The Logarithmic Laplace Transform in Convex Geometry

Bo'az Klartag

Tel-Aviv University

Workshop at Kibbutz Hagoshrim, Israel, April 2011

Joint works with Ronen Eldan and with Emanuel Milman.

Many open problems

We would like to explain some of the **tools** used in the study of the distribution of volume in high dimensional convex bodies.

 Despite recent progress, even the simplest questions remain unsolved:

Question [Bourgain, 1980s]

Suppose $K \subset \mathbb{R}^n$ is a convex body of volume one. Does there exist an (n-1)-dimensional hyperplane $H \subset \mathbb{R}^n$ such that

$$Vol_{n-1}(K \cap H) > c$$

where c > 0 is a universal constant?

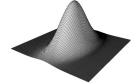
- Known: $Vol_{n-1}(K \cap H) > cn^{-1/4}$ (Bourgain '91, K. '06).
- Affirmative answer for: unconditional convex bodies, zonoids, their duals, random convex bodies, outer finite volume ratio, few vertices/facets, subspaces/quotients of L^p, Schatten class, ...

Logarithmically-Concave densities

As was observed by K. Ball, the hyperplane conjecture is most naturally formulated in the class of **log-concave densities**.

• A probability density on \mathbb{R}^n is log-concave if it takes the form $\exp(-H)$ for a **convex** function $H: \mathbb{R}^n \to (-\infty, \infty)$

Examples of log-concave densities: The Gaussian density, the uniform density on a convex body.



- Pointwise product of log-concave densities is (proportional to) a log-concave density.
- 2 Prékopa-Leindler: If X is a log-concave random vector, so is the random vector T(X) for any linear map T.

Isotropic Constant

For a log-concave probability density $\rho: \mathbb{R}^n \to [0, \infty)$ set

$$L_{
ho} = \sup_{\mathbf{x} \in \mathbb{R}^n}
ho^{rac{1}{n}}(\mathbf{x}) \det \mathit{Cov}(
ho)^{rac{1}{2n}}$$

the **isotropic constant** of ρ . The isotropic constant is affinely invariant. What's its meaning?

• Normalization: Suppose X is a random vector in \mathbb{R}^n with density ρ . It is **isotropic** if

$$\mathbb{E}X = 0,$$
 $Cov(X) = Id$

That is, all marginals have mean zero and var. one.

• For an isotropic, log-concave density ρ in \mathbb{R}^n ,

$$L_
ho \simeq
ho(0)^{1/n} \simeq \int_{\mathbb{R}^n}
ho^{1+rac{1}{n}} \simeq \exp\left(rac{1}{n}\int_{\mathbb{R}^n}
ho\log
ho
ight) > c$$

An equivalent formulation of the slicing problem

The hyperplane conjecture is *directly* equivalent to the following:

Slicing problem, again:

Is it true that for any n and an isotropic, log-concave $\rho: \mathbb{R}^n \to [0, \infty)$,

$$L_{\rho} < C$$

where C > 0 is a universal constant?

(this simple equivalence follows from Ball, Bourgain, Fradelizi, Hensley, Milman, Pajor and others, using Brunn-Minkowski).

• For a uniform density on $K \subset \mathbb{R}^n$, $L_K = Vol_n(K)^{-1/n}$. Can we have the same covariance as the Euclidean ball, in a substantially smaller convex set?

Remarks

- It is straightforward to show that $L_{\rho} > c$, for a universal constant c > 0.
- To summarize, define

$$L_n = \sup_{\rho:\mathbb{R}^n\to[0,\infty)} L_\rho.$$

It is currently known that

$$L_n \leq C n^{1/4}$$
.

It is enough to consider the uniform measure on centrally-symmetric convex bodies (Ball '88, K. '05):

$$L_n \leq C \sup_{K \subset \mathbb{R}^n} L_K$$

where $K \subset \mathbb{R}^n$ is convex, with K = -K.

Our tool: Logarithmic Laplace Transform

 The Laplace Transform is used in almost all known bounds for L_Ω.

Suppose *X* is a log-concave random vector, $\mathbb{E}X = 0$.

The logarithmic Laplace transform is the convex function

$$\Lambda(\xi) = \Lambda_X(\xi) = \log \mathbb{E} \exp(X \cdot \xi) \qquad (\xi \in \mathbb{R}^n).$$

It is non-negative with $\Lambda(0) = 0$.

The logarithmic Laplace transform helps relate:

- Ovariance matrix of X (and its "tilts"), and
- ② The entropy of X (and volumes of $Z_p(X)$).

Differentiating the logarithmic Laplace transform

Recall that

$$\Lambda(\xi) = \log \mathbb{E} \exp(X \cdot \xi)$$

• For $\xi \in \mathbb{R}^n$, denote by \tilde{X}_{ξ} the "tilted" log-concave random vector in \mathbb{R}^n whose density is proportional to

$$\mathbf{X} \mapsto \rho(\mathbf{X}) \exp(\xi \cdot \mathbf{X})$$

where ρ is the density of X.

Then,

- **2** The hessian $\nabla^2 \Lambda(\xi) = Cov(\tilde{X}_{\xi})$.

Third derivatives? A bit complicated. With $b_{\xi} = \mathbb{E}\tilde{X}_{\xi}$,

$$\begin{split} \partial^i \log \det \nabla^2 \Lambda(\xi) \\ &= \mathcal{T}r \left[Cov(X_{\xi})^{-1} \mathbb{E} (\tilde{X}_{\xi}^i - b_{\xi}^i) (\tilde{X}_{\xi} - b_{\xi}) \otimes (\tilde{X}_{\xi} - b_{\xi}) \right]. \end{split}$$

To tilt, or not to tilt?

We prefer the "centered tilt",

$$X_{\xi} \stackrel{d}{=} \tilde{X}_{\xi} - b_{\xi}$$

where $b_{\xi} = \mathbb{E}\tilde{X}_{\xi}$. Note that $\mathbb{E}X_{\xi} = 0$, and X_{ξ} is log-concave.

Focusing on the Log. Laplace transform near $\xi \in \mathbb{R}^n$

Note that

$$\Lambda_{X_{\xi}}(z) = \Lambda_{X}(\xi + z) - [\Lambda_{X}(\xi) + z \cdot \nabla \Lambda_{X}(\xi)].$$

i.e., we subtract the tangent plane at ξ , and translate so that ξ is the new origin.

 A marvelous usage of tilts appears in Cramér's theorem on moderate deviations from 1938.

Transportation of measure

Suppose X is uniform in a convex body K. Recall that $\nabla \Lambda(\xi) = b_{\xi} \in K$ for all ξ , by convexity. From the change of variables formula,

$$\mathit{Vol}_n(\mathcal{K}) = \mathit{Vol}_n(\nabla \Lambda(\mathbb{R}^n)) = \int_{\mathbb{R}^n} \det \nabla^2 \Lambda(\xi) d\xi \geq \int_{n\mathcal{K}^\circ} \det \nabla^2 \Lambda(\xi) d\xi$$

• In particular, there exists $\xi \in nK^{\circ}$ with

$$\det \nabla^2 \Lambda(\xi) = \det Cov(X_{\xi}) \leq \frac{Vol_n(K)}{Vol_n(nK^{\circ})}.$$

Since $e^{-n} \le \exp(\xi \cdot x) \le e^n$ for $x \in K$, then for such $\xi \in nK^{\circ}$,

$$L_{X_{\xi}} \leq \frac{C}{Vol_n(K)^{1/n}} \left(\frac{Vol_n(K)}{Vol_n(nK^{\circ})} \right)^{1/(2n)} \simeq \left(\frac{1}{Vol_n(K) Vol_n(nK^{\circ})} \right)^{1/(2n)} \overset{1}{\Longrightarrow}$$

Log-concave densities and convex bodies

Theorem (Bourgain-Milman '87)

$$Vol_n(K) Vol_n(nK^{\circ}) \geq c^n$$

where c > 0 is a universal constant.

• Therefore $L_{X_{\varepsilon}} < Const$ for **most** $\xi \in nK^{\circ}$.

There is a correspondence between centered log-concave densities and convex bodies due to K. Ball:

• Suppose $f: \mathbb{R}^n \to [0, \infty)$ is log-concave. Denote

$$K(f) = \left\{ x \in \mathbb{R}^n; (n+1) \int_0^\infty f(rx) r^n dr \ge 1 \right\},\,$$

the convex body associated with f. (Convexity of K(f) is related to Busemann's inequality)

Isomorphic version of the slicing problem

Applying this construction to X_{ξ} with $L_{X_{\xi}} < C$:

- Obtain a convex body T, with $L_T \simeq L_{X_{\xi}} < Const.$
- Direct analysis: The convex body T is geometrically close to K, the support of X.

We deduce:

Theorem (K. '06)

For any convex body $K \subset \mathbb{R}^n$ and $0 < \varepsilon < 1$, there exists another convex body $T \subset \mathbb{R}^n$ with

- 2 $L_T \leq C/\sqrt{\varepsilon}$, where C > 0 is a universal constant.

The Calculus of the Logarithmic Laplace Transform

There are a few other useful tricks with Log. Laplace.

Many properties of Log. Laplace are proven via 1D arguments

- For a subspace E (perhaps of dimension one), use the fact that $\Lambda_X|_E = \Lambda_{Proj_E(X)}$, where $Proj_E(X)$ is again l.c.
- ② Compute Λ_X via integration in polar coordinates, and use Laplace method for the integrals $\int_0^\infty t^{n-1}(l.c.)dt$.

Suppose *X* is log-concave, $\mathbb{E}X = 0$, t > 0. Denote

$$\{\Lambda \leq t\} = \{\xi \in \mathbb{R}^n; \Lambda(\xi) \leq t\}$$

and

$$\{\Lambda \leq t\}_{symm} = \{\Lambda \leq t\} \bigcap (-\{\Lambda \leq t\}).$$

Direct Properties: (proven via 1D considerations)

Using these methods, one shows:

Suppose *X* is uniform in *K* and $\mathbb{E}X = 0$. Then,

$$\{\Lambda \leq n\} \simeq nK^{\circ}.$$

• For a general log-concave X with $\mathbb{E}X = 0$,

$$L_X \simeq (\det Cov(X))^{1/(2n)} \cdot Vol_n (\{\Lambda \leq n\})^{1/n}$$
.

A rather technical, but useful fact, which follows from $L_X \ge c$:

For any k-dim. subspace $E \subset \mathbb{R}^n$, there exists $\theta \in E$ with $|\theta| = 1$ and

$$\sqrt{\mathbb{E}(X\cdot heta)^2}\gtrsim extstyle ex$$

Relation to L^p-centroid bodies of Paouris

Suppose *X* is log-concave, $\mathbb{E}X = 0$. For $p \ge 1$ consider the norm

$$h_{Z_p(X)}(\theta) = (\mathbb{E}|X \cdot \theta|^p)^{1/p} \qquad (\theta \in \mathbb{R}^n).$$

 This is the supporting functional of a centrally-symmetric convex body, denoted by

$$Z_p(X)$$

(introduced by Lutwak, Zhang '97, theory developed mostly by Paouris).

From 1D considerations:

Theorem (essentially from Latała, Wojtaszczyk '08)

For any $p \geq 1$,

$$Z_p(X) \simeq p\{\Lambda_X \leq p\}_{symm}^{\circ}.$$

Borrowing from Paouris' theory of L^{ρ} -centroid bodies

• One advantage of $Z_p(X)$ over the dual $\{\Lambda_X \leq p\}$:

$$W_p(Z_p(X)) := \left(\int_{S^{n-1}} h_{Z_p}(\theta)^p\right)^{1/p} \simeq \frac{\sqrt{p}}{\sqrt{n+p}} \left(\mathbb{E}|X|^p\right)^{1/p} \gtrsim \sqrt{p}$$

when $2 \le p \le n$ and $\mathbb{E}|X|^2 = n$. This is very hard to prove directly for log. Laplace.

Paouris $q^*(X)$ parameter

This is the maximal $p \ge 1$ such that **random** p-dimensional sections of $\{\Lambda_X \le p\}_{symm}$ are approximately Euclidean.

• It is important to have the same p, because we know something about the geometry of $\{\Lambda \leq n\}$ in \mathbb{R}^n .

The classical Dvoretzky theorem appears

V. Milman's 1971 proof of Dvoretzky's theorem has a **formula** for the dimension in which "**random sections are Euclidean**".

Paouris remarkable theorem

Using this formula and its relations to $W_p(Z_p(X))$, he shows:

$$(\mathbb{E}|X|^p)^{1/p} \leq C \left(\mathbb{E}|X|^2\right)^{1/2}$$

for all $1 \le p \le q^*(X)$ and an isotropic X, with $q^*(X) \gtrsim \sqrt{n}$.

• What else follows from Paouris approach? When $\mathbb{E}X = 0$, $1 \le k \le q^*(X)$, and $E \in G_{n,k}$ is a *random subspace*. Then usually,

$$Vol_k (\{\Lambda_X \leq k\} \cap E)^{1/k} \lesssim \det Cov(X)^{-1/(2n)}$$

(i.e., some upper bound on $\{\Lambda \leq k\}$, for $k \leq q^*(X)$).

Relating the tilt and the original measure

Recall the tilts X_{ξ} and the close relation between Λ_X and $\Lambda_{X_{\xi}}$:

Lemma

Suppose
$$\xi\in rac{1}{2}\{\Lambda_X\leq p\}_{symm}.$$
 Then, $\{\Lambda_X\leq p\}_{symm}\simeq \{\Lambda_{X_{\xi}}\leq p\}_{symm}.$

• Any parameter which depends nicely on $\{\Lambda_X \leq p\}$ is the same for X and X_{ξ} . For instance, $\min\{p, q^*(X)\}$.

Combining the estimates we have so far, we obtain:

Lemma

For any
$$1 \leq p \leq q^*(X)$$
 and $\xi \in \frac{1}{2} \{ \Lambda_X \leq p \}_{symm}$,
$$\exists \theta \in \mathcal{S}^{n-1}, \qquad \sqrt{\mathbb{E}(X_{\xi} \cdot \theta)^2} \gtrsim \det Cov(X)^{1/(2n)}.$$

Lower bounds on covariance determinants

We need projections to lower dimensional subspaces, but $q^*(X)$ is unstable. Use another parameter, $q^*_{GH}(X)$, which is roughly the "worst possible" $q^*(Proj_EX)$ over all subspaces E.

• These parameters $q^*(X)$ and $q^*_{GH}(X)$ are at least \sqrt{n} , and much larger when we have " ψ_{α} " information.

Corollary

Suppose X is isotropic, set $p = q_{GH}^*(X)$. Then for any $\xi \in \frac{1}{2} \{ \Lambda_X \leq p \}_{\text{symm}}$,

$$\det Cov(X_{\xi}) \geq c^n$$
.

 This reminds us of the "transportation" argument we encountered before...

Advantages of Log. Laplace

The final ingredient in our recipe is a a refined *transportation of measure* argument (we can also use what we had earlier).

• Suppose $F: \mathbb{R}^n \to \mathbb{R}$ is **any** non-negative convex function, F(0) = 0. Abbreviate

$$F_p = \{F \leq p\} = \{x \in \mathbb{R}^n; F(x) \leq p\}.$$

"The gradient image of a level set is approx. p times its dual"

$$\frac{1}{2}\nabla F\left(\frac{F_{\rho}}{2}\right)\subseteq \rho F_{\rho}^{\circ}\subseteq \nabla F\left(F_{\rho}\right).$$

Consequently, (with a bit of cheating)

$$\left(\int_{F_p} \det \nabla^2 F(x) dx\right)^{1/n} = \operatorname{Vol}_n \left(\nabla F(F_p)\right)^{1/n} \simeq \operatorname{Vol}_n \left(pF_p^\circ\right)^{1/n}.$$

Transportation argument revisited

• Suppose F is an *even* convex function with F(0) = 0. Use the previous formula + Santaló/Bourgain-Milman:

"integral of det.-hessian determines volume of level-set" (minor cheating, needs to take $\rho/2$ for one bound, and ρ for the other direction)

$$\left(\int_{F_p} \det \nabla^2 F(x) \frac{dx}{Vol_n(F_p)}\right)^{1/n} \simeq \frac{p}{v.rad.(F_p)^2}.$$

where the volume-radius of a convex body $T \subset \mathbb{R}^n$ is

$$v.rad.(T) = (Vol_n(T)/Vol_n(B^n))^{1/n}$$
.

• An example: $F(x) = |x|^2/2$. Then, $\left(\det \nabla^2 F(x)\right)^{1/n} = 1$ and

$$v.rad.(F_p) \simeq \sqrt{p}$$
.

Combining everything

To summarize:

 When X is isotropic and p = q^{*}_{GH}(X), we have a lower bound for

$$\det \nabla^2 \Lambda(\xi)$$

for
$$\xi \in \frac{1}{2} \{ \Lambda \leq p \}_{symm}$$
.

This translates to an upper bound for

$$v.rad.$$
 $(\{\Lambda \leq q_{GH}^*(X)\}_{symm})$.

• By convexity, $\{\Lambda \leq n\} \subseteq \frac{n}{p} \{\Lambda \leq p\}$ for $p \leq n$. Therefore,

Theorem (K., E. Milman '11)

Suppose X is an isotropic, log-concave random vector in \mathbb{R}^n . Then,

$$L_X \leq C\sqrt{rac{n}{q_{GH}^*(X)}}.$$

But what is this strange parameter $q_{GH}^*(X)$?

Suppose X is isotropic. Set

$$\triangle_X(p) = \sup_{\theta \in S^{n-1}} (\mathbb{E}|X \cdot \theta|^p)^{1/p}.$$

Then,

$$q_{GH}^*(X) \simeq \left(\prod_{k=1}^n \triangle_X^{-1}(c\sqrt{k})\right)^{1/n}.$$

• When X is a ψ_{α} -random vector with constant b_{α} ,

$$\triangle_X(p) \leq b_{\alpha}p^{1/\alpha}$$

and from the theorem with E. Milman,

$$L_X \leq C\sqrt{b_{\alpha}^{\alpha}n^{1-\alpha/2}}.$$

Improves by logarithmic factors upon Dafnis-Paouris '10 and Bourgain '02.

Further open problems

Theorem ("Central Limit Theorem for Convex Bodies", K. '07)

Most of the volume of a log-concave density in high dimensions, with the isotropic normalization, is concentrated near a sphere of radius \sqrt{n} .

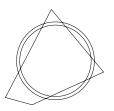
Define

$$\sigma_n^2 = \sup_X Var(|X|) \sim \sup_X \mathbb{E}(|X| - \sqrt{n})^2,$$

where the supremum runs over all log-concave, isotropic random vectors X in \mathbb{R}^n .

$$\sigma_n \ll \sqrt{n}$$
,

which implies that most marginals are approx. gaussian.



How thin is the shell?

Current best bound, due to Guédon-E. Milman '10:

$$\sigma_n \leq C n^{1/3}$$

(improving a previous bound of $\sigma_n \leq C n^{3/8}$ due to Fleury '10, which improved upon $\sigma_n \leq C n^{0.401}$, K. '07, which improved upon $\sigma_n \leq \sqrt{n/\log n}$, K. '07).

Theorem (Eldan, K. '10)

There is a universal constant C such that

$$L_n \leq C\sigma_n$$
.

A Riemannian metric

Are we tired already? If not, there are other amusing games one may play with Log. Laplace.

Definition

For $\xi \in \mathbb{R}^n$, consider the positive-definite quadratic form

$$g_{\xi}(u,v) = Cov(X_{\xi})u \cdot v \qquad (u,v \in \mathbb{R}^n)$$

- This Riemannian metric lets X_{ξ} "feel isotropic".
- This metric does not depend on the Euclidean structure:

$$g_{\xi}(u,v) = \mathbb{E}u(X_{\xi} - b_{\xi}) \cdot v(X_{\xi} - b_{\xi}) \qquad (u,v \in \mathbb{R}^{n*})$$

where $b_{\xi} = \mathbb{E}X_{\xi}$ and u, v are viewed as linear functionals.

• The absolute values of the sectional curvatures are bounded by a universal constant. They vanish when X_1, \ldots, X_n are independent r.v.'s.

A Riemannian metric

One computes that for any $\xi \in \mathbb{R}^n$,

$$|
abla_g \log \det \mathit{Cov}(X_\xi)|_g \leq \mathit{C}\sqrt{n}\sigma_n$$

(due to affine invariance, the computation simplifies considerably: We can always "pretend that X_{ξ} is istotropic").

• Assume that X is isotropic. Then for $\xi \in \mathbb{R}^n$ with $d_g(0,\xi) \leq \sqrt{n}/\sigma_n$,

$$e^{-n} \leq \det Cov(X_{\xi}) \leq e^{n}$$
.

Recall: we need a lower bound for an integral of det $Cov(X_{\xi})$.

• How big is the Riemannian ball of radius \sqrt{n}/σ_n around the origin?

Level sets of Log. Laplace, again

Lemma

$$d_g(0,\xi) \leq \sqrt{\Lambda_X(2\xi)}$$

Proved by inspecting the Riemannian length of the (Euclidean) segment $[0, \xi]$: By convexity,

$$d_g(0,\xi) \leq \int_0^1 \sqrt{\frac{\partial^2}{\partial \xi^2}} \Lambda_X(r\xi) dr \leq \sqrt{\Lambda_X(2\xi)}$$

Therefore,

$$\left(\frac{1}{L_{K}}\right)^{n} \geq c^{n} Vol_{n}\left(\left[\Lambda \leq n/\sigma_{n}^{2}\right]\right).$$

Analysis of $\{\Lambda \leq p\}$ as described earlier completes the proof.

Thank you!

