Real analysis - Exam 2016b - Solution

1. Let f_{1}, f_{2}, \ldots be a sequence of measurable functions on a finite measure space $(\Omega, \mathcal{F}, \mu)$ and assume that f_{n} converges in measure to f. Set $N_{0}:=0$ and then, inductively, for each $k \in \mathbb{N}$, choose $N_{k}>N_{k-1}$ such that

$$
\mu\left(\left\{x \in \Omega:\left|f_{n}(x)-f(x)\right| \geq 1 / k\right\}\right) \leq 2^{-k} \quad \text { for all } n \geq N_{k}
$$

Denote $A:=\limsup _{k \rightarrow \infty} A_{k}$, where

$$
A_{k}:=\left\{x \in \Omega:\left|f_{N_{k}}(x)-f(x)\right| \geq 1 / k\right\} .
$$

Since $\sum_{k} \mu\left(A_{k}\right) \leq \sum_{k} 2^{-k}<\infty$, the Borel-Cantelli lemma implies that $\mu(A)=0$. Note that for any $x \in \Omega \backslash A$, we have $\lim _{k \rightarrow \infty} f_{N_{k}}(x)=f(x)$. Therefore, $f_{N_{k}} \rightarrow f$ almost everywhere.
2. Let $A \subset \mathbb{R}$ be a set of Lebesgue measure zero. For each $n \in \mathbb{N}$, choose an open set $A_{n} \subset \mathbb{R}$ such that $A \subset A_{n}$ and $m\left(A_{n}\right) \leq 1 / n^{2}$. Define $f_{n}(x):=m\left((-\infty, x] \cap A_{n}\right)$ and $f:=\sum_{n} f_{n}$. Since $f \geq 0$ and

$$
f(x)=\sum_{n=1}^{\infty} m\left((-\infty, x] \cap A_{n}\right) \leq \sum_{n=1}^{\infty} m\left(A_{n}\right) \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

we see that f is well-defined. Moreover, since f_{n} is non-decreasing, f is clearly also non-decreasing. It remains to show that $f^{\prime}(x)=\infty$ for all $x \in A$. Let $x \in A$ and let $N \in \mathbb{N}$. Since f_{n} is non-decreasing, we have

$$
\begin{aligned}
\liminf _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\liminf _{h \rightarrow 0} \sum_{n=1}^{\infty} \frac{f_{n}(x+h)-f_{n}(x)}{h} \\
& \geq \liminf _{h \rightarrow 0} \sum_{n=1}^{N} \frac{f_{n}(x+h)-f_{n}(x)}{h} \\
& =\sum_{n=1}^{N} \liminf _{h \rightarrow 0} \frac{f_{n}(x+h)-f_{n}(x)}{h}=\sum_{n=1}^{N} f_{n}^{\prime}(x) .
\end{aligned}
$$

Since A_{n} is open and $x \in A \subset A_{n}$, we clearly have $f_{n}^{\prime}(x)=1$ for all n. In particular, $\sum_{n=1}^{N} f_{n}^{\prime}(x)=N$. Since N was arbitrary, we obtain

$$
\liminf _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \geq \sup _{N \in \mathbb{N}} \sum_{n=1}^{N} f_{n}^{\prime}(x)=\sup _{N \in \mathbb{N}} N=\infty
$$

We have therefore shown that $f^{\prime}(x)=\infty$ and the proof is complete.
3. First note that since C is a compact set and g is continuous, $g(C)$ is also a compact set and so it is measurable. Note also that since g is strictly increasing and continuous, it is a bijection with its image $[0,2]$. Let $\left(C_{n}\right)$ be the sequence of sets defined in the construction of the Cantor set C. In particular, C_{n} is a union of 2^{n} disjoint closed intervals each of length $3^{-n}, C=\cap_{n} C_{n}$ and f is constant on any interval contained in $[0,1] \backslash C$. Thus, for any interval $I=(a, b) \subset[0,1] \backslash C$, we have $g(I)=(g(a), g(b))$ so that

$$
m(g(I))=g(b)-g(a)=f(b)-f(a)+b-a=b-a=m(I)
$$

Therefore, since $[0,1] \backslash C$ is a disjoint union of open intervals and g is a bijection, g preserves its measure so that

$$
m(g([0,1] \backslash C))=m([0,1] \backslash C)=m([0,1])-m(C)=1
$$

Using again that g is a bijection, we obtain

$$
m(g(C))=m(g([0,1]))-m(g([0,1] \backslash C))=m([0,2])-1=1
$$

4. (a). Since $\frac{\partial f}{\partial y}$ is a Lipschitz function (in two variables), it follows that $\frac{\partial f}{\partial y}(\cdot, y)$ is a Lipschitz function (in the first variable) and so it also has bounded variation. Therefore, it is differentiable almost everywhere so that h is well-defined almost everywhere.
Since $\frac{\partial f}{\partial y}(\cdot, y)$ is Lipschitz, it is also absolutely continuous. Thus, for any $x_{0}<x_{1}$ and y,

$$
\frac{\partial f}{\partial y}\left(x_{1}, y\right)-\frac{\partial f}{\partial y}\left(x_{0}, y\right)=\int_{\left[x_{0}, x_{1}\right]} \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(s, y) d s=\int_{\left[x_{0}, x_{1}\right]} h(s, y) d s
$$

In particular, for any $x>0$ and y, since $\frac{\partial f}{\partial y}$ is zero on ∂U,

$$
\frac{\partial f}{\partial y}(x, y)=\frac{\partial f}{\partial y}(x, y)-\frac{\partial f}{\partial y}(0, y)=\int_{[0, x]} h(s, y) d s
$$

Similarly, $f(x, \cdot)$ is absolutely continuous, so that for any x and $y>0$,

$$
f(x, y)-f(x, 0)=\int_{[0, y]} \frac{\partial f}{\partial y}(x, t) d t=\int_{[0, y]}\left(\int_{[0, x]} h(s, t) d s\right) d t
$$

Therefore, since h is bounded (and hence integrable), we may apply Fubini to obtain

$$
f(x, y)-f(x, 0)=\int_{[0, x] \times[0, y]} h
$$

(b). Using (a), $\left.\frac{\partial f}{\partial x}\right|_{\partial U}=0$ and Fubini, for any $(x, y) \in U$, we have

$$
\frac{\partial f}{\partial x}(x, y)=\left.\frac{\partial}{\partial x}\right|_{(x, y)} \int_{[0, x]}\left(\int_{[0, y]} h(s, t) d t\right) d s
$$

By Lebesgue's differentiation theorem, for any $0<y<1$, for almost all $0<x<1$,

$$
\frac{\partial f}{\partial x}(x, y)=\int_{[0, y]} h(x, t) d t
$$

Finally, the fact that this holds for almost all $(x, y) \in U$ follows from Fubini, since the subset $U^{\prime} \subset U$ on which this equation holds is measurable.
(c). By (b), by Lebesgue's differentiation theorem and by Fubini, for almost all $(x, y) \in U$,

$$
\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)(x, y)=h(x, y)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)(x, y)
$$

