Volumes in High Dimension — Exercises

(0) Let X = (X3,...,X,) be a random vector, distributed uniformly in Q" = [—1/2,1/2]".
Let 0 = (64,...,0) € R with || = 1. Denote by fy the density of the random variable
>; 0:X;. Prove that for almost any ¢ € R,

fg(t) = VOln_l (Qn N Hgﬂg)
where Hp; = {x € R"; z -0 = t}.
February 19, 2014: The high-dimensional cube

(1) Let X,Y be independent random vectors in R”, distributed uniformly in Q" = [—1/2,1/2]".
Show that »
E[X —YH' = anvn

where «, tends to a finite, positive limit as n — oo. What is lim «,,?
n—o0

(2) Letn > 100. Let @ = (64, ...,0,) € R be a unit vector such that

5
Vi 0| < —.
i<

Let X be a random vector in R™, distributed uniformly in [—+/3, /3]". Denote by fs(t)
the continuous density of (X, 6). Prove that

exp(—t*/2)

V2r

for a universal constant C' > 0. (In class we did the case 0; = 1/+/n, you need to explain
how to modify the proof.)

fo(t) — ‘ < % (t € R)

(3) Let 6 = (64,...,60,) € R™ be a unit vector, with |¢;| < 1/10 for all j. Consider the

function .
go(s) =[] ¢ (s6))
=1
where ¢(t) = sin(v/127t)/(v/127t). Denote ¢ = > 0. Prove that for any |s| < T
—272s2

go(s) —e < Cesle 2™

where C' > 0 is a universal constant. (This exercise is a key step in the proof of the Central
Limit Theorem for general 6;. I hope that it helps understand where the term Yy, 0} comes
from. For the full proof, you may consult Feller’s book “Introduction to Probability, Vol.
II}’)



February 26, 2014: The high-dimensional sphere/ball
(4) For € S ' t € R we set Hyp; ={zx € R"; -0 =t} Set,

VOln_l {\/ﬁBg N Hgﬂg} . VOln_l (Bg'_l)
Vol, {v/nBg} ~ Vol, (v/nBy)

folt) = e;z_: +0 (%) .

(5) Let X and Y be independent random vectors supported in the unit sphere. Assume that Y
is distributed uniformly in S”~!. Then the random variables

fo(t) =

. (n _ t2)(n—1)/2 '

Prove that

XY and Y}

have exactly the same distribution.

(6) Let X = (X1, ..., X,)bearandom vector uniformly distributed in S"~1. Then (X1, ..., X, )
is uniformly distributed in B"~2. Hint: The density of (X1, ..., X,,_1) is proportional to

\/ﬁ in B,
(7) For a Borel subset A C S"~! and ¢ > (0 we denote
A.={re S IycA |r—y|l <e}
Correct and fill in the details of the argument from the class, and prove that the set
{o(A.); AC 5" 'isBorel ando(A) > 1/2}
has a minimum.

March 5, 2014: Isoperimetry and concentration

(8) Fix 0 < t < 1and e > 0. Among all Borel sets A C S~ with 0,,_1(A) = t, can you
guess a set for which

On—1 (A€>
is minimal? Prove your guess (in class we did the case ¢t = 1/2).
(9) Suppose that X is arandom vector in R™ with E| X |* < co. Assume that X is not supported

by a hyperplane. Prove that there exist a vector b € R™ and a positive-definite matrix A
such that A(X) + b is isotropic.



(10)+ Let X be an isotropic random vector in R” and let 0 < € < 1/2. Assume that there exists

R > 0 with
Prove that

for some universal constant C' > 0.
March 12, 2014: The thin-shell theorem
(11) LetY = (Y1,...,Y,,) be a random vector, uniformly distributed on S™~!. Set
P (t) =P (VY1 <t).

Denoting ®(¢) = —& [*_e=**/2ds, prove that
g Vom oo p

/m@@—éamﬁsg

0o n

where C' > 0 is a universal constant.

(12) Let M(]0, 1]) be the class of all Borel probability measures on [0, 1. For u, v € M(|0, 1])

we set

dw (11, V) = sup Vfdu—/fch/]

where the supremum runs over all 1-Lipschitz functions f : [0, 1] — R. Prove that dyy is a

metric on M([0, 1]), which induces the weak*-topology on M ([0, 1]).

March 19, 2014: Brunn-Minkowski and Prekopa-Leindler

(13) The modulus of convexity of a norm || - || is defined, for 0 < € < 1, as
. T+
st0) =t {1~ T2 el <1, ol < 1 o=yl 2 2
K

Prove that when K C R" is a ball or an ellipsoid centered at the origin,
2
€
oe) > —.
()2 5

(14) For K = B(Eg) with p > 2, show that
d(e) > cpe?

where ¢, > 0 depends only on p. [Hint: ¢,la — b|P + |(a + b) /2| < (|a|? + |b[P)/2].
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(15) In class we proved a concentration inequality for the uniform distribution on K with re-
spect to the metric d(z,y) = ||z — y||x. State and prove an analogous statement for the
cone measure on 0K.

March 26, 2014: The Santalo inequality and the Legendre transform

(16) Prove that f** = f for any lower-semi continuous convex function f : X — R U {+o0}
which is not identically +oo.

(17) For a function u : R™ — R denote

Z(u) = —log/ e
Prove that 7 is a well-defined, finite convex function, i.e.,
forany 0 < A < 1 and uy,us : R® — R.

(18) Let X be an n-dimensional linear space, X* is the dual space and f : X x X* — R.
Explain why the “integrability of f” is a well-defined concept, as well as the value of the

/
XxX

Similarly, for a compactly-supported, integrable function f : X — [0, 00) with a positive
integral, prove that the barycenter

bar(f) = ﬁ/xxf(x) € X

is well-defined.
April 2, 2014: Log-concavity, reverse Holder inequalities, Brascamp-Lieb

(19) Let f : (0,00) — [0, 00) be an integrable, log-concave function. For p > —1 denote
JtPf(t)dt
Fip+1)

and set M;(—1) = lim; ,o+ f(¢). Prove that M} is log-concave on [—1, c0) (in class we
proved log-concavity in [0, 00)).

My(p) =

(20) Under the same assumptions of the previous exercise, show that

K= [ (L) soa

is log-concave in (0, 00).



(21) Let p be a probability measure on R” that is absolutely-continuous (i.e., it has a density).
Prove that 1 has a log-concave density if and only if for any Borel sets A, B C R"™ and
0< A<,

LA+ (1= N)B) 2 u(APu(B)' .

April 23, 2014: Poincaré inequalities, thin shell for unconditional convex sets

(22) Suppose that p is a probability measure on R". Assume that y satisfies a Poincaré inequal-
ity with constant one, i.e., for any C''-function f € L*(p),

Vard) < [ 19fFd

(i) Without using the Poincaré inequality, prove that for any f € LP(u) and p > 1,

If = Efllzey < Cillf — Myllooy < Collf — Efllog

where C, Cy > 0 are universal constants, F/; = f fdp and My is a median of f.

(ii) Letp > 1 and let f : R” — R be a 1-Lipschitz function with M (f) = 0. Use the
Poincaré inequality for the function sgn(f)f? and conclude that

1/l < Cp,

where C' > 0 is a universal constant.

(i11) Use the Markov-Chebyshev inequality, and prove that for any 1-Lipschitz function
f:R" > R,

p({z e R [f(x) — Ef| 2 t}) < Ce (t > 0),
where ¢, C' > 0 are universal constants.

(23) Let K C R’} be monotone and p-convex. Prove that K is also g-convex for any g < p.

(24) Let X € R" be a half-log-concave random vector. Prove that (v/X1,..., /X)) is log-
concave.

April 30, 2014: Entropy, Covariance and the isotropic constant

(25) Among all random vector X in R™ with a fixed covariance matrix, prove that the Gaussian
maximizes the entropy. [Recall the hint from class]

(26) Let X be a log-concave random vector in R", with density f. Prove that

(/ fQ)l/n ~ / Fr ~ exp(—Ent(X) /n),

where A ~ B means that ¢c; A < B < ¢y A for universal constants ¢q, co > 0. [Hint: Use
the body K (f) introduced in class]



(27) Let K C R" be a convex set, Vol(K) = 1. Prove that there exists a hyperplane H C R"
with
VOln_1<K N H) Z C/LK

for a universal constant ¢ > 0.
May 7, 2014: Volume Ratio, Kashin’s splitting

(28) Let £ < n and let Xy,..., X; be independent, identically-distributed random vectors,
uniformly distributed on S™~1.
(i) Prove that P (dim sp{X1,..., Xy} =k) = 1.

(ii) Denote £ = sp{Xj, ..., X;}, a random k-dimensional subspace in R". Prove that
for any fixed U € O(n), the random subspace F is equal in distribution to U (FE).

(iii) Consider the unit sphere Sg = S""! N E, and let Y be a random vector, uniformly
distributed on the k£ — 1-dimensional sphere Sg. Prove that Y is distributed uniformly
over S"~! [Hint: Use the uniqueness of the O(n)-invariant probability measure on
Sn—l]_

(29) Let K C R" be a centrally-symmetric convex body, ||z|x = inf{\ > 0; z € AK}.

(i) Prove that v.rad.(K) = (fsn_1 |’$Hf<nd<7n($))l/n~

(ii) Denote M (K) = [q, ||#| xdo,(x). Prove that v.rad.(K) - M(K) > 1.

(iii) Assume that n is even, that v.rad.(K) = landlet £ € G, , /2 be arandom subspace,
uniformly distributed in G, ,,/o. Prove that with probability at least 1,/2,

Diam(K N E) < CM(K).
May 14, 2014: Log-Laplace Transform

(30) Let X be a log-concave random vector in R™ and set Ax(y) = log Eexp(X - y). Explain
the notation and justify the differentiation under the integral sign: At any point y € R"
with Ax(y) < oo,

(0%e™) (y) = EX*eXY

for any multi-index o € (NU {0})™.

May 21, 2014: Bourgain-Milman, reverse Brunn-Minkowski, Milman’s ellipsoid

(31) Regarding the proof of the existence of M -ellipsoid we saw in class, show that the Milman
ellipsoid £ that we constructed satisfies the following property: Forany 1 < ¢ < n, A =
¢/n and any subspace F' € G,, 4,

vrad(KNF) > cyvrad. (ENF).

1
. codim /n
Hint: Use the fact that ( Jria f) w5 1 (CCL(’))(l .

@)



(32) Improve the bound obtained in class, and establish the Rogers-Shepherd inequality with
best constant: For any centrally-symmetric, convex body K C R™ and a subspace £ C R",

. n
K 1 E| - | Projg. ()| < (g) x|

where ¢ = dim(F).

(33+) Prove the Spingran’s inequality: For any convex body K C R" whose barycenter lies at
the origin and any subspace

|[KNE|-|Projp.(K)| > |K|
[Hint: Use Brunn-Minkowski, the case where K = — K is easier. |
May 28, 2014: Quotient of Subspace,

(34) Suppose that K C R" is a centrally-symmetric convex body and that £ C R" is a centrally-
symmetric ellipsoid with || = | K| and

€ + K|'/™ < ol K|Vm.

Prove that £ is a Milman ellipsoid of K with constant c(a) (i.e., that |K N &Y™ >
c(a)| K |V™).

(35) Same, but now instead of |€ + K|*/™ < a|K|"/™, assume that N (K, &) < o”.



