Introduction to Riemann Surfaces, exercise sheet no. 6

1. Explain how to define the integral of a holomorphic 1-form α on a Riemann surface X with respect to a curve $\gamma:[0,1] \rightarrow X$ which is assumed merely continuous. (By the way, this is possible also for a non-holomorphic 1-form).
2. Let $X \subseteq \mathbb{C}^{2}$ be a Riemann surface defined by the equation $F(z, w)=0$ for a holomorphic $F: \mathbb{C}^{2} \rightarrow \mathbb{C}$. Prove that on X we have the relation

$$
\frac{\partial F}{\partial z} \cdot d z+\frac{\partial F}{\partial w} \cdot d w=0
$$

3. For $z \in D=D(0,1) \subseteq \mathbb{C}$ and $t \in[0,2 \pi]$ we define $\theta^{*}(t)$ via the requirement that $e^{i t}, e^{i \theta^{*}(t)}$ and z are collinear. Prove that for any harmonic function u on D that is continuous up to the boundary,

$$
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(\theta^{*}(t)\right) d t \quad(z \in D)
$$

Deduce that the Poisson integral of a continuous function on ∂D is continuous up to the boundary.
4. Consider the Riemann surface $X=\left\{w^{2}=P(z)\right\}$, where $P(z)=\left(z-z_{1}\right)(z-$ $\left.z_{2}\right)\left(z-z_{3}\right)$ with $z_{1}, z_{2}, z_{3} \in \mathbb{C}$ distinct, and set $\pi(z, w)=z$. Let $R=\max _{j}\left|z_{j}\right|$. Find an explicit isomorphism between $\left(\pi^{-1}(\mathbb{C} \backslash R D), \pi\right)$ and $\left(\mathbb{C} \backslash \sqrt{R} D, z \mapsto z^{2}\right)$.
5. Show that a Riemann surface which is a quotient of \mathbb{C} is either the cylinder $\mathbb{C} \backslash\{0\}$ or a torus \mathbb{C} / Λ for a certain two-dimensional lattice $\Lambda \subseteq \mathbb{C}$. (Well, or \mathbb{C} itself). Find all holomorphic maps from a torus to itself.
6. Let $\Lambda_{1}, \Lambda_{2} \subseteq \mathbb{C}$ be two-dimensional lattices, and let $P_{\Lambda_{1}}, P_{\Lambda_{2}}$ be the associated Weierstrass functions. Assume that there is a linear transformation mapping the critical values of $P_{\Lambda_{1}}$ to those of $P_{\Lambda_{2}}$. Deduce from Riemann's existence and uniqueness theorem that \mathbb{C} / Λ_{1} is equivalent to \mathbb{C} / Λ_{2}.
7. Prove that if there is no linear transformation, then \mathbb{C} / Λ_{1} is not equivalent to \mathbb{C} / Λ_{2}.
8. Consider the Riemann surface $X=\left\{w^{2}=(E+z)\left(1-z^{2}\right)\right\}$ for some $E \in \mathbb{R} \backslash\{ \pm 1\}$. In class we showed that X is equivalent to $(\mathbb{C} / \Lambda) \backslash\{0\}$ for a certain lattice $\Lambda \subseteq \mathbb{C}$, via the Weierstrass function and its derivative. Prove that Λ is a rectangular lattice, perhaps by integrating $d z / w$ over loops in X.
9. Let $P(x)$ be a real polynomial of degree 4 with two local minima. For a parameter $E \in \mathbb{R}$, consider the equation $(d x / d t)^{2}+P(x(t))=E$, the Newtonian motion of a particle in a line under potential energy $P(x)$. Pick E such that there are two distinct periodic solutions, each oscillating near a local minimum. Prove that they have the same period.

