Smooth functions - List of Exercises

January 26, 2011

Week 1

1. Suppose p is a polynomial of degree d in n real variables. Assume that $p(x)>0$ for any $0 \neq x \in \mathbb{R}^{n}$. Do there exist $c, \varepsilon>0$ such that

$$
p(x) \geq c|x|^{d} \quad \text { for all }|x|<\varepsilon
$$

(a) When $d=2$.
(b) When d is an arbitrary even number.
2. (a) Find an example for a function that is differentiable of order two at a point $p \in \mathbb{R}^{n}$, but is discontinuous at all points except p.
(b) Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an orthogonal linear transformation, and $f \in C^{m}\left(\mathbb{R}^{n}\right)$. Prove that

$$
\|f \circ T\|_{C^{m}} \leq C\|f\|_{C^{m}}
$$

where C is a constant depending only on m and n.
3. (a) Suppose $f: K \rightarrow \mathbb{R}$ is a continuous function, where $K \subset \mathbb{R}^{n}$ is compact and convex. Prove that f has an optimal (i.e., minimal) modulus of continuity ω, and that the optimal one is equivalent, up to a factor of two, to a regular modulus of continuity (i.e., $1 / 2 \leq \omega / \tilde{\omega} \leq 2$ for a regular modulus of continuity $\tilde{\omega}$).
(b) Prove that the optimal is also equivalent, up to factor 10, to a concave modulus of continuity.
(c) What happens in a non-convex domain (but still compact)?
4. (a) Prove Taylor's theorem for $C^{m, \omega}$.
(b) Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is an $(m+1)$-times continuously differentiable function. What can you say about the relation between the $C^{m, 1}$ norm and the C^{m+1} norm of f ? What can you say about the relation between the spaces of functions $C^{m, 1}\left(\mathbb{R}^{n}\right)$ and $C^{m+1}\left(\mathbb{R}^{n}\right)$?
5. Suppose $x_{n}^{j}(j=0, \ldots, m, n=1,2, \ldots)$ are real numbers, such that for any $j=0, \ldots, m$,

$$
x_{n}^{j} \xrightarrow{n \rightarrow \infty} 0 .
$$

Assume furthermore that for any n, the numbers $x_{n}^{0}, \ldots, x_{n}^{m}$ are all distinct. Prove that there exist coefficients $a_{n}^{j}(j=0, \ldots, m, n=1,2, \ldots)$ with the following property: For any C^{m} function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f^{(m)}(0)=\lim _{n \rightarrow \infty} \sum_{j=0}^{m} a_{n}^{j} f\left(x_{n}^{j}\right) .
$$

(October 24, 2010: Thanks to Nadav Yesha and Yinon Spinka for correcting errors in the first week's exercises).

Week 2

6. (a) Suppose $f:(0,1) \rightarrow \mathbb{R}$ is a C^{2} function with $M=\sup \left|f^{\prime \prime}\right|<\infty$. Prove that for any $\varepsilon>0$, the set of critical values of f may be covered by $\lceil\alpha / \varepsilon\rceil$ intervals of length $\beta \varepsilon^{2}$, where $\alpha, \beta>0$ depend only on M.
(b) Prove that the countable set $\left\{\frac{1}{\log n} ; n \geq 2\right\}$ is never contained in the set of critical values of a C^{2} function $f:(0,1) \rightarrow \mathbb{R}$ with $\|f\|_{C^{2}}<\infty$.
(c) For any d, find a bounded, countable set A of real numbers with the following property: For any C^{∞} function $f: B^{d} \rightarrow \mathbb{R}$ that admits a C^{∞} extension to $2 B^{d}$ (the ball of radius two centered at zero), the set A is not contained in the set of critical values of f.
7. Suppose $E \subset \mathbb{R}^{n}$ is a closed set, $\delta(x)=d(x, E)$. Recall the a dyadic cube Q is "good" if

$$
\operatorname{Diam}(Q) \leq \inf _{x \in Q^{*}} \delta(x)
$$

where $\operatorname{Diam}(Q)=\sqrt{n} \delta_{Q}$ is the diameter of Q, and Q^{*} is the dilation of Q by factor three around its center. A cube Q belongs to the CZ-decomposition if it is "good", and if either its parent Q^{+}is bad, or $\delta_{Q}=1$. Prove that
(a) For any $Q \in C Z$ with $\delta_{Q}<1$, for any $x \in Q *$,

$$
\operatorname{Diam}(Q) \leq \delta(x) \leq C \operatorname{Diam}(Q)
$$

where $C>0$ depends solely on n.
(b) Two cubes $Q, \tilde{Q} \in C Z$ are "neighbors" if $\bar{Q} \cap \overline{\tilde{Q}} \neq \emptyset$. Prove that when Q and \tilde{Q} are neighbors,

$$
\frac{1}{2} \delta_{Q} \leq \delta_{\tilde{Q}} \leq 2 \delta_{Q}
$$

8. What is the C^{m}-stratification that was constructed in the proof of Sard's lemma of the following sets:
(a) $K \times K \subset \mathbb{R}^{2}$, where $K \subset[0,1]$ is the usual Cantor set.
(b) $S=\{0\} \cup\{1 / n ; n, \geq 1\} \subset \mathbb{R}$. Is there a stratification of this set in which each stratum A is a stratum with respect to itself?
(November 9, 2010: Thanks to Shahar Karmeli and Lev Radziviloski for correcting errors in the second week's exercises).

Week 3 - no class

Week 4

9. Fix $x \in \mathbb{R}^{n}$. Recall that for $P_{1}, P_{2} \in \mathcal{P}$, we set $P_{1} \odot_{x} P_{2}=J_{x}\left(P_{1} P_{2}\right)$.
(a) Prove that \odot_{x} is a multiplication on \mathcal{P}, that makes it a commutative ring.
(b) Find a continuum of ideals in \mathcal{P}. For which m, n is it possible?
(c) Describe all ideals generated by (a few) monomials, and prove that when $n>1$ there are at least, say, $2^{n+m} /(n+m)$ of them.
10. (a) Suppose $r_{1} \leq r_{2} \leq 1, x \in \mathbb{R}^{n}$. Prove that

$$
B\left(x, r_{1}\right) \odot_{x} B\left(x, r_{2}\right) \subseteq C r_{2}^{m} \omega\left(r_{2}\right) B_{C^{m, \omega}}\left(x, r_{1}\right)
$$

where $E \odot_{x} F=\left\{p_{1} \odot_{x} p_{2} ; p_{1} \in E, p_{2} \in F\right\}$ and $C>0$ depends solely on m and n.
(b) Suppose $x, y \in \mathbb{R}^{n},|x-y| \leq r \leq 1$ and $P_{1}, P_{2} \in B(x, r)$. Prove that

$$
P_{1} \odot_{y} P_{2}-P_{1} \odot_{x} P_{2} \in C r^{m} \omega(r) B(x, y) .
$$

11. Suppose $\left\{p_{x}\right\}_{x \in \mathbb{R}^{n}} \subseteq \mathcal{P}$ is a collection of polynomials, and $M>0$ is such that

$$
p_{x}-p_{y} \in M B(x, y)
$$

for all $x, y \in \mathbb{R}^{n}$ with $|x-y| \leq 1$. Prove that $F(x)=p_{x}(x)$ is a $C^{m, \omega}$ function, with $\|F\|_{\dot{C}^{m, \omega}} \leq C M$, such that

$$
J_{x}(F)=p_{x}
$$

for any $x \in \mathbb{R}^{n}$.

Week 5

12. Write down the proof of Whitney's extension theorem for the homogenous $\dot{C}^{m, 1}$ norm (No need to re-prove statements about the Calderón-Zygmund decomposition or the partitions of unity).
13. In the proof of Whitney's extension theorem in class, we considered

$$
\tilde{P}_{x}=J_{x}\left(\sum_{Q \in C Z} \theta_{Q} P_{Q}\right) \in \mathcal{P}
$$

On the other hand, since we need to interpolate polynomials in some way, we could have tried to take $\tilde{P}_{x}=\sum_{Q \in C Z} \theta_{Q}(x) P_{Q} \in \mathcal{P}$ (that is, $\tilde{P}_{x}(y)=$ $\left.\sum_{Q \in C Z} \theta_{Q}(x) P_{Q}(y)\right)$. Do you think it would work? why?
14. Suppose $E \subset \mathbb{R}^{n}$ is a finite set, $\left\{P_{x}\right\}_{x \in E} \subset \mathcal{P}_{n, m}$. Prove that

$$
c\left\|\left\{P_{x}\right\}_{x \in E}\right\|_{C^{m+1}} \leq\left\|\left\{P_{x}\right\}_{x \in E}\right\|_{C^{m, 1}} \leq C\left\|\left\{P_{x}\right\}_{x \in E}\right\|_{C^{m+1}}
$$

for some constants $c, C>0$ depending only on m and n.

Week 6

15. Suppose $E \subset \mathbb{R}^{n}$ is a finite set with $\#(E)=N, \varepsilon>0$ and $f: E \rightarrow \mathbb{R}$. Suppose we are given a Callahan-Kosaruju decomposition of E with parameter $\varepsilon>0$, whose length is at most $C N / \varepsilon^{n}$. How would you efficiently compute the Lipschitz constant of f ? Recall that

$$
\operatorname{Lip}(f)=\sup _{\substack{x, y \in E \\ x \neq y}} \frac{|f(x)-f(y)|}{|x-y|}
$$

Week 7

16. (a) Suppose (X, ρ) is a metric space, $E \subseteq X$, and $f: E \rightarrow \mathbb{R}$ is a λ Lipschitz function. Show that

$$
\begin{equation*}
F(x)=\inf _{y \in E}\{f(y)+\lambda \rho(x, y)\} \tag{1}
\end{equation*}
$$

is a λ-Lipschitz extension of f to the entire space X.
(b) Suppose (X, ρ) is a metric space, $F: X \rightarrow \mathcal{I}(\mathbb{R})$ where $\mathcal{I}(\mathbb{R})$ is the collection of all bounded, closed intervals in \mathbb{R}. Use formulae such as (1) in order to prove: If we have a 1-Lipschitz selection for all $S \subset X$ with $\#(S) \leq 2$, then we have a 1-Lipschitz selection for the entire X.
17. Use Zorn's lemma in order to deduce Kirszbraun's theorem from the following finitary statement proved in class: For any finite set S in a Hilbert space H and a point $x \notin S$ - any 1-Lipschitz function from S to H may be extended to a 1-Lipschitz function from $S \cup\{x\}$ to H.
18. For a convex set $A \subset \mathbb{R}^{2}$ we write $R(A)$ for the smallest rectangle, parallel to the axes, that contains A. Prove that
(a) $R\left(\bigcap_{\alpha \in I} K_{\alpha}\right)=\bigcap_{\alpha, \beta \in I} R\left(K_{\alpha} \cap K_{\beta}\right)$.
(b) For parallel rectangles $\left\{A_{\alpha}\right\}_{\alpha \in I},\left\{B_{\beta}\right\}_{\beta \in J}$, we have

$$
d\left(\bigcap_{\alpha} A_{\alpha}, \bigcap_{\beta} B_{\beta}\right)=\sup _{\alpha, \beta} d\left(A_{\alpha}, B_{\beta}\right)
$$

whenever the intersections in the left-hand side are non-empty, where here $d(A, B)=\inf _{x \in A, y \in B}\|x-y\|_{\infty}$.

Week 8

19. Explain how to adapt the proof of the finiteness principle using Lipschitz selection for $\dot{C}^{1,1}\left(\mathbb{R}^{2}\right)$, to the case of $C^{1,1}\left(\mathbb{R}^{2}\right)$.

That is, prove the following statement: There exists a universal constant $C>0$ with the following property: Let $E \subset \mathbb{R}^{n}$ be a closed set, $f: E \rightarrow \mathbb{R}$. Suppose that for any $S \subset E$ with $\#(S) \leq C$, we have

$$
\left\|\left.f\right|_{S}\right\|_{C^{1,1}(S)} \leq M
$$

Then $\|f\|_{C^{1,1}(E)} \leq C M$.
20. Denote $A=(-1-\varepsilon, 0), B=(-1+\varepsilon, 0), C=\left(-1,-\varepsilon^{2}\right), D=(1+$ $\varepsilon, 0), E=(1-\varepsilon, 0), F=\left(1, \varepsilon^{2}\right)$. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ vanishes at five of these six points, and $f(F)=\varepsilon$.

We explained in class that $\|f\|_{\dot{C}^{1,1}} \geq c / \varepsilon$. Prove that if we remove one of these six points (any point), then there is a $\dot{C}^{1,1}$ extension whose $\dot{C}^{1,1}$-norm is bounded by a universal constant.

Week 9

21. Suppose $\mathcal{A} \subseteq \mathcal{M}$ is a subset of multi-indices. Suppose $\phi: \mathcal{A} \rightarrow \mathcal{M}$ satisfies

- For any $\alpha \in \mathcal{A}$, we have $\phi(\alpha) \leq \alpha$.
- If $\phi(\alpha) \neq \alpha$, then $\phi(\alpha) \notin \mathcal{A}$.

Prove that $\phi(\mathcal{A}) \leq \mathcal{A}$, with equality iff ϕ is the identity map.

Week 10

22. Fix $\mathcal{A} \subseteq \mathcal{M}, x \in \mathbb{R}^{n}, \delta>0$. Denote

$$
\mathcal{R}_{\mathcal{A}}(x, \delta)=\left\{P \in \mathcal{P} ; \forall \beta \geq \alpha_{\mathcal{A}, x}(P),\left|\partial^{\beta} P(x)\right| \leq \delta^{m+1-|\beta|}\right\}
$$

where $\alpha_{\mathcal{A}, x}(P)=\max \left\{\alpha \in \mathcal{A} ; \partial^{\alpha} P(x) \neq 0\right\}$. Prove that for any $K \geq 1$ and a centrally-symmetric convex set $\Omega \subseteq \mathcal{P}$,

$$
\mathcal{B}_{\mathcal{A}}(\delta) \subseteq K \pi_{\mathcal{A}, x}\left\{\Omega \cap \mathcal{R}_{\mathcal{A}}(x, \delta)\right\}
$$

if and only if there exist polynomials $\left\{P_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ with the following properties:
(a) $\partial^{\beta} P_{\alpha}(x)=\delta_{\alpha, \beta}$ for any $\alpha, \beta \in \mathcal{A}$.
(b) $\left|\partial^{\beta} P_{\alpha}(x)\right| \leq K \delta^{|\alpha|-|\beta|}$ for any $\mathcal{M} \ni \beta \geq \alpha \in \mathcal{A}$.
(c) $\delta^{m+1-|\alpha|} P_{\alpha} \in K \Omega$.
23. Suppose that A is a $n \times n$ matrix, with ones on the main diagonal, such that the sum of the absolute values of the off-diagonal elements in each row does not exceed $1 / 2$.

Prove that A^{-1} exists, and that all of its elements are at most 2 in absolute value.

Week 11

24. Suppose $Q_{0} \in C Z\left(\mathcal{A}_{0}\right) \backslash C Z\left(\mathcal{A}_{0}^{-}\right)$. Let $x \in E \cap Q_{0}^{* * *}$. Prove that

$$
\mathcal{B}_{\mathcal{A}_{0}}\left(A_{2} \delta_{Q_{0}}\right) \subseteq C A_{1}\left(\mathcal{A}_{0}\right) \pi_{\mathcal{A}_{0}, x}\left\{\sigma\left(x, \ell\left(\mathcal{A}_{0}\right)-1\right) \cap B\left(x, A_{2} \delta_{Q_{0}}\right)\right\},
$$

where $C>0$ is a constant depending solely on m and n.

