x for all g ∈ G.

Proposition 2.1. Consider any fixed-point-free representation of G = {±1}k in R
ℓ for

ℓ ≤ n − k. Then any continuous, G-equivariant map F : Wn,k → R
ℓ has to vanish

somewhere in Wn,k.

The difference between Proposition 2.1 and Theorem 1.1 in Chan, Chen, Frick and Hull

[5], is that the respresentation in R
ℓ can be arbitrary, as long as it is fixed-point-free. We

guess that there should be an elegant algebraic-topology proof of Proposition 2.1, perhaps

using Stiefel-Whitney classes.

Proof of Proposition 2.1. For a non-empty subset A ⊆ {1, . . . , k} we define the one-dimensional

representation

wA(g) =
∏

i∈A

gi for g = (g1, . . . , gk) ∈ {±1}k,
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where the linear action on R is given by g.x = wA(g)x for x ∈ R, g ∈ G. Any fixed-

point-free, irreducible representation of the abelian group G = {±1}k is isomorphic to one

of these 2k − 1 one-dimensional representations. Any finite-dimensional representation of

G splits into a direct sum of irreducible representations. Thus every fixed-point-free, finite-

dimensional representation of {±1}k is characterized by a formal sum

τ =
∑

∅6=A⊆{1,...,k}

mA ·A (4)

for non-negative integers mA, which count the number of times that each irreducible repre-

sentation occurs in the given finite-dimensional representation. Note that the dimension of

the representation is |τ | :=∑A |mA|.
Recall that we are given a certain fixed-point-free representation of the group G in R

ℓ.

Write the formal sum corresponding to this representation as

S1 + S2 + . . .+ Sk

where Si is the part of the formal sum that includes all subsets A ⊆ {1, . . . , k}, where the

maximal element of Ai,j is precisely i. Since ℓ ≤ n− k we have

|Si| ≤ n− k for i = 1, . . . , k.

Denote N = nk − k(k + 1)/2 = dim(Wn,k). Consider a representation of G in the space

R
N corresponding to the formal sum

τ̃ =

k
∑

i=1

(n− i− |Si|) · {i}+
k
∑

i=1

Si. (5)

This representation in the space R
N has an invariant subspace isomorphic to the represen-

tation in the space R
ℓ that is given to us. Hence it suffices to prove that any continuous,

G-equivariant map from X to R
N , vanishes somewhere in Wn,k. In view of [11, Theorem

2.1], it suffices to construct a smooth, G-equivariant map f : Wn,k → R
N , of which zero

is a regular value, such that f−1(0) is an orbit of G. The function f that we will construct

takes the form

f = (fi,j)1≤i≤k,1≤j≤n−i

for scalar functions fi,j : Wn,k → R. These scalar functions are defined as follows: For

1 ≤ i ≤ k and |Si|+ 1 ≤ j ≤ n− i we set

fi,j(U) = Ui,i+j (U ∈ Wn,k) (6)

where U = (U1, . . . , Uk) is a k-frame in R
n, and Ui = (Ui,1, . . . , Ui,n) ∈ R

n. We still need

to define fi,j for 1 ≤ j ≤ |Si|. Let us write

Si =

|Si|
∑

j=1

Ai,j
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for non-empty subsets Ai,j ⊆ {1, . . . , k} whose maximal element equals i. For 1 ≤ j ≤ |Si|
we set

fi,j(U) = Ui,i+j ·
∏

r∈Ai,j\{i}

Ur,r. (7)

This completes the definition of the smooth map f : Wn,k → R
N . Recalling (3), we observe

that the map f is indeed G-equivariant; its coordinates fi,j that are defined in (6) correspond

to the first summand in (5), while its coordinates that are defined in (7) correspond to the

second summand.

Let us now describe the zero set of f . Suppose that U ∈ Wn,k satisfies f(U) = 0. The

fact that f1,j(U) = 0 for all 1 ≤ j ≤ n− 1 implies that

U1 = e1 = (±1, 0, . . . , 0).

Similarly, the facts that f2,j(U) = 0 for all 1 ≤ j ≤ n − 2 and that U2 ⊥ U1 imply

that U2 = e2 = (0,±1, 0, . . . , 0). By a straightforward induction argument, we see that

Uj = ±ej , where e1, . . . , en ∈ R
n are the standard unit vectors. Thus

f−1(0) = {(δ1e1, . . . , δkek) ; δi = ±1 for i = 1, . . . , k} ⊆ Wn,k.

We see that f−1(0) is a set of size 2k which is an orbit of G. We need to explain why zero is

a regular value of f . To this end we consider a smooth regular curve U(t) ∈ Wn,k, defined

for t ∈ (−1, 1) with U(0) ∈ f−1(0). Note that the derivatives with respect to the variable t,
denoted by U̇1,1(t), . . . , U̇k,k(t) all vanish for t = 0, because |Ui,i(0)| = 1 ≥ |Ui,i(t)| for all

i and t. A crucial observation is that the derivative at t = 0 of the vector

(Ui,i+j(t))1≤i≤k,1≤j≤n−i ∈ R
N

does not vanish, because U̇(0) 6= 0 and because U(t) ∈ Wn,k for all t. It thus follows from

(6), (7) and the Leibnitz rule for differentiation that d
dtf(U(t)) does not vanish for t = 0,

as required. We have thus verified all of the requirements from [11, Theorem 2.1], thereby

completing the proof.

Next we describe the elegant method from Barvinok [2] for approximating a norm by

a homogeneous polynomial taken to some power. Fix k ≥ 1. We refer to a vector α =
(α1, . . . , αk) ∈ Z

k
≥0 of non-negative integers as a multi-index. The order of the multi-index

α = (α1, . . . , αk) is

|α| =
k
∑

i=1

αi.

The collection of multi-indices of order d is denoted by Md. It is a set of cardinality
(

d+k−1
k−1

)

.

For x ∈ R
k and α ∈ Md we define

xα =

k
∏

i=1

xαi

i ∈ R. (8)
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For an integer d ≥ 1 and x ∈ R
k we set

x⊗d = (xα)|α|=d ∈ R
Md

(the reason for this notation is that the linear space R
Md may be identified with the symmet-

ric tensor product of order d of Rk). Note that (−x)⊗d = (−1)d · x⊗d. We use (bα)α∈Md
as

the coordinates of a vector b ∈ R
Md , thus for instance we may write

(x⊗d)α = xα (x ∈ R
k, α ∈ Md).

For a, b ∈ R
Md we define the scalar product

(a, b) =
∑

α∈Md

(

d

α

)

aαbα

where
(

d
α

)

= d!/
∏k

i=1 αi! is a multinomial coefficient. Note that for any x, y ∈ R
k, by the

multinomial theorem,

(x⊗d, y⊗d) =
∑

α∈Md

(

d

α

)

xαyα =

(

k
∑

i=1

xiyi

)d

= 〈x, y〉d. (9)

Suppose that d is an odd, positive integer. Given a norm ‖ · ‖ in R
k, we consider the dual

norm

‖x‖∗ = sup
06=z∈Rk

〈z, x〉
‖z‖

and the convex set

K‖·‖ = conv
{

x⊗d ; x ∈ R
k, ‖x‖∗ ≤ 1

}

, (10)

where conv denotes the convex hull of a set. The set K = K‖·‖ ⊆ R
Md is a centrally-

symmetric convex body with a non-empty interior, as explained in [2]. Note that by (9) and

(10), for any x ∈ R
k,

‖x‖d = sup
‖y‖∗≤1

〈x, y〉d = sup
‖y‖∗≤1

(x⊗d, y⊗d) = sup
a∈K

(x⊗d, a). (11)

Among all centrally-symmetric ellipsoids that are contained in K = K‖·‖, there is a unique

ellipsoid of maximal volume (see e.g. [18, Corollary 3.7]). We denote this maximal-volume

ellipsoid by E = E‖·‖ ⊆ R
Md . By the John theorem (see e.g. [18, Chapter 3]),

E ⊆ K ⊆
√

|Md| · E , (12)

where |Md| is the cardinality of the set Md. Since E is a centrally-symmetric ellipsoid in

R
Md and since (·, ·) is an inner product, the expression supa∈E(a, b)

2 is a quadratic function

of b ∈ R
Md that is positive for all 0 6= b ∈ R

Md . Consequently, there exists a positive-

definite, symmetric matrix

A = (Aα,β)α,β∈Md
∈ R

Md×Md

6



which satisfies

∑

α,β∈Md

Aα,βbαbβ = sup
a∈E

(a, b)2 for all b ∈ R
Md . (13)

The symmetric matrix A = A‖·‖ is uniquely determined by the ellipsoid E = E‖·‖. As in

Barvinok [2], we conclude from (11), (12) and (13) that

∑

α,β∈Md

Aα,βx
αxβ ≤ ‖x‖2d ≤ |Md| ·

∑

α,β∈Md

Aα,βx
αxβ. (14)

Observe also that xαxβ = xα+β for all x ∈ R
k, α, β ∈ Md. According to (14), the given

norm ‖ · ‖ in R
k, taken to the power 2d, is approximated by a 2d-homogeneous polynomial

in R
k.

Lemma 2.2. The matrix A = A‖·‖ varies continuously with the norm ‖ · ‖, where we equip

the space of norms on R
k with the topology of uniform convergence on Sk−1. Moreover, for

δ ∈ {±1}k and a norm ‖ · ‖ on R
k, denote

‖x‖δ = ‖(δ1x1, . . . , δkxk)‖ for x ∈ R
k.

Then the symmetric matrices A‖·‖ = (Aα,β)α,β∈Md
and A‖·‖δ = (Aα,β(δ))α,β∈Md

satisfy

Aα,β(δ) = δα+βAα,β for α, β ∈ Md, (15)

where we recall that δα+β =
∏k

i=1 δ
αi+βi

i .

Proof. Let us continuously vary the norm ‖ · ‖. Then the dual norm ‖ · ‖ also varies con-

tinuously, and the convex body K = K‖·‖ ⊆ R
Md varies continuously with respect to the

Hausdorff metric. Since the maximal volume ellipsoid E = E‖·‖ is uniquely determined, it

also varies continuously with respect to the Hausdorff metric. This follows from the fact

that if f(x, y) is a continuous function of two variables in a compact metric space, and

miny f(x, y) is uniquely attained for any x at a point y0(x), then y0(x) is a continuous func-

tion of x. The symmetric matrix A is determined by E through (13), and it is elementary

to verify its continuity. Next, for any δ ∈ {±1}k the convex set K‖·‖δ is the image of K‖·‖

under the linear map

(yα)α∈Md
7→ (δαyα)α∈Md

. (16)

Similarly, the ellipsoid E‖·‖δ is the image of the ellipsoid E‖·‖ under the linear map in (16).

Hence the matrix A‖·‖δ is congruent to the matrix A‖·‖ via the linear transformation (16),

and relation (15) holds true.

Consider the lexicographic order on Md. That is, for two distinct multi-indices α, β ∈
Md let i0 ∈ {1, . . . , k} be the minimal index with αi0 6= βi0 . We write that α < β if

αi0 < βi0 . It is easy to verify that < is a linear order relation. Consider the subset

Ed =
{

(α, β) ; α, β ∈ Md, α < β, α+ β 6∈ 2Zk
}

⊆ Md ×Md,

where 2Zk is the collection of all vectors of length k whose coordinates are even integers.
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Proof of Theorem 1.2. For U = (U1, . . . , Uk) ∈ Wn,k with U1, . . . , Uk ∈ R
n being a k-

frame, we define the norm

‖x‖U =

∥

∥

∥

∥

∥

k
∑

i=1

xiUi

∥

∥

∥

∥

∥

for x ∈ R
k.

Let d be an odd, positive integer such that

1

2

(

d+ k − 1

k − 1

)2

≤ n− k. (17)

Let us abbreviate A(U) := A‖·‖U ∈ R
Md×Md . Write A(U) = (Aα,β(U))α,β∈Md

and recall

that Aα,β(U) = Aβ,α(U). Consider the map

Wn,k ∋ U 7→ (Aα,β(U))(α,β)∈Ed
∈ R

ℓ (18)

for

ℓ = |Ed| ≤
|Md| · (|Md| − 1)

2
≤ 1

2

(

d+ k − 1

k − 1

)2

≤ n− k. (19)

The map defined in (18) is continuous, as follows from Lemma 2.2. It is equivariant with

respect to the group G = {±1}k, where the action of G on Wn,k is given by (3), and the

action on R
ℓ is described by (15). Observe that the last action is fixed-point-free, as we only

consider α, β ∈ Md with α + β 6∈ 2Zk. We may apply Proposition 2.1 thanks to (19) and

conclude that there exists U ∈ Wn,k such that for any α, β ∈ Md,

Aα,β(U) = 0 whenever α+ β 6∈ 2Zk. (20)

We fix such U ∈ Wn,k, and show that the norm ‖x‖U is approximately an unconditional

norm in R
k. For x ∈ R

k consider the (2d)-homogeneous polynomial,

P (x) =
∑

α,β∈Md

Aα,β(U)xα+β (x ∈ R
k).

It follows from (20) that P (x1, . . . , xk) = P (±x1, . . . ,±xk) for any choice of signs. In

view of (14), the {±1}k-invariant, (2d)-homogeneous polynomial P satisfies

P (x)1/(2d) ≤ ‖x‖U ≤ |Md|1/(2d) · P (x)1/(2d) (x ∈ R
k). (21)

Denote

ε = |Md|1/(2d) − 1 (22)

and set also ‖|x‖| = 2−n
∑

δ∈{±1}k ‖(δ1x1, . . . , δkxk)‖U . Then ‖| · ‖| is an unconditional

norm, and it follows from (21) that

1

1 + ε
‖|x‖| ≤ ‖x‖U ≤ (1 + ε)‖|x‖| for x ∈ R

k.

Recall that 1 − ε ≤ 1/(1 + ε) provided that 0 < ε < 1. Since |Md| =
(d+k−1

k−1

)

we deduce

from (22) that assuming d ≥ k,

ε ≤
(

2e
d

k

)
k
2d

− 1 ≤ C
log(d/k)

d/k
≤ C̃

(d/k)2/3
. (23)

8



We claim that we may choose d ≥ ckn
1

2(k−1) so that (17) would hold true. Indeed, we may

assume that k ≤ n/2 as otherwise there is nothing to prove. Thus (17) holds true whenever

(

d+ k − 1

k − 1

)2

≤
(

2e
d

k − 1

)2(k−1)

≤ n.

Consequently, from (23), for any k ≥ 2 the conclusion of the theorem holds true with any

0 < ε < 1/2 that satisfies

ε ≤ Cn
− 1

3(k−1) (24)

for a universal constant C > 0. The number “3” in (24) may be replaced by any number

α > 2, at the expense of increasing the universal constant C > 0.

Remark. In Bourgain-Lindenstrauss [3], Tikhomirov [21] and Fresen [8], one assumes

that the given norm is invariant under the group (Z/2Z)n ⋊ Sn and concludes the existence

of approximately-spherical sections with good dependence on the degree of approximation.

We note here that it is easy to obtain (Z/2Z)n ⋊ Sn-symmetric norms from Sn-symmetric

norms, by reducing the dimension by a factor of two. Specifically, if ‖ · ‖ is a permutation-

invariant norm in R
n, for even n, then for m = n/2, the norm

‖|(x1, . . . , xm)‖| = ‖(x1,−x1, x2,−x2, . . . , xm,−xm)‖

is a (Z/2Z)m ⋊ Sm-invariant norm on R
m.
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