Real analysis - Exam 2016a - Solution

1. Denote $A:=\left\{x \in[0,1): f^{\prime}(x)=0\right\}$. By the assumption, $m(A)=1$. Let $\epsilon>0$. For every $x \in A$ there exists $0<\delta_{x}<1-x$ such that for every $0<h<\delta_{x}$, we have

$$
\Delta_{[x, x+h]}(f)=|f(x+h)-f(x)| \leq \epsilon h .
$$

Since f is absolutely continuous, there exists $\delta>0$ such that for any pairwise disjoint intervals $J_{1}, \ldots, J_{n} \subset$ $[0,1]$, we have

$$
\sum_{k=1}^{n} m\left(J_{k}\right) \leq \delta \quad \Longrightarrow \quad \sum_{k=1}^{n} \Delta_{J_{k}}(f) \leq \epsilon
$$

Define

$$
\mathcal{F}:=\left\{[x, x+h]: x \in A, 0<h<\delta_{x}\right\}
$$

and note that F is a Vitali cover of A. Hence, by the Vitali covering lemma, there exist pairwise disjoint intervals $I_{1}, \ldots, I_{m} \in \mathcal{F}$ such that $m(I) \geq 1-\delta$, where $I:=I_{1} \cup \cdots \cup I_{m}$. Write $[0,1] \backslash I=J_{1} \cup \cdots \cup J_{n}$, where J_{1}, \ldots, J_{n} are pairwise disjoint intervals. Then, since $m\left(J_{1}\right)+\cdots+m\left(J_{n}\right)=1-m(I) \leq \delta$, we have

$$
|f(1)-f(0)| \leq \sum_{i=1}^{m} \Delta_{I_{i}}(f)+\sum_{k=1}^{n} \Delta_{J_{k}}(f) \leq \epsilon \sum_{i=1}^{m} m\left(I_{k}\right)+\epsilon \leq 2 \epsilon
$$

Since $\epsilon>0$ was arbitrary, we have $f(1)=f(0)$. By the same reasoning, it follows that $f(x)=f(0)$ for all $x \in[0,1]$.
2. Let $\left\{r_{n}\right\}_{n=1}^{\infty}$ be an enumeration of $\mathbb{Q} \cap(0,1)$ and let $\epsilon_{n}:=2^{-n-2}$. Denote

$$
A:=\bigcup_{n=1}^{\infty}\left(r_{n}-\epsilon_{n}, r_{n}+\epsilon_{n}\right) \cap(0,1)
$$

Note that A is a dense open subset of $(0,1)$ and that

$$
m(A) \leq \sum_{n=1}^{\infty} 2 \epsilon_{n}=1 / 2
$$

Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x):=m(A \cap[0, x])=\int_{[0, x]} \mathbb{1}_{A}
$$

Then f is strictly increasing since

$$
0 \leq x<y \leq 1 \quad \Longrightarrow \quad f(y)-f(x)=m(A \cap(x, y])>0
$$

where we used the fact that A is open and dense in $(0,1)$. Clearly f is absolutely continuous, since $G(x)=$ $\int_{[0, x]} g$ is absolutely continuous for any integrable function $g:[0,1] \rightarrow \mathbb{R}$. It remains to check that f^{\prime} is zero on a set of positive measure. We first show that $f^{\prime}(x)=1$ for all $x \in A$. By Lebesgue's differentiation theorem, $f^{\prime}(x)=\mathbb{1}_{A}(x)$ for almost all $x \in[0,1]$. In particular, $f^{\prime}(x)=0$ for almost all $x \in[0,1] \backslash A$. Thus,

$$
m\left(\left\{x \in[0,1]: f^{\prime}(x)=0\right\}\right) \geq m([0,1] \backslash A)=1-m(A) \geq 1 / 2
$$

3. Let $s>0$. Since $t \mapsto e^{s t}$ is strictly increasing, we have

$$
f(x)>t \quad \Longleftrightarrow \quad e^{s f(x)}>e^{s t} .
$$

Since $e^{s f(x)}$ is positive, Markov's inequality implies that

$$
m(\{x \in[0,1]: f(x)>t\})=m\left(\left\{x \in[0,1]: e^{s f(x)}>e^{s t}\right\}\right) \leq \frac{\int_{[0,1]} e^{s f(x)} d x}{e^{s t}} \leq e^{s^{2}-s t} .
$$

Substituting $s=t / 2$, we obtain

$$
m(\{x \in[0,1]: f(x)>t\}) \leq e^{s^{2}-s t}=e^{-t^{2} / 4} .
$$

4. Denote $f_{s}:=\mathbb{1}_{\{g<s\}}$ for $s \in \mathbb{R}$. Note that

$$
f_{s} \in \mathcal{F} \quad \Longleftrightarrow \quad \int f_{s}=\int \mathbb{1}_{\{g<s\}}=m(\{g<s\})=1
$$

Let us check that such an s exists. Denote $\phi(s):=\int f_{s}$. Clearly, $\phi(-1)=0$ and $\phi(s) \rightarrow \infty$ as $s \rightarrow \infty$. Thus, it suffices to show that ϕ is continuous. This will follow if we show that $m(\{g=s\})=0$ for all $s \in \mathbb{R}$. Indeed, $\{g=s\}$ is countable for all $s \in \mathbb{R}$, as one may easily check (for instance by using that $\left\{g^{\prime \prime}=0\right\}=a+b \mathbb{Z}$ for some $a, b>0$). We have thus shown that $f_{s_{0}} \in \mathcal{F}$ for some $s_{0} \in \mathbb{R}$ (in fact, one may check that ϕ is strictly increasing so that s_{0} is uniquely defined). It remains to show that for any $f \in \mathcal{F}$, we have

$$
\int f g \geq \int f_{s_{0}} g
$$

Let $f \in \mathcal{F}$. Then, since $0 \leq f \leq 1$, we have

$$
\begin{aligned}
\int f g-\int f_{s_{0}} g & =\int_{\left\{g \geq s_{0}\right\}} f g+\int_{\left\{g<s_{0}\right\}} f g-\int_{\left\{g<s_{0}\right\}} g \\
& =\int_{\left\{g \geq s_{0}\right\}} f g-\int_{\left\{g<s_{0}\right\}}(1-f) g \\
& \geq \int_{\left\{g \geq s_{0}\right\}} f s_{0}-\int_{\left\{g<s_{0}\right\}}(1-f) s_{0} \\
& =s_{0}\left(\int_{\left\{g \geq s_{0}\right\}} f+\int_{\left\{g<s_{0}\right\}} f-\int_{\left\{g<s_{0}\right\}} 1\right) \\
& =s_{0}\left(\int f-\int f_{s_{0}}\right) \\
& =0 .
\end{aligned}
$$

