Real analysis - Exam 2016a - Solution

1. Denote $A := \{x \in [0,1) : f'(x) = 0\}$. By the assumption, m(A) = 1. Let $\epsilon > 0$. For every $x \in A$ there exists $0 < \delta_x < 1 - x$ such that for every $0 < h < \delta_x$, we have

$$\Delta_{[x,x+h]}(f) = |f(x+h) - f(x)| \le \epsilon h.$$

Since f is absolutely continuous, there exists $\delta > 0$ such that for any pairwise disjoint intervals $J_1, \ldots, J_n \subset [0, 1]$, we have

$$\sum_{k=1}^{n} m(J_k) \le \delta \implies \sum_{k=1}^{n} \Delta_{J_k}(f) \le \epsilon.$$

Define

$$\mathcal{F} := \{ [x, x+h] : x \in A, \ 0 < h < \delta_x \}$$

and note that F is a Vitali cover of A. Hence, by the Vitali covering lemma, there exist pairwise disjoint intervals $I_1, \ldots, I_m \in \mathcal{F}$ such that $m(I) \ge 1 - \delta$, where $I := I_1 \cup \cdots \cup I_m$. Write $[0, 1] \setminus I = J_1 \cup \cdots \cup J_n$, where J_1, \ldots, J_n are pairwise disjoint intervals. Then, since $m(J_1) + \cdots + m(J_n) = 1 - m(I) \le \delta$, we have

$$|f(1) - f(0)| \le \sum_{i=1}^{m} \Delta_{I_i}(f) + \sum_{k=1}^{n} \Delta_{J_k}(f) \le \epsilon \sum_{i=1}^{m} m(I_k) + \epsilon \le 2\epsilon.$$

Since $\epsilon > 0$ was arbitrary, we have f(1) = f(0). By the same reasoning, it follows that f(x) = f(0) for all $x \in [0, 1]$.

2. Let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of $\mathbb{Q} \cap (0,1)$ and let $\epsilon_n := 2^{-n-2}$. Denote

$$A := \bigcup_{n=1}^{\infty} (r_n - \epsilon_n, r_n + \epsilon_n) \cap (0, 1).$$

Note that A is a dense open subset of (0, 1) and that

$$m(A) \le \sum_{n=1}^{\infty} 2\epsilon_n = 1/2$$

Define $f: [0,1] \to \mathbb{R}$ by

$$f(x) := m(A \cap [0, x]) = \int_{[0, x]} \mathbb{1}_A$$

Then f is strictly increasing since

$$0 \le x < y \le 1 \quad \Longrightarrow \quad f(y) - f(x) = m(A \cap (x, y]) > 0,$$

where we used the fact that A is open and dense in (0, 1). Clearly f is absolutely continuous, since $G(x) = \int_{[0,x]} g$ is absolutely continuous for any integrable function $g: [0,1] \to \mathbb{R}$. It remains to check that f' is zero on a set of positive measure. We first show that f'(x) = 1 for all $x \in A$. By Lebesgue's differentiation theorem, $f'(x) = \mathbb{1}_A(x)$ for almost all $x \in [0,1]$. In particular, f'(x) = 0 for almost all $x \in [0,1] \setminus A$. Thus,

$$m(\{x \in [0,1] : f'(x) = 0\}) \ge m([0,1] \setminus A) = 1 - m(A) \ge 1/2.$$

3. Let s > 0. Since $t \mapsto e^{st}$ is strictly increasing, we have

$$f(x) > t \quad \iff \quad e^{sf(x)} > e^{st}.$$

Since $e^{sf(x)}$ is positive, Markov's inequality implies that

$$m(\{x \in [0,1] : f(x) > t\}) = m(\{x \in [0,1] : e^{sf(x)} > e^{st}\}) \le \frac{\int_{[0,1]} e^{sf(x)} dx}{e^{st}} \le e^{s^2 - st}$$

Substituting s = t/2, we obtain

$$m(\{x \in [0,1] : f(x) > t\}) \le e^{s^2 - st} = e^{-t^2/4}.$$

4. Denote $f_s := \mathbb{1}_{\{g < s\}}$ for $s \in \mathbb{R}$. Note that

$$f_s \in \mathcal{F} \quad \iff \quad \int f_s = \int \mathbb{1}_{\{g < s\}} = m(\{g < s\}) = 1.$$

Let us check that such an s exists. Denote $\phi(s) := \int f_s$. Clearly, $\phi(-1) = 0$ and $\phi(s) \to \infty$ as $s \to \infty$. Thus, it suffices to show that ϕ is continuous. This will follow if we show that $m(\{g = s\}) = 0$ for all $s \in \mathbb{R}$. Indeed, $\{g = s\}$ is countable for all $s \in \mathbb{R}$, as one may easily check (for instance by using that $\{g'' = 0\} = a + b\mathbb{Z}$ for some a, b > 0). We have thus shown that $f_{s_0} \in \mathcal{F}$ for some $s_0 \in \mathbb{R}$ (in fact, one may check that ϕ is strictly increasing so that s_0 is uniquely defined). It remains to show that for any $f \in \mathcal{F}$, we have

$$\int fg \ge \int f_{s_0}g$$

Let $f \in \mathcal{F}$. Then, since $0 \leq f \leq 1$, we have

$$\begin{split} \int fg - \int f_{s_0}g &= \int_{\{g \ge s_0\}} fg + \int_{\{g < s_0\}} fg - \int_{\{g < s_0\}} g \\ &= \int_{\{g \ge s_0\}} fg - \int_{\{g < s_0\}} (1 - f)g \\ &\ge \int_{\{g \ge s_0\}} fs_0 - \int_{\{g < s_0\}} (1 - f)s_0 \\ &= s_0 \left(\int_{\{g \ge s_0\}} f + \int_{\{g < s_0\}} f - \int_{\{g < s_0\}} 1 \right) \\ &= s_0 \left(\int f - \int f_{s_0} \right) \\ &= 0. \end{split}$$