Introduction to Riemann Surfaces, exercise sheet no. 3

1. Verify that if $f: D \rightarrow \mathbb{C} \cup\{\infty\}$ has a pole at zero, then its multiplicity at zero is indeed the order of the pole (i.e., the number N such that $f(z)=\sum_{k=-N}^{\infty} a_{k} z^{k}$ with $a_{-N} \neq 0$).
2. Verify that if $X=\{F(z, w)=0\}$ with F holomorphic, and $\partial F / \partial w \neq 0$ at a point $p \in X$, then $\pi(z, w)=z$ has multiplicity one at the point p.
3. Let $f: X \rightarrow \mathbb{C}$ be holomorphic, $U, V \subseteq X$ connected open sets such that $\left.f\right|_{U}$ and $\left.f\right|_{V}$ are biholomorphisms. Assume that $U \cap V \neq \emptyset$ and $f(U)=f(V)$. Prove that $U=V$.
4. Prove Hadamard's theorem: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a proper, continuous map. Assume that f is a local homeomorphism (any $p \in \mathbb{R}^{n}$ has an open nbhd U such that $f(U)$ is open and $f: U \rightarrow f(U)$ is a homeomorphism). Prove that f is onto. If you already know what a covering map is, prove also that f is one-to-one.
5. Let $P(z, w)$ be a polynomial. Prove that by applying a random, invertible linear transformation T, we almost-surely obtain a polynomial $Q=P \circ T$ of the form

$$
Q(z, w)=c w^{d}+P_{d-1}(z) w^{d-1}+P_{d-2}(z) w^{d-2}+\ldots+P_{0}(z)
$$

where P_{0}, \ldots, P_{d-1} are polynomials and $c \neq 0$.
6. (a) Prove the Gauss lemma: If $f(y)$ is an irreducible polynomial such that

$$
f(y) \mid P(x, y) Q(x, y)
$$

then either $f(y) \mid P(x, y)$ or $f(y) \mid Q(x, y)$. [Hint: $f(y) \mid P(x, y)$ if and only if $P(x, y)=\sum P_{i}(y) x^{i}$ and $f \mid P_{i}$ for all $\left.i\right]$.
(b) Let k be a field (e.g., the field of rational functions in \mathbb{C}), and let $k[z]$ be the ring of polynomials in z with coefficients in k. Prove that if $P \in k[z]$ is irreducible and Q is not a multiple of P, then there exist $\alpha, \beta \in k[z]$ such that $\alpha P+\beta Q \equiv 1$.
(c) Let $P(z, w)$ be an irreducible polynomial. We may view P as a polynomial in $k[z]$ where $k=\mathbb{C}(w)$ is the field of rational functions in \mathbb{C}. Deduce from the Gauss lemma that P is irreducible in $k[z]$.
(d) Let $P(z, w), Q(z, w)$ be polynomials, P irreducible and Q is not a multiple of P. Prove that there exist polynomials $\alpha(z, w), \beta(z, w)$ and $g(w)$ such that

$$
\alpha(z, w) P(z, w)+\beta(z, w) Q(z, w) \equiv g(w)
$$

