Introduction to Riemann Surfaces, exercise sheet no. 5

- 1. Prove that any holomorphic map $f: S^2 \to S^2$ is a rational function.
- 2. In freshman calculus class, we were told how to compute $\int R(x, \sqrt{x^2 + bx + c}) dx$ for some rational function R by using the Euler substitution: $\sqrt{x^2 + bx + c} = \pm x + t$. Explain where this magic substitution comes from, by studying the normalization and parameterization of the algebraic curve $y^2 = x^2 + bx + c$.
- 3. Find the genus of the normalization X^* for the affine algebraic curve

$$w^k = (z - z_1)(z - z_2) \dots (z - z_m)$$

and the map $\pi(z,w)=z$, as a function of k and of the distinct points $z_1,\ldots,z_m\in\mathbb{C}$.

4. Let $U \subseteq \mathbb{C}$ be open, $\psi_0: U \to \mathbb{C}$ holomorphic, $y_0 \in U$. Look at all curves $\gamma: [0,1] \to \mathbb{C}$ with $\gamma(0) = y_0$ such that ψ_0 has an analytic continuation $\{(U_t, \psi_t)\}_{t \in [0,1]}$ along γ . We say that $\gamma \sim \tilde{\gamma}$ if when

$$\gamma(1) = \tilde{\gamma}(1), \psi_1(\gamma(1)) = \psi_1(\tilde{\gamma}(1)).$$

Let X be the collection of all equivalence maps, and consider on X two maps

$$F([\gamma]) = \gamma(1), \Psi([\gamma]) = \psi_1(\gamma(1))$$

Prove that there is a unique complex structure on X, such that F and Ψ are holomorphic, and F is a local homeomorphism.

- 5. The Riemann surface X constructed in the previous exercise is called "the Riemann surface associated with a holomorphic function ψ_0 ". Explain what is X in the case where $U=D(1,\varepsilon)$ and $\psi_0(z)$ is a branch of \sqrt{z} in U. What is the normalization of $F:X\to\mathbb{C}$? and of $\Psi:X\to\mathbb{C}$?
- 6. Describe the Riemann surface of the inverse function to $f(z) = z^3 z$.
- 7. Prove that in a simply-connected domain $D \subseteq \mathbb{C}$, for any $z \notin D$ there is an analytic branch of $\log(z z_0)$ in D.
- 8. Define a harmonic function on a Riemann surface. Define a conjugate harmonic function. Prove that in a simply-connected Riemann surface, any harmonic function has a conjugate.