Introduction to Riemann Surfaces, exercise sheet no. 1

- 1. Let $z_0 \in \mathbb{C}$ and let ϕ be holomorphic near z_0 . Suppose that $\{(U_t, \phi_t)\}_{t \in [a,b]}$ is an analytic continuation of ϕ along $\gamma : [a,b] \to \mathbb{C}$ with $\gamma(a) = z_0$. Prove that the function $t \mapsto \phi_t(\gamma(t))$ is uniquely determined.
- 2. Prove that any branch of z^{α} , with $\alpha \in \mathbb{R}$, has an analytic continuation along any curve γ that does not pass through the origin.
- 3. Let $z_0, z_1, \ldots, z_n \in \mathbb{C}$ be fixed. Let $\phi(z)$ be a holomorphic function near z_0 with $\phi^m(z) \equiv \prod_{i=1}^n (z-z_i)$. Let $\gamma: [a,b] \to \mathbb{C}$ be a loop about z_0 that avoids the points z_1, \ldots, z_n , and assume that (U_t, ϕ_t) is an analytic continuation of ϕ along γ . Prove that

$$\frac{\phi_b(z_0)}{\phi_a(z_0)} = \exp\left(\frac{2\pi i}{m} \sum_{j=1}^n \operatorname{ind}(\gamma, z_j)\right).$$

4. Let $f: D \to \mathbb{C}$ be an invertible holomorphic map whose image is convex, where $D = D(0,1) \subseteq \mathbb{C}$ is the unit disc. Prove Carathéodory's inequality

$$|f''(0)| \le 2|f'(0)|$$

(hint: Use Schwartz lemma for $g(z)=f^{-1}\left(\frac{f(\sqrt{z})+f(-\sqrt{z})}{2}\right)$. The Schwartz lemma states that a holomorphic $f:D\to D$ with f(0)=0 satisfies $|f'(0)|\le 1$).

5. Let $P,Q:D(0,R)\to\mathbb{C}$ be holomorphic functions. Prove that there is a holomorphic solution in D(0,R) to the differential equation

$$u'' + Pu' + Qu = 0. (1)$$

Moreover, prove that the space of such solutions V is a two-dimensional linear space. (one possible hint: Write $P(z) = \sum_n p_n z^n$, $Q(z) = \sum_n q_n z^n$ with $\limsup |a_n|^{1/n} \le 1/R$, and look for a solution of the form $u(z) = \sum_{n=0}^{\infty} u_n z^n$.)

- 6. Suppose P, Q are holo. in an open set $U \subseteq \mathbb{C}$ and $\gamma : [0, 1] \to U$. Prove that any solution of (1) near the point $\gamma(0)$ has an analytic continuation along γ , which is still a solution.
- 7. From the previous exercise we learn that given a loop $\gamma:[0,1] \to U$ with $\gamma(0) = z_0$, we may consider the space V of holo. solutions near z_0 . Then we have a monodromy map: $V \ni u \mapsto M_{\gamma}u \in V$. It is a linear map.

If P(z)=A/z and $Q(z)=B/z^2$, and $\alpha_1,\alpha_2\in\mathbb{C}$ are two distinct solutions of $\alpha(\alpha-1)+A\alpha+B=0$, then the monodromy map of a simple loop around zero has eigenvalues $e^{2\pi i\alpha_1}$ and $e^{2\pi i\alpha_2}$. Hint: Look for solutions of the form z^{α} .