Real analysis - Exam 2016b - Solution

1. Let f_1, f_2, \ldots be a sequence of measurable functions on a finite measure space $(\Omega, \mathcal{F}, \mu)$ and assume that f_n converges in measure to f. Set $N_0 := 0$ and then, inductively, for each $k \in \mathbb{N}$, choose $N_k > N_{k-1}$ such that

$$\mu(\{x \in \Omega : |f_n(x) - f(x)| \ge 1/k\}) \le 2^{-k}$$
 for all $n \ge N_k$

Denote $A := \limsup_{k \to \infty} A_k$, where

$$A_k := \{ x \in \Omega : |f_{N_k}(x) - f(x)| \ge 1/k \}.$$

Since $\sum_k \mu(A_k) \leq \sum_k 2^{-k} < \infty$, the Borel-Cantelli lemma implies that $\mu(A) = 0$. Note that for any $x \in \Omega \setminus A$, we have $\lim_{k \to \infty} f_{N_k}(x) = f(x)$. Therefore, $f_{N_k} \to f$ almost everywhere.

2. Let $A \subset \mathbb{R}$ be a set of Lebesgue measure zero. For each $n \in \mathbb{N}$, choose an open set $A_n \subset \mathbb{R}$ such that $A \subset A_n$ and $m(A_n) \leq 1/n^2$. Define $f_n(x) := m((-\infty, x] \cap A_n)$ and $f := \sum_n f_n$. Since $f \geq 0$ and

$$f(x) = \sum_{n=1}^{\infty} m((-\infty, x] \cap A_n) \le \sum_{n=1}^{\infty} m(A_n) \le \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty,$$

we see that f is well-defined. Moreover, since f_n is non-decreasing, f is clearly also non-decreasing. It remains to show that $f'(x) = \infty$ for all $x \in A$. Let $x \in A$ and let $N \in \mathbb{N}$. Since f_n is non-decreasing, we have

$$\liminf_{h \to 0} \frac{f(x+h) - f(x)}{h} = \liminf_{h \to 0} \sum_{n=1}^{\infty} \frac{f_n(x+h) - f_n(x)}{h}$$
$$\geq \liminf_{h \to 0} \sum_{n=1}^{N} \frac{f_n(x+h) - f_n(x)}{h}$$
$$= \sum_{n=1}^{N} \liminf_{h \to 0} \frac{f_n(x+h) - f_n(x)}{h} = \sum_{n=1}^{N} f'_n(x).$$

Since A_n is open and $x \in A \subset A_n$, we clearly have $f'_n(x) = 1$ for all n. In particular, $\sum_{n=1}^N f'_n(x) = N$. Since N was arbitrary, we obtain

$$\liminf_{h \to 0} \frac{f(x+h) - f(x)}{h} \ge \sup_{N \in \mathbb{N}} \sum_{n=1}^{N} f'_n(x) = \sup_{N \in \mathbb{N}} N = \infty.$$

We have therefore shown that $f'(x) = \infty$ and the proof is complete.

3. First note that since C is a compact set and g is continuous, g(C) is also a compact set and so it is measurable. Note also that since g is strictly increasing and continuous, it is a bijection with its image [0,2]. Let (C_n) be the sequence of sets defined in the construction of the Cantor set C. In particular, C_n is a union of 2^n disjoint closed intervals each of length 3^{-n} , $C = \bigcap_n C_n$ and f is constant on any interval contained in $[0,1] \setminus C$. Thus, for any interval $I = (a,b) \subset [0,1] \setminus C$, we have g(I) = (g(a), g(b))so that

$$m(g(I)) = g(b) - g(a) = f(b) - f(a) + b - a = b - a = m(I).$$

Therefore, since $[0,1] \setminus C$ is a disjoint union of open intervals and g is a bijection, g preserves its measure so that

$$m(g([0,1] \setminus C)) = m([0,1] \setminus C) = m([0,1]) - m(C) = 1$$

Using again that g is a bijection, we obtain

$$m(g(C)) = m(g([0,1])) - m(g([0,1] \setminus C)) = m([0,2]) - 1 = 1.$$

4. (a). Since $\frac{\partial f}{\partial y}$ is a Lipschitz function (in two variables), it follows that $\frac{\partial f}{\partial y}(\cdot, y)$ is a Lipschitz function (in the first variable) and so it also has bounded variation. Therefore, it is differentiable almost everywhere so that h is well-defined almost everywhere.

Since $\frac{\partial f}{\partial u}(\cdot, y)$ is Lipschitz, it is also absolutely continuous. Thus, for any $x_0 < x_1$ and y,

$$\frac{\partial f}{\partial y}(x_1, y) - \frac{\partial f}{\partial y}(x_0, y) = \int_{[x_0, x_1]} \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right)(s, y) ds = \int_{[x_0, x_1]} h(s, y) ds.$$

In particular, for any x > 0 and y, since $\frac{\partial f}{\partial y}$ is zero on ∂U ,

$$\frac{\partial f}{\partial y}(x,y) = \frac{\partial f}{\partial y}(x,y) - \frac{\partial f}{\partial y}(0,y) = \int_{[0,x]} h(s,y) ds.$$

Similarly, $f(x, \cdot)$ is absolutely continuous, so that for any x and y > 0,

$$f(x,y) - f(x,0) = \int_{[0,y]} \frac{\partial f}{\partial y}(x,t)dt = \int_{[0,y]} \left(\int_{[0,x]} h(s,t)ds \right) dt.$$

Therefore, since h is bounded (and hence integrable), we may apply Fubini to obtain

$$f(x,y) - f(x,0) = \int_{[0,x] \times [0,y]} h$$

(b). Using (a), $\frac{\partial f}{\partial x}|_{\partial U} = 0$ and Fubini, for any $(x, y) \in U$, we have

$$\frac{\partial f}{\partial x}(x,y) = \left. \frac{\partial}{\partial x} \right|_{(x,y)} \int_{[0,x]} \left(\int_{[0,y]} h(s,t) dt \right) ds.$$

By Lebesgue's differentiation theorem, for any 0 < y < 1, for almost all 0 < x < 1,

$$\frac{\partial f}{\partial x}(x,y) = \int_{[0,y]} h(x,t)dt.$$

Finally, the fact that this holds for almost all $(x, y) \in U$ follows from Fubini, since the subset $U' \subset U$ on which this equation holds is measurable.

(c). By (b), by Lebesgue's differentiation theorem and by Fubini, for almost all $(x, y) \in U$,

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) (x,y) = h(x,y) = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) (x,y).$$