Introduction to Riemann Surfaces, exercise sheet no. 2

1. Prove the inverse function theorem: Let $U \subseteq \mathbb{C}$ be open, let $f: U \rightarrow \mathbb{C}$ be holomorphic and one-to-one. Then $V=f(U)$ is open, $g=f^{-1}$ is holomoprhic on V, and $f^{\prime}(z) \cdot g^{\prime}(f(z)) \equiv 1$.
2. Let $F(z, w)$ be holomorphic in z and w, and let $g(z)$ and $h(z)$ be holomorphic functions of a complex variable z. Prove that $F(g(z), h(z))$ is holomorphic.
3. Let $\mathcal{A}=\left\{\left(U_{\alpha}, \tilde{U}_{\alpha}, \psi_{\alpha}\right)\right\}_{\alpha \in I}$ and $\mathcal{B}=\left\{\left(V_{\beta}, \tilde{V}_{\beta}, \psi_{\beta}\right)\right\}_{\beta \in I}$ be two complex structures ("atlas of complex charts") on a Hausdorff topological space X. Assume that $\mathcal{A} \subseteq \mathcal{B}$. Prove that the two resulting Riemann surfaces are equivalent.
4. Let X be a Riemann surface. Prove that $f: X \rightarrow \mathbb{C}_{\infty}$ which is not identically ∞ is holomoprhic if and only if it is meromorphic ("holomorphic except for poles") in any local coordinate.
5. Prove that all biholomorphisms of \mathbb{C}_{∞} are Möbius maps $z \mapsto(a z+b) /(c z+$ d). Moreover, this group of biholomorphisms is isomorphic to $P S L_{2}(\mathbb{C})=$ $S L_{2}(\mathbb{C}) / \pm I$. Finally, each Möbius transformation may be obtained by applying a stereographic projection from the plane to a sphere in \mathbb{R}^{3}, then applying a translation and a rotation in space to the sphere, and then a stereographic projection back from the sphere to the plane.
6. The Schwartz derivative of a holomorphic function f on \mathbb{C} is

$$
(S f)(z)=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

Show that for any Möbius transformation g we have that $S(g \circ f)=S(f)$.
7. Let $P \subseteq \mathbb{R}^{3}$ be a connected, oriented polyhedron. Prove that $\mathbb{R}^{3} \backslash P$ has two connected components.
8. Let $D=\{z \in \mathbb{C} ; 0<|z|<1\}$ and let Γ be the group generated by $z \mapsto e^{2 \pi i / n} z$. Prove that the Riemann surface D / Γ is equivalent to the cylinder \mathbb{C} / Z.
9. Let $D=\mathbb{C} \backslash\{0\}$ and let Γ be the group generated by the map $z \mapsto 2 z$. Prove that D / Γ is equivalent as a Riemann surface to the torus \mathbb{C} / L where L is some lattice in \mathbb{C}.
10. Let $U \subseteq \mathbb{C}^{2}$ be open, let $F: U \rightarrow \mathbb{C}$ be holomorphic with $\left|F_{z}\right|^{2}+\left|F_{w}\right|^{2}>$ 0 throughout U. Prove that the function $\pi_{2}(z, w)=w$ is holomorphic on the Riemann surface $X=\{(z, w) \in U ; F(z, w)=0\}$. [Also at points with $F_{w}=0$].

