
Volumes in High Dimension – Exercises

(0) Let X = (X1, . . . , Xn) be a random vector, distributed uniformly in Qn = [−1/2, 1/2]n.
Let θ = (θ1, . . . , θ) ∈ R with |θ| = 1. Denote by fθ the density of the random variable∑

i θiXi. Prove that for almost any t ∈ R,

fθ(t) = V oln−1 (Qn ∩Hθ,t)

where Hθ,t = {x ∈ Rn ; x · θ = t}.

February 19, 2014: The high-dimensional cube

(1) LetX, Y be independent random vectors in Rn, distributed uniformly inQn = [−1/2, 1/2]n.
Show that (

E|X − Y |4
)1/4

= αn
√
n

where αn tends to a finite, positive limit as n→∞. What is lim
n→∞

αn?

(2) Let n ≥ 100. Let θ = (θ1, . . . , θn) ∈ R be a unit vector such that

∀i, |θi| ≤
5√
n
.

Let X be a random vector in Rn, distributed uniformly in [−
√

3,
√

3]n. Denote by fθ(t)
the continuous density of 〈X, θ〉. Prove that∣∣∣∣fθ(t) − exp(−t2/2)√

2π

∣∣∣∣ ≤ C

n
(t ∈ R)

for a universal constant C > 0. (In class we did the case θi = 1/
√
n, you need to explain

how to modify the proof.)

(3) Let θ = (θ1, . . . , θn) ∈ Rn be a unit vector, with |θj| ≤ 1/10 for all j. Consider the
function

gθ(s) =
n∏
j=1

ϕ (sθj)

where ϕ(t) = sin(
√

12πt)/(
√

12πt). Denote ε =
∑

j θ
4
j . Prove that for any |s| ≤ 1

10ε1/4
,∣∣∣gθ(s)− e−2π2s2

∣∣∣ ≤ Cεs4e−2π2s2

where C > 0 is a universal constant. (This exercise is a key step in the proof of the Central
Limit Theorem for general θi. I hope that it helps understand where the term

∑
i θ

4
i comes

from. For the full proof, you may consult Feller’s book “Introduction to Probability, Vol.
II”)
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February 26, 2014: The high-dimensional sphere/ball

(4) For θ ∈ Sn−1, t ∈ R we set Hθ,t = {x ∈ Rn ; x · θ = t}. Set,

fθ(t) =
Voln−1 {

√
nBn

2 ∩Hθ,t}
Voln {

√
nBn

2 }
=

Voln−1

(
Bn−1

2

)
Voln (

√
nBn

2 )
·
(
n− t2

)(n−1)/2
.

Prove that

fθ(t) =
e−t

2/2

√
2π

+O

(
1

n

)
.

(5) Let X and Y be independent random vectors supported in the unit sphere. Assume that Y
is distributed uniformly in Sn−1. Then the random variables

X · Y and Y1

have exactly the same distribution.

(6) LetX = (X1, . . . , Xn) be a random vector uniformly distributed in Sn−1. Then (X1, . . . , Xn−2)
is uniformly distributed in Bn−2. Hint: The density of (X1, . . . , Xn−1) is proportional to

1√
1− |x|2

in Bn−1.

(7) For a Borel subset A ⊂ Sn−1 and ε > 0 we denote

Aε = {x ∈ Sn−1 ; ∃y ∈ A, |x− y| < ε}.

Correct and fill in the details of the argument from the class, and prove that the set{
σ(Aε) ; A ⊆ Sn−1 is Borel andσ(A) ≥ 1/2

}
has a minimum.

March 5, 2014: Isoperimetry and concentration

(8) Fix 0 < t < 1 and ε > 0. Among all Borel sets A ⊂ Sn−1 with σn−1(A) = t, can you
guess a set for which

σn−1(Aε)

is minimal? Prove your guess (in class we did the case t = 1/2).

(9) Suppose thatX is a random vector in Rn with E|X|2 <∞. Assume thatX is not supported
by a hyperplane. Prove that there exist a vector b ∈ Rn and a positive-definite matrix A
such that A(X) + b is isotropic.
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(10)+ Let X be an isotropic random vector in Rn and let 0 < ε < 1/2. Assume that there exists
R > 0 with

E
(
|X|
R
− 1

)2

≤ ε2.

Prove that

E
(
|X|√
n
− 1

)2

≤ Cε2

for some universal constant C > 0.

March 12, 2014: The thin-shell theorem

(11) Let Y = (Y1, . . . , Yn) be a random vector, uniformly distributed on Sn−1. Set

Φn(t) = P
(√

nY1 ≤ t
)
.

Denoting Φ(t) = 1√
2π

∫ t
−∞ e

−s2/2ds, prove that∫ ∞
−∞
|Φ(t)− Φn(t)|dt ≤ C

n

where C > 0 is a universal constant.

(12) LetM([0, 1]) be the class of all Borel probability measures on [0, 1]. For µ, ν ∈M([0, 1])
we set

dW (µ, ν) = sup
f

[∫
fdµ−

∫
fdν

]
where the supremum runs over all 1-Lipschitz functions f : [0, 1]→ R. Prove that dW is a
metric onM([0, 1]), which induces the weak∗-topology onM([0, 1]).

March 19, 2014: Brunn-Minkowski and Prekopa-Leindler

(13) The modulus of convexity of a norm ‖ · ‖K is defined, for 0 < ε < 1, as

δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥
K

; ‖x‖K ≤ 1, ‖y‖K ≤ 1, ‖x− y‖K ≥ ε

}
.

Prove that when K ⊂ Rn is a ball or an ellipsoid centered at the origin,

δ(ε) ≥ ε2

8
.

(14) For K = B(`np ) with p ≥ 2, show that

δ(ε) ≥ cpε
p

where cp > 0 depends only on p. [Hint: c̃p|a− b|p + |(a+ b)/2|p ≤ (|a|p + |b|p)/2].
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(15) In class we proved a concentration inequality for the uniform distribution on K with re-
spect to the metric d(x, y) = ‖x − y‖K . State and prove an analogous statement for the
cone measure on ∂K.

March 26, 2014: The Santalo inequality and the Legendre transform

(16) Prove that f ∗∗ = f for any lower-semi continuous convex function f : X → R ∪ {+∞}
which is not identically +∞.

(17) For a function u : Rn → R denote

I(u) = − log

∫
Rn

e−u
∗

Prove that I is a well-defined, finite convex function, i.e.,

I (λu1 + (1− λ)u2) ≤ λI(u1) + (1− λ)I(u2)

for any 0 < λ < 1 and u1, u2 : Rn → R.

(18) Let X be an n-dimensional linear space, X∗ is the dual space and f : X × X∗ → R.
Explain why the “integrability of f” is a well-defined concept, as well as the value of the
integral ∫

X×X∗
f.

Similarly, for a compactly-supported, integrable function f : X → [0,∞) with a positive
integral, prove that the barycenter

bar(f) =
1∫
X
f

∫
X

xf(x) ∈ X

is well-defined.

April 2, 2014: Log-concavity, reverse Hölder inequalities, Brascamp-Lieb

(19) Let f : (0,∞)→ [0,∞) be an integrable, log-concave function. For p > −1 denote

Mf (p) =

∫∞
0
tpf(t)dt

Γ(p+ 1)

and set Mf (−1) = limt→0+ f(t). Prove that Mf is log-concave on [−1,∞) (in class we
proved log-concavity in [0,∞)).

(20) Under the same assumptions of the previous exercise, show that

Kf (p) =

∫ ∞
0

(
t

p

)p
f(t)dt

is log-concave in (0,∞).
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(21) Let µ be a probability measure on Rn that is absolutely-continuous (i.e., it has a density).
Prove that µ has a log-concave density if and only if for any Borel sets A,B ⊂ Rn and
0 < λ < 1,

µ (λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

April 23, 2014: Poincaré inequalities, thin shell for unconditional convex sets

(22) Suppose that µ is a probability measure on Rn. Assume that µ satisfies a Poincaré inequal-
ity with constant one, i.e., for any C1-function f ∈ L2(µ),

V arµ(f) ≤
∫
Rn

|∇f |2dµ.

(i) Without using the Poincaré inequality, prove that for any f ∈ Lp(µ) and p ≥ 1,

‖f − Ef‖Lp(µ) ≤ C1‖f −Mf‖Lp(µ) ≤ C2‖f − Ef‖Lp(µ)

where C1, C2 > 0 are universal constants, Ef =
∫
fdµ and Mf is a median of f .

(ii) Let p ≥ 1 and let f : Rn → R be a 1-Lipschitz function with M(f) = 0. Use the
Poincaré inequality for the function sgn(f)fp and conclude that

‖f‖p ≤ Cp,

where C > 0 is a universal constant.

(iii) Use the Markov-Chebyshev inequality, and prove that for any 1-Lipschitz function
f : Rn → R,

µ ({x ∈ Rn ; |f(x)− Ef | ≥ t}) ≤ Ce−ct (t > 0),

where c, C > 0 are universal constants.

(23) Let K ⊂ Rn
+ be monotone and p-convex. Prove that K is also q-convex for any q < p.

(24) Let X ∈ Rn
+ be a half-log-concave random vector. Prove that (

√
X1, . . . ,

√
Xn) is log-

concave.

April 30, 2014: Entropy, Covariance and the isotropic constant

(25) Among all random vector X in Rn with a fixed covariance matrix, prove that the Gaussian
maximizes the entropy. [Recall the hint from class]

(26) Let X be a log-concave random vector in Rn, with density f . Prove that(∫
Rn

f 2

)1/n

∼
∫
Rn

f 1+1/n ∼ exp(−Ent(X)/n),

where A ∼ B means that c1A ≤ B ≤ c2A for universal constants c1, c2 > 0. [Hint: Use
the body K(f) introduced in class]
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(27) Let K ⊂ Rn be a convex set, V ol(K) = 1. Prove that there exists a hyperplane H ⊂ Rn

with
V oln−1(K ∩H) ≥ c/LK

for a universal constant c > 0.

May 7, 2014: Volume Ratio, Kashin’s splitting

(28) Let k ≤ n and let X1, . . . , Xk be independent, identically-distributed random vectors,
uniformly distributed on Sn−1.

(i) Prove that P (dim sp{X1, . . . , Xk} = k) = 1.

(ii) Denote E = sp{X1, . . . , Xk}, a random k-dimensional subspace in Rn. Prove that
for any fixed U ∈ O(n), the random subspace E is equal in distribution to U(E).

(iii) Consider the unit sphere SE = Sn−1 ∩ E, and let Y be a random vector, uniformly
distributed on the k−1-dimensional sphere SE . Prove that Y is distributed uniformly
over Sn−1 [Hint: Use the uniqueness of the O(n)-invariant probability measure on
Sn−1].

(29) Let K ⊂ Rn be a centrally-symmetric convex body, ‖x‖K = inf{λ > 0 ; x ∈ λK}.

(i) Prove that v.rad.(K) =
(∫

Sn−1 ‖x‖−nK dσn(x)
)1/n.

(ii) Denote M(K) =
∫
Sn−1 ‖x‖Kdσn(x). Prove that v.rad.(K) ·M(K) ≥ 1.

(iii) Assume that n is even, that v.rad.(K) = 1 and let E ∈ Gn,n/2 be a random subspace,
uniformly distributed in Gn,n/2. Prove that with probability at least 1/2,

Diam(K ∩ E) ≤ CM(K).

May 14, 2014: Log-Laplace Transform

(30) Let X be a log-concave random vector in Rn and set ΛX(y) = logE exp(X · y). Explain
the notation and justify the differentiation under the integral sign: At any point y ∈ Rn

with ΛX(y) <∞, (
∂αeΛX

)
(y) = EXαeX·y

for any multi-index α ∈ (N ∪ {0})n.

May 21, 2014: Bourgain-Milman, reverse Brunn-Minkowski, Milman’s ellipsoid

(31) Regarding the proof of the existence of M -ellipsoid we saw in class, show that the Milman
ellipsoid E that we constructed satisfies the following property: For any 1 ≤ ` < n, λ =
`/n and any subspace F ∈ Gn,`,

v.rad(K ∩ F ) ≥ cλv.rad.(E ∩ F ).

Hint: Use the fact that
(∫

F+x0
f
) 1

codim(F ) ≥ f(x0)1/n

LX
.
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(32) Improve the bound obtained in class, and establish the Rogers-Shepherd inequality with
best constant: For any centrally-symmetric, convex bodyK ⊂ Rn and a subspaceE ⊂ Rn,

|K ∩ E| · |ProjE⊥(K)| ≤
(
n
`

)
|K|

where ` = dim(E).

(33+) Prove the Spingran’s inequality: For any convex body K ⊂ Rn whose barycenter lies at
the origin and any subspace

|K ∩ E| · |ProjE⊥(K)| ≥ |K|

[Hint: Use Brunn-Minkowski, the case where K = −K is easier.]

May 28, 2014: Quotient of Subspace,

(34) Suppose thatK ⊂ Rn is a centrally-symmetric convex body and that E ⊆ Rn is a centrally-
symmetric ellipsoid with |E| = |K| and

|E +K|1/n ≤ α|K|1/n.

Prove that E is a Milman ellipsoid of K with constant c(α) (i.e., that |K ∩ E|1/n ≥
c(α)|K|1/n).

(35) Same, but now instead of |E +K|1/n ≤ α|K|1/n, assume that N(K, E) ≤ αn.
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