Volumes in High Dimension - Exercises

(0) Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector, distributed uniformly in $Q^{n}=[-1 / 2,1 / 2]^{n}$. Let $\theta=\left(\theta_{1}, \ldots, \theta\right) \in \mathbb{R}$ with $|\theta|=1$. Denote by f_{θ} the density of the random variable $\sum_{i} \theta_{i} X_{i}$. Prove that for almost any $t \in \mathbb{R}$,

$$
f_{\theta}(t)=V_{o l} l_{n-1}\left(Q^{n} \cap H_{\theta, t}\right)
$$

where $H_{\theta, t}=\left\{x \in \mathbb{R}^{n} ; x \cdot \theta=t\right\}$.

February 19, 2014: The high-dimensional cube

(1) Let X, Y be independent random vectors in \mathbb{R}^{n}, distributed uniformly in $Q^{n}=[-1 / 2,1 / 2]^{n}$. Show that

$$
\left(\mathbb{E}|X-Y|^{4}\right)^{1 / 4}=\alpha_{n} \sqrt{n}
$$

where α_{n} tends to a finite, positive limit as $n \rightarrow \infty$. What is $\lim _{n \rightarrow \infty} \alpha_{n}$?
(2) Let $n \geq 100$. Let $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}$ be a unit vector such that

$$
\forall i, \quad\left|\theta_{i}\right| \leq \frac{5}{\sqrt{n}}
$$

Let X be a random vector in \mathbb{R}^{n}, distributed uniformly in $[-\sqrt{3}, \sqrt{3}]^{n}$. Denote by $f_{\theta}(t)$ the continuous density of $\langle X, \theta\rangle$. Prove that

$$
\left|f_{\theta}(t)-\frac{\exp \left(-t^{2} / 2\right)}{\sqrt{2 \pi}}\right| \leq \frac{C}{n} \quad(t \in \mathbb{R})
$$

for a universal constant $C>0$. (In class we did the case $\theta_{i}=1 / \sqrt{n}$, you need to explain how to modify the proof.)
(3) Let $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n}$ be a unit vector, with $\left|\theta_{j}\right| \leq 1 / 10$ for all j. Consider the function

$$
g_{\theta}(s)=\prod_{j=1}^{n} \varphi\left(s \theta_{j}\right)
$$

where $\varphi(t)=\sin (\sqrt{12} \pi t) /(\sqrt{12} \pi t)$. Denote $\varepsilon=\sum_{j} \theta_{j}^{4}$. Prove that for any $|s| \leq \frac{1}{10 \varepsilon^{1 / 4}}$,

$$
\left|g_{\theta}(s)-e^{-2 \pi^{2} s^{2}}\right| \leq C \varepsilon s^{4} e^{-2 \pi^{2} s^{2}}
$$

where $C>0$ is a universal constant. (This exercise is a key step in the proof of the Central Limit Theorem for general θ_{i}. I hope that it helps understand where the term $\sum_{i} \theta_{i}^{4}$ comes from. For the full proof, you may consult Feller's book "Introduction to Probability, Vol. II")

February 26, 2014: The high-dimensional sphere/ball

(4) For $\theta \in S^{n-1}, t \in \mathbb{R}$ we set $H_{\theta, t}=\left\{x \in \mathbb{R}^{n} ; x \cdot \theta=t\right\}$. Set,

$$
f_{\theta}(t)=\frac{\operatorname{Vol}_{n-1}\left\{\sqrt{n} B_{2}^{n} \cap H_{\theta, t}\right\}}{\operatorname{Vol}_{n}\left\{\sqrt{n} B_{2}^{n}\right\}}=\frac{\operatorname{Vol}_{n-1}\left(B_{2}^{n-1}\right)}{\operatorname{Vol}_{n}\left(\sqrt{n} B_{2}^{n}\right)} \cdot\left(n-t^{2}\right)^{(n-1) / 2} .
$$

Prove that

$$
f_{\theta}(t)=\frac{e^{-t^{2} / 2}}{\sqrt{2 \pi}}+O\left(\frac{1}{n}\right) .
$$

(5) Let X and Y be independent random vectors supported in the unit sphere. Assume that Y is distributed uniformly in S^{n-1}. Then the random variables

$$
X \cdot Y \quad \text { and } \quad Y_{1}
$$

have exactly the same distribution.
(6) Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector uniformly distributed in S^{n-1}. Then $\left(X_{1}, \ldots, X_{n-2}\right)$ is uniformly distributed in B^{n-2}. Hint: The density of $\left(X_{1}, \ldots, X_{n-1}\right)$ is proportional to $\frac{1}{\sqrt{1-|x|^{2}}}$ in B^{n-1}.
(7) For a Borel subset $A \subset S^{n-1}$ and $\varepsilon>0$ we denote

$$
A_{\varepsilon}=\left\{x \in S^{n-1} ; \exists y \in A,|x-y|<\varepsilon\right\} .
$$

Correct and fill in the details of the argument from the class, and prove that the set

$$
\left\{\sigma\left(A_{\varepsilon}\right) ; A \subseteq S^{n-1} \text { is Borel and } \sigma(A) \geq 1 / 2\right\}
$$

has a minimum.

March 5, 2014: Isoperimetry and concentration

(8) Fix $0<t<1$ and $\varepsilon>0$. Among all Borel sets $A \subset S^{n-1}$ with $\sigma_{n-1}(A)=t$, can you guess a set for which

$$
\sigma_{n-1}\left(A_{\varepsilon}\right)
$$

is minimal? Prove your guess (in class we did the case $t=1 / 2$).
(9) Suppose that X is a random vector in \mathbb{R}^{n} with $\mathbb{E}|X|^{2}<\infty$. Assume that X is not supported by a hyperplane. Prove that there exist a vector $b \in \mathbb{R}^{n}$ and a positive-definite matrix A such that $A(X)+b$ is isotropic.
(10)+ Let X be an isotropic random vector in \mathbb{R}^{n} and let $0<\varepsilon<1 / 2$. Assume that there exists $R>0$ with

$$
\mathbb{E}\left(\frac{|X|}{R}-1\right)^{2} \leq \varepsilon^{2}
$$

Prove that

$$
\mathbb{E}\left(\frac{|X|}{\sqrt{n}}-1\right)^{2} \leq C \varepsilon^{2}
$$

for some universal constant $C>0$.

March 12, 2014: The thin-shell theorem

(11) Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ be a random vector, uniformly distributed on S^{n-1}. Set

$$
\Phi_{n}(t)=\mathbb{P}\left(\sqrt{n} Y_{1} \leq t\right)
$$

Denoting $\Phi(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-s^{2} / 2} d s$, prove that

$$
\int_{-\infty}^{\infty}\left|\Phi(t)-\Phi_{n}(t)\right| d t \leq \frac{C}{n}
$$

where $C>0$ is a universal constant.
(12) Let $\mathcal{M}([0,1])$ be the class of all Borel probability measures on $[0,1]$. For $\mu, \nu \in \mathcal{M}([0,1])$ we set

$$
d_{W}(\mu, \nu)=\sup _{f}\left[\int f d \mu-\int f d \nu\right]
$$

where the supremum runs over all 1-Lipschitz functions $f:[0,1] \rightarrow \mathbb{R}$. Prove that d_{W} is a metric on $\mathcal{M}([0,1])$, which induces the weak*-topology on $\mathcal{M}([0,1])$.

March 19, 2014: Brunn-Minkowski and Prekopa-Leindler

(13) The modulus of convexity of a norm $\|\cdot\|_{K}$ is defined, for $0<\varepsilon<1$, as

$$
\delta(\varepsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|_{K} ;\|x\|_{K} \leq 1,\|y\|_{K} \leq 1,\|x-y\|_{K} \geq \varepsilon\right\}
$$

Prove that when $K \subset \mathbb{R}^{n}$ is a ball or an ellipsoid centered at the origin,

$$
\delta(\varepsilon) \geq \frac{\varepsilon^{2}}{8}
$$

(14) For $K=B\left(\ell_{p}^{n}\right)$ with $p \geq 2$, show that

$$
\delta(\varepsilon) \geq c_{p} \varepsilon^{p}
$$

where $c_{p}>0$ depends only on p. [Hint: $\left.\tilde{c}_{p}|a-b|^{p}+|(a+b) / 2|^{p} \leq\left(|a|^{p}+|b|^{p}\right) / 2\right]$.
(15) In class we proved a concentration inequality for the uniform distribution on K with respect to the metric $d(x, y)=\|x-y\|_{K}$. State and prove an analogous statement for the cone measure on ∂K.

March 26, 2014: The Santalo inequality and the Legendre transform

(16) Prove that $f^{* *}=f$ for any lower-semi continuous convex function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ which is not identically $+\infty$.
(17) For a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ denote

$$
\mathcal{I}(u)=-\log \int_{\mathbb{R}^{n}} e^{-u^{*}}
$$

Prove that \mathcal{I} is a well-defined, finite convex function, i.e.,

$$
\mathcal{I}\left(\lambda u_{1}+(1-\lambda) u_{2}\right) \leq \lambda \mathcal{I}\left(u_{1}\right)+(1-\lambda) \mathcal{I}\left(u_{2}\right)
$$

for any $0<\lambda<1$ and $u_{1}, u_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
(18) Let X be an n-dimensional linear space, X^{*} is the dual space and $f: X \times X^{*} \rightarrow \mathbb{R}$. Explain why the "integrability of f " is a well-defined concept, as well as the value of the integral

$$
\int_{X \times X^{*}} f .
$$

Similarly, for a compactly-supported, integrable function $f: X \rightarrow[0, \infty)$ with a positive integral, prove that the barycenter

$$
\operatorname{bar}(f)=\frac{1}{\int_{X} f} \int_{X} x f(x) \in X
$$

is well-defined.

April 2, 2014: Log-concavity, reverse Hölder inequalities, Brascamp-Lieb

(19) Let $f:(0, \infty) \rightarrow[0, \infty)$ be an integrable, log-concave function. For $p>-1$ denote

$$
M_{f}(p)=\frac{\int_{0}^{\infty} t^{p} f(t) d t}{\Gamma(p+1)}
$$

and set $M_{f}(-1)=\lim _{t \rightarrow 0^{+}} f(t)$. Prove that M_{f} is log-concave on $[-1, \infty)$ (in class we proved log-concavity in $[0, \infty)$).
(20) Under the same assumptions of the previous exercise, show that

$$
K_{f}(p)=\int_{0}^{\infty}\left(\frac{t}{p}\right)^{p} f(t) d t
$$

is log-concave in $(0, \infty)$.
(21) Let μ be a probability measure on \mathbb{R}^{n} that is absolutely-continuous (i.e., it has a density). Prove that μ has a log-concave density if and only if for any Borel sets $A, B \subset \mathbb{R}^{n}$ and $0<\lambda<1$,

$$
\mu(\lambda A+(1-\lambda) B) \geq \mu(A)^{\lambda} \mu(B)^{1-\lambda}
$$

April 23, 2014: Poincaré inequalities, thin shell for unconditional convex sets

(22) Suppose that μ is a probability measure on \mathbb{R}^{n}. Assume that μ satisfies a Poincaré inequality with constant one, i.e., for any C^{1}-function $f \in L^{2}(\mu)$,

$$
\operatorname{Var}_{\mu}(f) \leq \int_{\mathbb{R}^{n}}|\nabla f|^{2} d \mu
$$

(i) Without using the Poincaré inequality, prove that for any $f \in L^{p}(\mu)$ and $p \geq 1$,

$$
\left\|f-E_{f}\right\|_{L^{p}(\mu)} \leq C_{1}\left\|f-M_{f}\right\|_{L^{p}(\mu)} \leq C_{2}\left\|f-E_{f}\right\|_{L^{p}(\mu)}
$$

where $C_{1}, C_{2}>0$ are universal constants, $E_{f}=\int f d \mu$ and M_{f} is a median of f.
(ii) Let $p \geq 1$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a 1-Lipschitz function with $M(f)=0$. Use the Poincaré inequality for the function $\operatorname{sgn}(f) f^{p}$ and conclude that

$$
\|f\|_{p} \leq C p
$$

where $C>0$ is a universal constant.
(iii) Use the Markov-Chebyshev inequality, and prove that for any 1-Lipschitz function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\mu\left(\left\{x \in \mathbb{R}^{n} ;\left|f(x)-E_{f}\right| \geq t\right\}\right) \leq C e^{-c t} \quad(t>0)
$$

where $c, C>0$ are universal constants.
(23) Let $K \subset \mathbb{R}_{+}^{n}$ be monotone and p-convex. Prove that K is also q-convex for any $q<p$.
(24) Let $X \in \mathbb{R}_{+}^{n}$ be a half-log-concave random vector. Prove that $\left(\sqrt{X_{1}}, \ldots, \sqrt{X_{n}}\right)$ is logconcave.

April 30, 2014: Entropy, Covariance and the isotropic constant

(25) Among all random vector X in \mathbb{R}^{n} with a fixed covariance matrix, prove that the Gaussian maximizes the entropy. [Recall the hint from class]
(26) Let X be a log-concave random vector in \mathbb{R}^{n}, with density f. Prove that

$$
\left(\int_{\mathbb{R}^{n}} f^{2}\right)^{1 / n} \sim \int_{\mathbb{R}^{n}} f^{1+1 / n} \sim \exp (-E n t(X) / n)
$$

where $A \sim B$ means that $c_{1} A \leq B \leq c_{2} A$ for universal constants $c_{1}, c_{2}>0$. [Hint: Use the body $K(f)$ introduced in class]
(27) Let $K \subset \mathbb{R}^{n}$ be a convex set, $\operatorname{Vol}(K)=1$. Prove that there exists a hyperplane $H \subset \mathbb{R}^{n}$ with

$$
V o l_{n-1}(K \cap H) \geq c / L_{K}
$$

for a universal constant $c>0$.

May 7, 2014: Volume Ratio, Kashin's splitting

(28) Let $k \leq n$ and let X_{1}, \ldots, X_{k} be independent, identically-distributed random vectors, uniformly distributed on S^{n-1}.
(i) Prove that $\mathbb{P}\left(\operatorname{dim} \operatorname{sp}\left\{X_{1}, \ldots, X_{k}\right\}=k\right)=1$.
(ii) Denote $E=\operatorname{sp}\left\{X_{1}, \ldots, X_{k}\right\}$, a random k-dimensional subspace in \mathbb{R}^{n}. Prove that for any fixed $U \in O(n)$, the random subspace E is equal in distribution to $U(E)$.
(iii) Consider the unit sphere $S_{E}=S^{n-1} \cap E$, and let Y be a random vector, uniformly distributed on the k-1-dimensional sphere S_{E}. Prove that Y is distributed uniformly over S^{n-1} [Hint: Use the uniqueness of the $O(n)$-invariant probability measure on S^{n-1}].
(29) Let $K \subset \mathbb{R}^{n}$ be a centrally-symmetric convex body, $\|x\|_{K}=\inf \{\lambda>0 ; x \in \lambda K\}$.
(i) Prove that $v . r a d . ~(K)=\left(\int_{S^{n-1}}\|x\|_{K}^{-n} d \sigma_{n}(x)\right)^{1 / n}$.
(ii) Denote $M(K)=\int_{S^{n-1}}\|x\|_{K} d \sigma_{n}(x)$. Prove that v.rad. $(K) \cdot M(K) \geq 1$.
(iii) Assume that n is even, that $v . r a d .(K)=1$ and let $E \in G_{n, n / 2}$ be a random subspace, uniformly distributed in $G_{n, n / 2}$. Prove that with probability at least $1 / 2$,

$$
\operatorname{Diam}(K \cap E) \leq C M(K)
$$

May 14, 2014: Log-Laplace Transform

(30) Let X be a log-concave random vector in \mathbb{R}^{n} and set $\Lambda_{X}(y)=\log \mathbb{E} \exp (X \cdot y)$. Explain the notation and justify the differentiation under the integral sign: At any point $y \in \mathbb{R}^{n}$ with $\Lambda_{X}(y)<\infty$,

$$
\left(\partial^{\alpha} e^{\Lambda_{X}}\right)(y)=\mathbb{E} X^{\alpha} e^{X \cdot y}
$$

for any multi-index $\alpha \in(\mathbb{N} \cup\{0\})^{n}$.

May 21, 2014: Bourgain-Milman, reverse Brunn-Minkowski, Milman's ellipsoid

(31) Regarding the proof of the existence of M-ellipsoid we saw in class, show that the Milman ellipsoid \mathcal{E} that we constructed satisfies the following property: For any $1 \leq \ell<n, \lambda=$ ℓ / n and any subspace $F \in G_{n, \ell}$,

$$
v \cdot \operatorname{rad}(K \cap F) \geq c_{\lambda} v \cdot \operatorname{rad} .(\mathcal{E} \cap F)
$$

Hint: Use the fact that $\left(\int_{F+x_{0}} f\right)^{\frac{1}{\operatorname{codim}(F)}} \geq \frac{f\left(x_{0}\right)^{1 / n}}{L_{X}}$.
(32) Improve the bound obtained in class, and establish the Rogers-Shepherd inequality with best constant: For any centrally-symmetric, convex body $K \subset \mathbb{R}^{n}$ and a subspace $E \subset \mathbb{R}^{n}$,

$$
|K \cap E| \cdot\left|\operatorname{Proj}_{E^{\perp}}(K)\right| \leq\binom{ n}{\ell}|K|
$$

where $\ell=\operatorname{dim}(E)$.
(33+) Prove the Spingran's inequality: For any convex body $K \subset \mathbb{R}^{n}$ whose barycenter lies at the origin and any subspace

$$
|K \cap E| \cdot\left|\operatorname{Proj}_{E^{\perp}}(K)\right| \geq|K|
$$

[Hint: Use Brunn-Minkowski, the case where $K=-K$ is easier.]

May 28, 2014: Quotient of Subspace,

(34) Suppose that $K \subset \mathbb{R}^{n}$ is a centrally-symmetric convex body and that $\mathcal{E} \subseteq \mathbb{R}^{n}$ is a centrallysymmetric ellipsoid with $|\mathcal{E}|=|K|$ and

$$
|\mathcal{E}+K|^{1 / n} \leq \alpha|K|^{1 / n}
$$

Prove that \mathcal{E} is a Milman ellipsoid of K with constant $c(\alpha)$ (i.e., that $|K \cap \mathcal{E}|^{1 / n} \geq$ $\left.c(\alpha)|K|^{1 / n}\right)$.
(35) Same, but now instead of $|\mathcal{E}+K|^{1 / n} \leq \alpha|K|^{1 / n}$, assume that $N(K, \mathcal{E}) \leq \alpha^{n}$.

