Smooth functions – List of Exercises

January 26, 2011

Week 1

1. Suppose p is a polynomial of degree d in n real variables. Assume that p(x) > 0 for any $0 \neq x \in \mathbb{R}^n$. Do there exist $c, \varepsilon > 0$ such that

 $p(x) \ge c|x|^d$ for all $|x| < \varepsilon$

- (a) When d = 2.
- (b) When d is an arbitrary even number.
- (a) Find an example for a function that is differentiable of order two at a point p ∈ ℝⁿ, but is discontinuous at all points except p.
 - (b) Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ is an orthogonal linear transformation, and $f \in C^m(\mathbb{R}^n)$. Prove that

$$||f \circ T||_{C^m} \le C||f||_{C^m}$$

where C is a constant depending only on m and n.

- (a) Suppose f : K → ℝ is a continuous function, where K ⊂ ℝⁿ is compact and convex. Prove that f has an optimal (i.e., minimal) modulus of continuity ω, and that the optimal one is equivalent, up to a factor of two, to a regular modulus of continuity (i.e., 1/2 ≤ ω/ũ ≤ 2 for a regular modulus of continuity ũ).
 - (b) Prove that the optimal is also equivalent, up to factor 10, to a concave modulus of continuity.

- (c) What happens in a non-convex domain (but still compact)?
- 4. (a) Prove Taylor's theorem for $C^{m,\omega}$.
 - (b) Suppose f : ℝⁿ → ℝ is an (m + 1)-times continuously differentiable function. What can you say about the relation between the C^{m,1} norm and the C^{m+1} norm of f? What can you say about the relation between the spaces of functions C^{m,1}(ℝⁿ) and C^{m+1}(ℝⁿ)?
- 5. Suppose x_n^j (j = 0, ..., m, n = 1, 2, ...) are real numbers, such that for any j = 0, ..., m,

$$x_n^j \xrightarrow{n \to \infty} 0.$$

Assume furthermore that for any n, the numbers x_n^0, \ldots, x_n^m are all distinct. Prove that there exist coefficients a_n^j $(j = 0, \ldots, m, n = 1, 2, \ldots)$ with the following property: For any C^m function $f : \mathbb{R} \to \mathbb{R}$,

$$f^{(m)}(0) = \lim_{n \to \infty} \sum_{j=0}^{m} a_n^j f(x_n^j).$$

(October 24, 2010: Thanks to Nadav Yesha and Yinon Spinka for correcting errors in the first week's exercises).

Week 2

- 6. (a) Suppose f : (0,1) → ℝ is a C² function with M = sup |f''| < ∞. Prove that for any ε > 0, the set of critical values of f may be covered by [α/ε] intervals of length βε², where α, β > 0 depend only on M.
 - (b) Prove that the countable set $\left\{\frac{1}{\log n}; n \geq 2\right\}$ is never contained in the set of critical values of a C^2 function $f: (0,1) \to \mathbb{R}$ with $\|f\|_{C^2} < \infty$.
 - (c) For any d, find a bounded, countable set A of real numbers with the following property: For any C^{∞} function $f : B^d \to \mathbb{R}$ that admits a C^{∞} extension to $2B^d$ (the ball of radius two centered at zero), the set A is not contained in the set of critical values of f.
- 7. Suppose $E \subset \mathbb{R}^n$ is a closed set, $\delta(x) = d(x, E)$. Recall the a dyadic cube Q is "good" if

$$Diam(Q) \le \inf_{x \in Q^*} \delta(x)$$

where $Diam(Q) = \sqrt{n}\delta_Q$ is the diameter of Q, and Q^* is the dilation of Q by factor three around its center. A cube Q belongs to the CZ-decomposition if it is "good", and if either its parent Q^+ is bad, or $\delta_Q = 1$. Prove that

(a) For any $Q \in CZ$ with $\delta_Q < 1$, for any $x \in Q^*$,

$$Diam(Q) \le \delta(x) \le CDiam(Q),$$

where C > 0 depends solely on n.

(b) Two cubes $Q, \tilde{Q} \in CZ$ are "neighbors" if $\overline{Q} \cap \overline{\tilde{Q}} \neq \emptyset$. Prove that when Q and \tilde{Q} are neighbors,

$$\frac{1}{2}\delta_Q \le \delta_{\tilde{Q}} \le 2\delta_Q.$$

- 8. What is the C^m -stratification that was constructed in the proof of Sard's lemma of the following sets:
 - (a) $K \times K \subset \mathbb{R}^2$, where $K \subset [0, 1]$ is the usual Cantor set.
 - (b) $S = \{0\} \cup \{1/n; n, \ge 1\} \subset \mathbb{R}$. Is there a stratification of this set in which each stratum A is a stratum with respect to itself?

(November 9, 2010: Thanks to Shahar Karmeli and Lev Radziviloski for correcting errors in the second week's exercises).

Week 3 – no class

Week 4

- 9. Fix $x \in \mathbb{R}^n$. Recall that for $P_1, P_2 \in \mathcal{P}$, we set $P_1 \odot_x P_2 = J_x(P_1P_2)$.
 - (a) Prove that \odot_x is a multiplication on \mathcal{P} , that makes it a commutative ring.
 - (b) Find a continuum of ideals in \mathcal{P} . For which m, n is it possible?
 - (c) Describe all ideals generated by (a few) monomials, and prove that when n > 1 there are at least, say, $2^{n+m}/(n+m)$ of them.

10. (a) Suppose $r_1 \leq r_2 \leq 1, x \in \mathbb{R}^n$. Prove that

 $B(x,r_1) \odot_x B(x,r_2) \subseteq Cr_2^m \omega(r_2) B_{C^{m,\omega}}(x,r_1)$

where $E \odot_x F = \{p_1 \odot_x p_2; p_1 \in E, p_2 \in F\}$ and C > 0 depends solely on m and n.

(b) Suppose $x, y \in \mathbb{R}^n$, $|x - y| \le r \le 1$ and $P_1, P_2 \in B(x, r)$. Prove that

$$P_1 \odot_y P_2 - P_1 \odot_x P_2 \in Cr^m \omega(r) B(x, y).$$

11. Suppose $\{p_x\}_{x\in\mathbb{R}^n} \subseteq \mathcal{P}$ is a collection of polynomials, and M > 0 is such that

$$p_x - p_y \in MB(x, y)$$

for all $x, y \in \mathbb{R}^n$ with $|x - y| \leq 1$. Prove that $F(x) = p_x(x)$ is a $C^{m,\omega}$ function, with $||F||_{\dot{C}^{m,\omega}} \leq CM$, such that

$$J_x(F) = p_x$$

for any $x \in \mathbb{R}^n$.

Week 5

- 12. Write down the proof of Whitney's extension theorem for the homogenous $\dot{C}^{m,1}$ norm (No need to re-prove statements about the Calderón-Zygmund decomposition or the partitions of unity).
- 13. In the proof of Whitney's extension theorem in class, we considered

$$\tilde{P}_x = J_x \left(\sum_{Q \in CZ} \theta_Q P_Q \right) \in \mathcal{P}.$$

On the other hand, since we need to interpolate polynomials in some way, we could have tried to take $\tilde{P}_x = \sum_{Q \in CZ} \theta_Q(x) P_Q \in \mathcal{P}$ (that is, $\tilde{P}_x(y) = \sum_{Q \in CZ} \theta_Q(x) P_Q(y)$). Do you think it would work? why?

14. Suppose $E \subset \mathbb{R}^n$ is a finite set, $\{P_x\}_{x \in E} \subset \mathcal{P}_{n,m}$. Prove that

 $c \|\{P_x\}_{x \in E}\|_{C^{m+1}} \le \|\{P_x\}_{x \in E}\|_{C^{m,1}} \le C \|\{P_x\}_{x \in E}\|_{C^{m+1}}$

for some constants c, C > 0 depending only on m and n.

Week 6

15. Suppose E ⊂ ℝⁿ is a finite set with #(E) = N, ε > 0 and f : E → ℝ. Suppose we are given a Callahan-Kosaruju decomposition of E with parameter ε > 0, whose length is at most CN/εⁿ. How would you efficiently compute the Lipschitz constant of f? Recall that

$$Lip(f) = \sup_{\substack{x,y \in E \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|}.$$

Week 7

16. (a) Suppose (X, ρ) is a metric space, $E \subseteq X$, and $f : E \to \mathbb{R}$ is a λ -Lipschitz function. Show that

$$F(x) = \inf_{y \in E} \left\{ f(y) + \lambda \rho(x, y) \right\}$$
(1)

is a λ -Lipschitz extension of f to the entire space X.

- (b) Suppose (X, ρ) is a metric space, F : X → I(ℝ) where I(ℝ) is the collection of all bounded, closed intervals in ℝ. Use formulae such as (1) in order to prove: If we have a 1-Lipschitz selection for all S ⊂ X with #(S) ≤ 2, then we have a 1-Lipschitz selection for the entire X.
- 17. Use Zorn's lemma in order to deduce Kirszbraun's theorem from the following finitary statement proved in class: For any finite set S in a Hilbert space H and a point x ∉ S any 1-Lipschitz function from S to H may be extended to a 1-Lipschitz function from S ∪ {x} to H.
- 18. For a convex set $A \subset \mathbb{R}^2$ we write R(A) for the smallest rectangle, parallel to the axes, that contains A. Prove that

(a)
$$R\left(\bigcap_{\alpha\in I}K_{\alpha}\right) = \bigcap_{\alpha,\beta\in I}R\left(K_{\alpha}\cap K_{\beta}\right).$$

(b) For parallel rectangles $\{A_{\alpha}\}_{\alpha \in I}, \{B_{\beta}\}_{\beta \in J}$, we have

$$d\left(\bigcap_{\alpha} A_{\alpha}, \bigcap_{\beta} B_{\beta}\right) = \sup_{\alpha, \beta} d(A_{\alpha}, B_{\beta})$$

whenever the intersections in the left-hand side are non-empty, where here $d(A, B) = \inf_{x \in A, y \in B} ||x - y||_{\infty}$.

Week 8

19. Explain how to adapt the proof of the finiteness principle using Lipschitz selection for $\dot{C}^{1,1}(\mathbb{R}^2)$, to the case of $C^{1,1}(\mathbb{R}^2)$.

That is, prove the following statement: There exists a universal constant C > 0 with the following property: Let $E \subset \mathbb{R}^n$ be a closed set, $f : E \to \mathbb{R}$. Suppose that for any $S \subset E$ with $\#(S) \leq C$, we have

$$||f|_S||_{C^{1,1}(S)} \le M.$$

Then $||f||_{C^{1,1}(E)} \leq CM$.

20. Denote $A = (-1 - \varepsilon, 0), B = (-1 + \varepsilon, 0), C = (-1, -\varepsilon^2), D = (1 + \varepsilon, 0), E = (1 - \varepsilon, 0), F = (1, \varepsilon^2)$. Suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ vanishes at five of these six points, and $f(F) = \varepsilon$.

We explained in class that $||f||_{\dot{C}^{1,1}} \ge c/\varepsilon$. Prove that if we remove one of these six points (any point), then there is a $\dot{C}^{1,1}$ extension whose $\dot{C}^{1,1}$ -norm is bounded by a universal constant.

Week 9

- 21. Suppose $\mathcal{A} \subseteq \mathcal{M}$ is a subset of multi-indices. Suppose $\phi : \mathcal{A} \to \mathcal{M}$ satisfies
 - For any $\alpha \in \mathcal{A}$, we have $\phi(\alpha) \leq \alpha$.
 - If $\phi(\alpha) \neq \alpha$, then $\phi(\alpha) \notin \mathcal{A}$.

Prove that $\phi(\mathcal{A}) \leq \mathcal{A}$, with equality iff ϕ is the identity map.

Week 10

22. Fix $\mathcal{A} \subseteq \mathcal{M}, x \in \mathbb{R}^n, \delta > 0$. Denote

$$\mathcal{R}_{\mathcal{A}}(x,\delta) = \left\{ P \in \mathcal{P}; \forall \beta \ge \alpha_{\mathcal{A},x}(P), \left| \partial^{\beta} P(x) \right| \le \delta^{m+1-|\beta|} \right\},\$$

where $\alpha_{\mathcal{A},x}(P) = \max\{\alpha \in \mathcal{A}; \partial^{\alpha}P(x) \neq 0\}$. Prove that for any $K \geq 1$ and a centrally-symmetric convex set $\Omega \subseteq \mathcal{P}$,

$$\mathcal{B}_{\mathcal{A}}(\delta) \subseteq K\pi_{\mathcal{A},x} \left\{ \Omega \cap \mathcal{R}_{\mathcal{A}}(x,\delta) \right\}$$

if and only if there exist polynomials $\{P_{\alpha}\}_{\alpha \in \mathcal{A}}$ with the following properties:

- (a) $\partial^{\beta} P_{\alpha}(x) = \delta_{\alpha,\beta}$ for any $\alpha, \beta \in \mathcal{A}$.
- (b) $|\partial^{\beta}P_{\alpha}(x)| \leq K\delta^{|\alpha|-|\beta|}$ for any $\mathcal{M} \ni \beta \geq \alpha \in \mathcal{A}$.
- (c) $\delta^{m+1-|\alpha|} P_{\alpha} \in K\Omega$.
- 23. Suppose that A is a $n \times n$ matrix, with ones on the main diagonal, such that the sum of the absolute values of the off-diagonal elements in each row does not exceed 1/2.

Prove that A^{-1} exists, and that all of its elements are at most 2 in absolute value.

Week 11

24. Suppose $Q_0 \in CZ(\mathcal{A}_0) \setminus CZ(\mathcal{A}_0^-)$. Let $x \in E \cap Q_0^{***}$. Prove that

$$\mathcal{B}_{\mathcal{A}_0}\left(A_2\delta_{Q_0}\right)\subseteq CA_1(\mathcal{A}_0)\pi_{\mathcal{A}_0,x}\left\{\sigma(x,\ell(\mathcal{A}_0)-1)\cap B(x,A_2\delta_{Q_0})\right\},\,$$

where C > 0 is a constant depending solely on m and n.