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Chapter 1

Probability measures in high dimensions

In this first lecture we will present the first protagonist of the mini-course, the high dimension.
Explanations regarding convexity, whose rôle cannot be diminished, will have to wait for the
next lectures. We suggest that the students pay attention to our multiple points of view of the
subject matter: The geometric perspective, the probabilistic perspective, and the analytic one.
We begin by considering in detail some simple examples of probability measures in Rn, trying
to imagine how they look like geometrically when the dimension n approaches infinity. This

last sentence might sound a bit confusing to some of the students: A probability measure may be
defined on Rn for some n, but then how can the fixed dimension n tend to infinity? One standard
answer is that in fact we consider a sequence of Borel probability measures µn defined on Rn,
for n = 1, 2, . . . and we investigate this sequence as a whole. Another standard answer, which
we find more convenient in practice, is that we are looking after explicit bounds, depending
on the dimension n alone, for interesting quantities related to a probability measure µ on Rn.
As the dimension gets larger, these bounds may sometimes get sharper. Thus, we obtain good
approximations to various features of the measure µ, assuming that n is sufficiently large. A
third possible answer could involve infinite-dimensional probability measures, a subject that
will not be touched upon in this mini-course.

1.1 The example of the cube
Consider the unit cube Qn = [−1/2, 1/2]n. In order to warm up a bit, let us compute the
diameter of the unit cube, that is

diam(Qn) = sup
x,y∈Qn

|x− y| (1.1)

where |x|2 =
∑

i x
2
i is the square of the standard Euclidean norm of the vector x ∈ Rn. A

moment of reflection reveals that the supremum in (1.1) is attained when x and y are two
antipodal vertices of the unit cube Qn. Therefore

diam(Qn) =
√
n.

In high dimensions, there are two lengthscales that are associated with the unit cube: Its side-
length, which is one, and its diameter, which is

√
n. It appears that the latter lengthscale is

frequently more dominant. Very roughly, the unit cube Qn resembles a Euclidean ball of radius√
n more than it resembles a Euclidean ball of radius one.
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2 CHAPTER 1. PROBABILITY MEASURES IN HIGH DIMENSIONS

For instance, let us compute the typical Euclidean distance between two random points in
Qn. Thus, let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two independent random vectors,
that are distributed uniformly in the cube Qn. Then X1, . . . , Xn, Y1, . . . , Yn are independent
real-valued random variables, distributed uniformly in the interval [−1/2, 1/2]. The L2-average
of the distance between X and Y is

√
E|X − Y |2 =

√√√√ n∑
i=1

E|Xi − Yi|2 =
√
n · E|X1 − Y1|2 =

√
n√
6
.

Thus the L2-norm of the distance between the random points X and Y has the order of magni-
tude of

√
n, for large n. It is also not too hard to show also that the expectation of the distance,

the median of the distance and also the Lp-norm of the distance have the order of magnitude
of
√
n. This will also follow from a general principle, to be discussed later in this mini-course.

We conclude that in any reasonable sense, the typical distance between two random points in
the cube has the order of magnitude of

√
n.

An important feature of the uniform distribution on the cube Qn is related to the classical
central limit theorem. When X is a random vector that is distributed uniformly in Qn, its
coordinates X1, X2, . . . , Xn are independent, identically-distributed random variables of mean
zero and variance 1/12. Let us dilate the cube Qn by a factor of

√
12 in order to obtain variance

1. Thus, denote √
12Qn =

{√
12x ; x ∈ Qn

}
= [−

√
3,
√

3]n.

Suppose that Y = (Y1, . . . , Yn) is a random vector, distributed uniformly in
√

12Qn. According
to the central limit theorem, the random variable∑n

i=1 Yi√
n

=
n∑
i=1

1√
n
· Yi

is approximately a standard, normal random variable. Furthermore, it is not essential that all of
the weights are precisely 1/

√
n. In place of the 1/

√
n, we may use coefficients θ1, . . . , θn ∈ R

with
∑

i θ
2
i = 1, and consider the random variable

n∑
i=1

θiYi.

The latter random variable has mean zero and variance one, according to our normalization of
the θi’s. By using standard expansions related to the central limit theorem, such as the Berry-
Esseen bound, we have

∀t ∈ R,

∣∣∣∣∣P
(

n∑
i=1

θiYi ≤ t

)
− 1√

2π

∫ t

−∞
e−s

2/2ds

∣∣∣∣∣ ≤ C
n∑
i=1

θ4
i , (1.2)

where C > 0 is a universal constant. That is, the constant C does not depend on t or on θi, it is
simply a numerical constant such as 5 or 10 or 2πe which in principle can be written explicitly,
if one is interested in its value. When substituting θi = 1/

√
n in (1.2), we see that in the case

of the cube, the error in the central limit theorem has the order of magnitude of at most 1/n.
We also see that the Gaussian approximation is pretty good when all of the θi’s are rather small,
since the right-hand side of (1.2) is at most C maxi |θi|2.
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It is perhaps helpful to try and visualize the central limit theorem in a more geometric
fashion. One may think about estimates such as (1.2) in the following way: Fix a unit vector of
coefficients θ = (θ1, . . . , θn) ∈ Rn, and let fθ be the probability density function of the random
variable

∑
i θiXi, where X is distributed uniformly in the unit cube Qn. Denote

Hθ,t = {x ∈ Rn;x · θ = t} (t ∈ R),

a hyperplane orthogonal to the direction θ. Here, x · y =
∑

i xiyi is the standard scalar product.
Consider the intersection of the unit cube with Ht and observe that

fθ(t) = V oln−1(Qn ∩Hθ,t).

In the case where θ = (1, . . . , 1)/
√
n, and also in many other cases, we can assert that∣∣∣∣fθ(√12 · t) − exp(−t2/2)√

2π

∣∣∣∣ ≤ C

n
(t ∈ R), (1.3)

for a universal constant C > 0. The bound (1.3) does not formally follow from (1.2), yet it is
very similar to (1.2), and its standard proof is outlined in Exercise 1.1.1 below. We conclude
that to a very good approximation, the Gaussian law dictates the volumes of parallel hyperplane
slices of the high-dimensional cube.

In the case where (θ1, . . . , θn) = (1, 0, . . . , 0), the random variable
∑

i θiXi is not at all close
to Gaussian: It is distributed uniformly in an interval. Thus, the Gaussian approximation does
not hold for all directions θ. Yet, in sense to be made precise, it holds true for most directions θ.

Exercise 1.1.1 Let n ≥ 2, θ = (1, . . . , 1)/
√
n, suppose that X is distributed uniformly in Qn

and denote by fθ the probability density function of the random variable X · θ.

(i) Verify that f̂θ(s) := E exp(2πisθ ·X) =

(
sin(πs/

√
n)

πs/
√
n

)n
for any s ∈ R.

(ii) Use the Taylor expansion in order to prove that for |r| < 1/2,

log
sin(πr)

πr
= −π

2r2

6
+O

(
r4
)
.

The notation O(x), for some expression x, is an abbreviation for some complicated quan-
tity y with the property that |y| ≤ Cx for a universal constant C > 0.

(iii) Conclude that for any |s| ≤ n1/4/2,∣∣∣f̂θ(s)− exp
(
−π2s2/6

)∣∣∣ ≤ C
s4 exp (−s2/2)

n
. (1.4)

(iv) Write down the Fourier inversion formula for the function fθ, and recall the formula for
the Fourier transform of a Gaussian function. Pretend that (1.4) holds true for all s (this
is false, will be corrected in the next step), and deduce the desired estimate (1.3).

(v) In order to prove that the contribution of |s| > n1/4/2 is indeed negligible, you may argue
as follows: Show that for |r| ≥ n−1/4/2,∣∣∣∣sin(πr)

πr

∣∣∣∣ ≤ min

{
1− 1

C
√
n
,

1

π|r|

}
and therefore,∫ ∞

n1/4

2

∣∣∣f̂θ(s)∣∣∣ ds ≤ ∫ ∞
0

min

{(
1− 1

C
√
n

)n
,

(
1

πs/
√
n

)n}
ds = O

(
1

n10

)
.
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1.2 The example of the Euclidean ball
The next example we will consider in detail is that of the Euclidean unit ball

Bn = {x ∈ Rn; |x| ≤ 1}.

The volume of Bn is computed in advanced Calculus classes around the globe in various ways,
and it always turns out that

V oln (Bn) =
πn/2

Γ
(
n
2

+ 1
) =

(√
2πe+ o(1)√

n

)n

(1.5)

where the equality on the right-hand side follows from Stirling’s formula. In this mini-course,
the notation o(x), for a certain expression x, is an abbreviation for some complicated quantity
y with the property that as the dimension n tends to infinity, the ratio y/x tends to zero. We
conclude from (1.5) that the volume of the unit ball is rather small, in high dimensions. It is the
Euclidean ball whose radius is approximately

√
n√

2πe+ o(1)

which has volume one. In order not to carry the cumbersome factor “
√

2πe+ o(1)” throughout
the discussion, we choose to consider the Euclidean ball of radius

√
n. Thus, suppose that

X = (X1, . . . , Xn) is a random vector in Rn that is distributed uniformly in
√
nBn

2 . Unlike
in the case of the cube, this time the random variables X1, . . . , Xn are no longer independent.
Nevertheless, let us still investigate the distribution of the random variable

n∑
i=1

θiXi

for some unit vector θ ∈ Rn. Geometrically, this means that we select a unit vector θ, we
intersect our Euclidean ball with hyperplanes orthogonal to θ and then we compute their volume.
The probability density of

∑n
i=1 θiXi is the function

fθ(t) =
V oln−1 {

√
nBn

2 ∩Hθ,t}
V oln {

√
nBn

2 }
(t ∈ R). (1.6)

The denominator in (1.6) is the price we have to pay for our choice to consider a Euclidean
ball whose volume is not exactly one. A first observation, is that fθ(t) does not depend on the
unit vector θ, because of the symmetries of the Euclidean ball. A second observation is that the
numerator in (1.6) is the volume of an (n − 1)-dimensional Euclidean ball of radius

√
n− t2,

by the Pythagoras theorem. Consequently,

fθ(t) =
V oln−1

(
Bn−1

2

)
V oln (

√
nBn

2 )
·
(
n− t2

)(n−1)/2
= Cn

(
1− t2

n

)n−1
2

for |t| ≤
√
n, (1.7)

where Cn is some constant depending solely on n. Let us look closely at the right-hand side of
(1.7). What is it like for large n? As we all learned in Calculus, we have fθ(t) ≈ Cn exp(−t2/2),
which is approximately the density of the standard Gaussian. More precisely, we can estimate
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the error in the approximation in a standard manner by using Taylor’s theorem (Exercise!), and
obtain

fθ(t) = Cn

[
e−t

2/2 +O

(
1

n

)]
.

Recalling that fθ is a probability density with integral one, we may now guess and prove that
Cn = (2π)−1/2 +O(1/n). To conclude,

fθ(t) =
e−t

2/2

√
2π

+O

(
1

n

)
(t ∈ R).

Hence also in the case of the high-dimensional Euclidean ball, the Gaussian law approximately
governs the behavior of volumes of parallel hyperplane slices. The latter fact is sometimes
attributed to Maxwell.

Students who solved Exercise 1.1.1 will surely appreciate the simple, direct argument that
we used for the proof of the central limit theorem for the uniform distribution on the Euclidean
ball. Unlike in the case of the cube, we did not have to rely on very indirect tools such as
the Fourier transform. Therefore, one may argue that the Euclidean ball is very much re-
lated to Gaussian approximations and to the central limit theorem, albeit the random variables
X1, . . . , Xn are dependent.

The boundary of Bn
2 is the unit sphere

Sn−1 = {x ∈ Rn ; |x| = 1} .

Next, we observe that in high dimensions, a random point in Bn
2 is typically located rather close

to the boundary. To that end, suppose that Y = (Y1, . . . , Yn) is a random vector, distributed
uniformly in the unit ball Bn

2 . Note that 0 ≤ |Y | ≤ 1 almost surely, and

P (|Y | ≤ t) = V oln(tBn
2 )/V ol(Bn

2 ) = tn (0 ≤ t ≤ 1).

In particular,

P
(
|Y | ≥ 1− 1

n

)
= 1−

(
1− 1

n

)n
≥ 1− 1

e
>

1

2
.

Therefore at least half of the mass of Bn
2 lies inside the thin spherical shell,

Bn
2 \

(
1− 1

n

)
Bn

2 .

Yet another equivalent formulation, is that a random point in Bn
2 is typically located at distance

at most 1/n from the boundary of Bn
2 .

In the remainder of this subsection (and also in the next one), we will discuss the measure
σn−1, which is the surface area measure on the unit sphere Sn−1, normalized to be a probability
measure. We refer to σn−1 as the uniform probability measure on Sn−1. Its most important
property is that it is invariant under O(n), the group of orthogonal transformation in Rn. Here
we have the following exercises related to the above.

Exercise 1.2.1 Let X and Y be independent random vectors supported on the unit sphere, with
Y being distributed uniformly in Sn−1. Then the random variables

X · Y and Y1

have exactly the same distribution.



6 CHAPTER 1. PROBABILITY MEASURES IN HIGH DIMENSIONS

Exercise 1.2.2 Suppose that Let X = (X1, · · · , Xn) is a random vector uniformly distributed
Sn−1. Then (X1, · · ·Xn−2) is uniformly distributed in Bn−2.

Hint: The density of (X1, · · ·Xn−1) is proportional to
1√

1− |x|2
in Bn−1.

In effect, the uniform probability distribution on the Euclidean ball Bn
2 is not so much dif-

ferent from the uniform probability measure on the unit sphere Sn−1, in high dimensions. More
precisely, let be a random vector uniformly distributed on Sn−1. Then using exercise 1.2.2 we
get that ∣∣∣∣P (√nX · θ ≤ t

)
− 1√

2π

∫ t

−∞
e−s

2/2 ds

∣∣∣∣ ≤ c

”n− 2”
≤ c̃

n
.

Additionally, the density of
√
nX is cn

(
1− t2

n

)n−3
2

, so this vector is approximately Gaussian

and finally for |t| ≤
√
n we get the following large deviation inequality

P
(∣∣√nX∣∣ ≥ t

)
= cn

∫ √n
t

(
1− t2

n

)n−3
2

ds

≤ c

∫ ∞
t

e−s
2 n−3

2n ds

≤ c̃e−t
2− 3t2

2n ≤ ce−t
2/2.

Renormalising, we get that for each t > 0 the following holds

P (|Xi| ≥ t) ≤ Ce−nt
2/2. (1.8)

One surprising consequence of (??) is that most of the mass of the high-dimensional unit sphere
Sn−1 lies very close to the equator. What is the probability that a random point Y in the sphere
will be outside a narrow strip of width 1/10 around the equator {x ∈ Sn−1;x1 = 0}? This is
precisely,

P
(
|Y1| ≥

1

10

)
≤ Ce−cn (1.9)

according to (??). Thus, only exponentially-small amount of mass is located at distance 1/10
from the equator! Furthermore, by the symmetries of the sphere, the same phenomenon is
observed for all of the equators. This strange high-dimensional effect is usually referred to as
the concentration of measure phenomenon. Perhaps the circle is not a very good way to depict
the high-dimensional sphere on paper, since such a drawing does not reflect the true distribution
of mass. I learned from V. Milman that in order to have a good grasp on the geometry of the
high-dimensional sphere, perhaps you might want to imagine it like that:

dim→∞

Figure 2.1 – “Concentration of Measure”
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1.3 Concentration of measure on the sphere

The concentration of measure phenomenon is one of the most powerful effects in high dimen-
sion. The sphere Sn−1 is a convenient setting for the demonstration of the effect, because the
isoperimetric problem has an explicit, simple solution here. What is the isoperimetric problem?
For x, y ∈ Sn−1 we write d(x, y) for the geodesic distance between x and y on the sphere, hence
cos d(x, y) = x · y. Note that

|x− y| ≤ d(x, y) ≤ π

2
|x− y|

for any two points x, y ∈ Sn−1. Thus, the geodesic distance on the sphere and the Euclidean
“tunnel distance” are comparable up to a constant factor. Since we tend to view the sphere
“extrinisically”, as a subset of Rn, we would stick to the Euclidean distance |x − y|. The
entire argument works equally well when one instead uses the geodesic distance d(x, y). For a
compact subset A ⊂ Sn−1 and ε > 0 we denote

Aε =
{
x ∈ Sn−1;∃y ∈ A, |x− y| ≤ ε

}
,

the ε-neighborhood of the set A. For example, when H = {x ∈ Sn−1;x1 ≤ 0} is a hemisphere,
then,

Hε =
{
x ∈ Sn−1 ; x1 ≤ ε

}
(0 ≤ ε ≤ 1).

Clearly, σn−1(H) = 1/2. According to (??), the measure of the ε-neighborhood of the hemi-
sphere is typically very close to one, that is

σn−1(Hε) ≥ 1− C exp(−c̃ε2n) (ε > 0). (1.10)

What happens if one consider others subsets A ⊂ Sn−1 with measure 1/2, in place of the
hemisphere? The isoperimetric inequality on Sn−1 states that among all subsets of the sphere
of measure 1/2, the hemisphere is the subset that has the minimal ε-neighborhood in terms of
measure.

Theorem 1.3.1 For any Borel set A ⊂ Sn−1 and ε > 0,

σn−1(A) ≥ 1/2 =⇒ σn−1(Aε) ≥ σn−1(Hε),

where H = {x ∈ Sn−1;x1 ≤ 0} is a hemisphere.

Proof: We fix ε > 0. We will prove first that it is enough to restrict attention to closed subsets
A ⊂ Sn−1 of measure exactly 1/2. To prove this we need two claims.

Claim 1.3.2 The set

A =

{
σn−1(Aε); A ⊂ Sn−1 Borel and σn−1(A) ≥ 1

2

}
attains minimum.

Explanation: The space of the closed subsets of Sn−1 is compact with regard to Haussdorff
metric

dH(A,B) = inf {ε > 0 ; A ⊂ Bε and B ⊂ Aε} .



8 CHAPTER 1. PROBABILITY MEASURES IN HIGH DIMENSIONS

Now it’s easy easy to see that the map A 7→ σn−1(A) is upper semi-continuous, hence the set{
A ⊂ Sn−1 : σn−1(A) ≥ 1

2

}
is compact. Finally the map A 7→ σn−1(Aε) is continuous so attains its minimum and we are
done.

♦

Claim 1.3.3 There exist a minimizer of the set A with maximal intersection with the southern
hemisphere H .

Explanation: The set of all minimizers of A is non-empty due to Claim 1.3.2 and compact.
Now, the map A 7→ σn−1(A ∩H) is upper semi-continuous so there exists minimizer with the
desired property.

♦

To summarize, we can take A ⊂ Sn−1 with σn−1(A) = 1
2
, minimal σn−1(Aε) and maximal

intersection with H. The rest of the proof is based on the idea of ”polarization” or ”two-point-
symmetrization” of A. To begin with, for θ ∈ Sn−1 we set

πθ(x) = x− 2(x · θ)θ

the reflection operator. The main step of the proof is the following claim.

Claim 1.3.4 We fix θ ∈ Sn−1 with θ1 > 0 and we take a subset E of the set

A ∩
{
x ∈ Sn−1, x1 > 0, x · θ > 0, πθ(x) ∈ H

}
with positive measure. Then the set

πθ(E) ∩ A

is non-empty.

Explanation: First, we let

TA(x) =

{
πθ(x) if x · θ > 0 and πθ(x) /∈ A
x otherwise

and we define the 2-point symmetrization as the set

Sθ(A) = {TA(x) : x ∈ A}.

Equivalently, if A+ = {x ∈ A : x · θ > 0} and A− = Rn \ A+, then

A = A− ∪
(
A+ ∩ πθ(A−)

)
∪
(
A+ \ πθ(A−)

)
and

Sθ(A) = A− ∪
(
A+ ∩ πθ(A−)

)
∪ πθ

(
A+ \ πθ(A−)

)
.

We list three properties of the 2-point symmetrization.

• σn−1 (Sθ(A)) = σn−1(A)
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• If A ⊂ B then Sθ(A) ⊂ Sθ(B)

• Sθ(A)ε ⊂ Sθ(Aε)

• σn−1 (Sθ(A) ∩H) ≥ σn−1(A ∩H) + σn−1 (πθ(E) \ A)

The first two are almost trivial. To prove the third one, we take x ∈ Sθ(A). We need to show
that B(x, ε) ⊂ Sθ(Aε). To prove this we have to consider three cases.

1. If x ∈ A and πθ(x) ∈ A then B(x, ε) ∪ B(πθ(x), ε) ⊂ Aε, so B(x, ε) ∪ B(πθ(x), ε) ⊂
Sθ(Aε).

2. If x ∈ A and πθ(x) /∈ A then x · θ < 0 and B(x, ε) ⊂ Aε so B(x, ε) ⊂ Sθ(Aε).

3. If x /∈ A and πθ(x) ∈ A then x · θ < 0 and B(πθ(x), ε) ⊂ Aε so B(x, ε) ⊂ Sθ(Aε).

Now to prove the fourth property, we will show that Sθ(A) ∩ H contains the disjoint union of
and πθ(E) \ A and A ∩H. If x ∈ A ∩H then TA(x) ∈ H and TA(x)1 ≤ x1 so we get the first
inclusion and if x ∈ πθ(E) \ A then from the definition πθ(E) \ A ⊂ Sθ(A) and we get the
desired. To summarize, we proved above that Sθ(A) has measure 1

2
(equal to measure of A), it

has not larger ε−enlargment and not smaller intersection with H. By the minimality of A we
conclude that σn−1 (πθ(E) \ A) = 0 and so πθ(E) ∩ A 6= ∅. To finish the proof we will prove
that

H ⊂ A.

Suppose the opposite, then there exist δ > 0 and x0, y0 such that B(x0, δ) ⊂ Hc \ A and
B(y0, δ) ⊂ H. Now, take θ ∈ Sn−1 with πθ(x0) = x0 and θ1 > 0. Then, if

E = A ∩B(y0, δ) ⊂ A ∩
{
x ∈ Sn−1, x1 > 0, x · θ > 0, πθ(x) ∈ H

}
then E has positive measure and so from Claim 1.3.4, πθ(E) ∩ A 6= ∅. But B(x0, δ) contains
πθ(E) so it is not disjoint from A and this is a contradiction.

�

The proof of Theorem 1.3.1 may be generalized to other types of measure-metric spaces
(that is, metric spaces with a measure) with lots of symmetries. By combining Theorem 1.3.1
with the concentration effect (1.10), we see that for any Borel set A ⊂ Sn−1 and 0 < ε < 1,

σn−1(A) ≥ 1/2 =⇒ σn−1(Aε) ≥ 1− C exp(−cε2n). (1.11)

Thus, for any A ⊂ Sn−1 of measure 1/2, the ε-neighborhood of A captures almost the entire
sphere in sense of volume! For a real-valued function f we write {f > t} = {x; f(x) > t}.

Corollary 1.3.5 Let f : Sn−1 → R be a 1-Lipschitz function (that is, |f(x)− f(y)| ≤ |x− y|).
Let M be the median of f , so that σn−1{f ≥M} ≥ 1/2 and σn−1{f ≤M} ≥ 1/2. Then,

σn−1

(
{x ∈ Sn−1 ; |f(x)−M | ≥ t}

)
≤ C exp(−ct2n) (t > 0), (1.12)

where C, c > 0 are universal constants.
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Proof: Denote A = {f ≤ M} and B = {f ≥ M}. Observe that At ⊆ {f ≤ M + t} and
Bt ⊆ {f ≥M − t}. Now apply (1.11) and obtain the bound (1.13).

Corollary 1.3.5 roughly states that 1-Lipschitz functions on the high-dimensional sphere are
effectively constant. Apriori, you would have expected that such a function attains values, say,
in the entire interval [0, 1]. However, when one evaluates a 1-Lipschitz function at, say, five
randomly selected points, the typical answer will be five numbers that are very close to one
another.

It is sometimes more convenient to work with the expectation rather than the median. For-
tunately, it is possible to replace M in Corollary 1.3.5 by

∫
Sn−1 fdσn−1.

Proposition 1.3.6 Let f : Sn−1 → R be an L-Lipschitz function. Let E =
∫
Sn−1 fdσn−1. Then,

σn−1

(
{x ∈ Sn−1 ; |f(x)− E| ≥ t}

)
≤ C exp(−ct2n/L2) (t > 0), (1.13)

where C, c > 0 are universal constants.

Proof: Replacing f by f/L, we may restrict attention to the case where L = 1. We claim
that the expectation is rather close to the median. In fact, by Corollary 1.3.5,

|E −M | ≤
∫
Sn−1

|f −M | dσn−1 =

∫ ∞
0

σn−1 ({|f −M | ≥ t}) dt

≤
∫ ∞

0

Ce−ct
2ndt ≤ C̃√

n
.

Here, we used the well-known identity, that for any non-negative random variable X ,

EX = E
(∫ ∞

0

1{t≤X}dt

)
=

∫ ∞
0

P(X ≥ t)dt,

where 1{t≤X} is one when t ≤ X and vanishes otherwise. The desired inequality (1.13) holds
trivially for t ≤ 1/

√
n, since the left-hand side of (1.13) is at most one. When t ≥ 1/

√
n, we

can may our bound for |E −M | and assert that

{x ∈ Sn−1 ; |f(x)− E| ≥ t} ⊆ {x ∈ Sn−1 ; |f(x)−M | ≥ Ct}

for some universal constant C > 0. The bound (1.13) now follows from Corollary 1.3.5.

Open problem: The analogous isoperimetric problem on RP n remains open for all n ≥ 4.

1.4 The thin-shell theorem
We move on to discuss an application of the concentration of measure phenomena, which is one
of the many versions of the “thin-shell theorem”. To a certain extent, this theorem explains why
the Gaussian distribution appears in the central limit theorem.

Let X = (X1, . . . , Xn) be a random vector in Rn with E|X|2 < ∞. We assume that X is
normalized as follows:

EXi = 0, EXiXj = δi,j ∀i, j = 1, . . . , n. (1.14)

Equivalently, all of the one-dimensional marginals ofX have mean zero and variance one. Here,
a one-dimensional marginal ofX means a random variable of the formX ·θ for some θ ∈ Sn−1.
A random vector that satisfies the normalization condition (1.14) will be called “normalized” or
“isotropic”.
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Exercise 1.4.1 Suppose that X is a random vector in Rn with E|X|2 < ∞. Assume that X is
not supported in a hyperplane. Prove that there exists a vector b ∈ Rn and a positive-definite
matrix A such that A(X) + b is isotropic.

Exercise 1.4.1 demonstrates that isotropicity is just a matter of normalization. Beginning
with any random vector X satisfying certain mild assumptions, we only need to translate it and
stretch or shrink it in certain directions in order to transform X into an isotropic random vector.

It turns out that the crucial property of X in the context of Gaussian marginals is a certain
thin spherical shell bound:

Theorem 1.4.2 Let X be an isotropic random vector in Rn and let ε > 0. Assume that

E
(
|X|√
n
− 1

)2

≤ ε2. (1.15)

Then, there exists a subset Θ ⊆ Sn−1 with σn−1(Θ) ≥ 1 − C exp(−c
√
n), such that for any

θ ∈ Θ and t ∈ R,

|P(X · θ ≤ t)− Φ(t)| ≤ C

(
ε1/2 +

1

n1/8

)
(1.16)

where Φ(t) = 1√
2π

∫ t
−∞ exp (−s2/2) ds and C, c > 0 are universal constants.

What is the meaning of condition (1.15)? Via the Chebyshev-Markov inequality this condi-
tion implies that

P
(

1−
√
ε ≤ |X|√

n
≤ 1 +

√
ε

)
≥ 1− ε.

Thus, when ε� 1, the condition (1.15) implies that X is concentrated in a thin spherical shell.

Theorem 1.4.2 tells us that in order to have many approximately Gaussian marginals, it
suffices to verify that most of the mass of the random vector X is contained in a thin spherical
shell, whose width is much smaller than its radius. The fact that the radius must be

√
n is

dictated by our isotropic normalization of X .

From the proof of Theorem 1.4.2 one may learn that the thin-shell condition (1.15) is also
necessary for the phenomenon of Gaussian approximation. Consider the case where X =
(X1, . . . , Xn) with X1, . . . , Xn being independent random variables with, say, EX4

i ≤ 100 for
all i. The thin-shell condition (1.15) holds true with a rather small ε. Indeed, we may compute
that

E
(
|X|√
n
− 1

)2

≤ E
(
|X|2

n
− 1

)2

= V ar

(
|X|2

n

)
=

n∑
i=1

V ar

(
X2
i

n

)
=

1

n2

n∑
i=1

[
EX4

i − 1
]
≤ 100

n
.

Thus the standard deviation of |X|/
√
n is at most 10/

√
n, and (1.15) holds true with ε =

O(n−1/2). Theorem 1.4.2 thus implies that many of the marginals of X are approximately
Gaussian. Yet, our thin-shell theorem has two drawbacks in the context of independent random
variables: First, it does not provide any information regarding one specific marginal, it only
asserts that most of them are close to Gaussian. Second, the quantitative estimates we obtain
do not quite match the sharp Berry-Esseen bound. While it is possible to squeeze a bit more
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from the proof given below and slightly improve the exponent “1/8” in (1.16), it is not entirely
clear to us how to go below 1/4. Nevertheless, Theorem 1.4.2 serves to demonstrate the general
principle that approximately Gaussian marginals are related to the more geometric thin shell
property.

The proof of Theorem 1.4.2 is a beautiful manifestation of the concentration of measure
phenomenon. The main idea required for the proof of Theorem 1.4.2 appears in the following
lemma:

Lemma 1.4.3 Let X and ε be as in Theorem 1.4.2. Let f : R → R be an L-Lipschitz function
and let Z be a standard, normal random variable. Then there exists a subset Θ ⊆ Sn−1 with
σn−1(Θ) ≥ 1− C exp(−c

√
n) such that

∀θ ∈ Θ, |Ef(X · θ) − Ef(Z)| ≤ CL

(
1

n1/4
+ ε

)
. (1.17)

Proof: Denote F (θ) = Ef(X · θ) for θ ∈ Sn−1. First, we observe that F is an L-Lipschitz
function on the sphere. Indeed, for any θ1, θ2 ∈ Sn−1,

|F (θ1)− F (θ2)| ≤ E |f(X · θ1)− f(X · θ2)| ≤ LE |X · (θ1 − θ2)|
≤ L

√
E|X · (θ1 − θ2)|2 = L|θ1 − θ2|,

since X is isotropic, and hence the random variable X · (θ1 − θ2) has variance |θ1 − θ2|2.
The function F is L-Lipschitz, hence it deviates very little from its average on the sphere. In
particular, by using Proposition 1.3.6 with t = L/n1/4, we deduce the existence of a subset
Θ ⊆ Sn−1 with σn−1(Θ) ≥ 1− C exp(−c

√
n) such that

∀θ ∈ Θ,

∣∣∣∣F (θ) −
∫
Sn−1

F (θ)dσn−1(θ)

∣∣∣∣ ≤ L

n1/4
. (1.18)

The next step is to estimate the average of F (θ) on the sphere, and connect it with Ef(Z). To
that end, we introduce a random vector Y , independent of X , that is distributed uniformly on
the sphere Sn−1. The main observation here is that the random variables X · Y and |X|Y1 have
exactly the same distribution. Therefore,∫

Sn−1

F (θ)dσn−1(θ) = EF (Y ) = Ef(X · Y ) = Ef(|X|Y1). (1.19)

Note that according to (1.15), the random variable |X| is typically very close to
√
n. According

to the Maxwell principle, the random variable Y1 is approximately a Gaussian of mean zero and
variance 1/n. Thus, in high dimensions, the random variable |X|Y1 should be approximately a
standard normal random variable. Mathematically, we use Exercise ??(iv) and argue as follows:

|Ef(|X|Y1)− Ef(Z)| ≤
∣∣Ef(
√
nY1)− Ef(Z)

∣∣ +
∣∣Ef(
√
nY1)− Ef(|X|Y1)

∣∣
≤ CL

n
+ LE

∣∣(√n− |X|)Y1

∣∣
≤ CL

n
+ L

√
EnY 2

1 ·
√

E
(
|X|/
√
n− 1

)2 ≤ CL

n
+ Lε.

By combining the last computation with (1.18) and (1.19) we deduce the conclusion of the
lemma.
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Of course, there is nothing holy about the n−1/4 factor in (1.17). Actually, this factor may
be improved up to 1/

√
n, at the expense of deteriorating our lower bound for the measure of the

subset Θ.

Proof of Theorem 1.4.2: Set δ = max{
√
ε, n−1/8}. For t ∈ R consider the function

It(x) =


1 x < t

1− (x− t)/δ t ≤ x ≤ t+ δ
0 x > t+ δ

Then It is a (1/δ)-Lipschitz function, and

P(X · θ ≤ t) ≤ EIt(X · θ) ≤ P(X · θ ≤ t+ δ). (1.20)

Denote ti = Φ−1(jδ) for j = 1, . . . , k where k = d1/δ − 1e ≤ n1/8. Then

P(Z ≤ tj) = jδ for j = 1, . . . , k.

Set also t0 = −∞ and tk+1 = +∞. Since Φ is a 1-Lipschitz function (why?), then tj+1 ≥ tj+δ
for any j, and also

|P(Z ≤ t) − jδ| ≤ 2δ for t ∈ [tj−1 − δ, tj + δ]. (1.21)

We will apply Lemma 1.4.3 simultaneously for the functions It1 , . . . , Itk . We conclude that
there exists a subset Θ ⊆ Sn−1 with σn−1(Θ) ≥ 1− Ck exp(−c

√
n), such that for θ ∈ Θ,∣∣EItj(X · θ) − Etj(Z)

∣∣ ≤ C

δ

(
1

n1/4
+ ε

)
for j = 1, . . . , k.

Since k ≤ n1/8 then σn−1(Θ) ≥ 1 − C exp(−c
√
n). It remains to show that (1.16) holds true

for any θ ∈ Θ. To that end, let us fix θ ∈ Θ and t ∈ R. Then there exists j = 1, . . . , k + 1 such
that tj−1 ≤ t ≤ tj . Hence,

P(X · θ ≤ t) ≤ P(X · θ ≤ tj) ≤ EItj(X · θ) ≤ Etj(Z) +
C

δ

(
1

n1/4
+ ε

)
≤ P(Z ≤ tj + δ) +

C

δ

(
1

n1/4
+ ε

)
≤ P(Z ≤ t) + 2δ +

C

δ

(
1

n1/4
+ ε

)
.

Similarly, we may argue that

P(X · θ ≤ t) ≥ EItj−1
(X · θ) ≥ . . . ≥ P(Z ≤ t)− 2δ − C

δ

(
1

n1/4
+ ε

)
.

Since 2δ + C
δ

(
1

n1/4 + ε
)
≤ C̃

(√
ε+ n−1/8

)
, the desired bound (1.16) follows.

The above discussion demonstrates that the Gaussian approximation property of the marginals
is not necessarily associated with independent random variables. The geometry of the high-
dimensional sphere plays a central rôle in the context of Gaussian approximation principles.

Exercise 1.4.4 Let (Ω,P) be a probability space, and let f1, . . . , fn ∈ L2(Ω) be an orthonormal
system such that

∑n
i=1 f

2
i ≡ 1, Prove that there exist coefficients (θ1, . . . , θn) ∈ Sn−1 such that

f =
∑n

i=1 θifi satisfies∣∣∣∣P (f ≤ t) − 1√
2π

∫ t

−∞
e−s

2/2ds

∣∣∣∣ ≤ C

n1/8
(t ∈ R).
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where m is the Lebesgue measure. (There are many non-trivial examples of such orthonormal
systems. For instance, any orthonormal basis of the space of spherical harmonics of a certain
degree and dimension).

In the antipode, there are random vectors without thin-shell. For instance we take Y a
random vector according to the uniform distribution on the sphere and let δ be such that

P(δ = 1) =
1

2
and P(δ = 2) =

1

2

and think of the marginals of X = δY. Without thin-shell, most marginals are approximate
|X|Y1, so a mixture of Gaussians. Finally, without thin-shell, multidimensional marginals are
typically sphererically symmetric.



Chapter 2

Probability measures with convexity
properties

2.1 Brunn-Minkowski and related inequalities
Recall that a subset K ⊂ Rn is convex when

x, y ∈ K, 0 < λ < 1 =⇒ λx+ (1− λ)y ∈ K.

A convex body is a bounded, open convex set. One of the first things that one needs to know
about convex sets is the Brunn-Minkowski inequality: For any non-empty, Borel-measurable
sets A,B ⊂ Rn,

V oln(A+B)1/n ≥ V oln(A)1/n + V oln(B)1/n. (2.1)

where A+ B = {x+ y ; x ∈ A, y ∈ B} is the Minkowski sum of A and B. We said that (2.1)
is about convex sets, yet convexity is not mentioned at all. A hint regarding the connection of
Brunn-Minkowski to convex sets is provided by the equality case: When A and B are closed
sets of positive measure, there is equality in (2.1) if and only if A is convex and B is homothetic
to a translate of A.

A quick argument leads from the Brunn-Minkowski inequality to the isoperimetric in-
equality in Rn: Suppose that A ⊂ Rn is a closed set with a smooth boundary such that
V oln(A) = V oln(Bn

2 ). By Brunn-Minkowski, for any ε > 0,

V oln (A+ εBn
2 ) ≥

(
V oln(A)1/n + V oln(εBn

2 )1/n
)n

= V oln (Bn
2 + εBn

2 ) . (2.2)

Here, λA = {λx ; x ∈ A} for a subset A ⊂ Rn and λ ∈ R. Therefore,

V oln−1(∂A) = lim
ε→0+

V oln(A+ εBn
2 )− V oln(A)

ε

≥ lim
ε→0+

V oln(Bn
2 + εBn

2 )− V oln(Bn
2 )

ε
= V oln−1(∂Bn

2 ).

The latter inequality is usually referred to as the isoperimetric inequality in Rn. As for the proof
of (2.1), The original approach of Brunn utilizes the Steiner symmetrization. Suppose A ⊂ Rn

is a Borel set. Let θ ∈ Rn be a unit vector, and denote H = θ⊥. The “Steiner symmetrization
of K with respect to the hyperplane H” is the set

SH(A) =

{
y + tθ ; A ∩ (y + Rh) 6= ∅, y ∈ H, |t| ≤ 1

2
Meas {A ∩ (y + Rh)}

}
where Meas is the one dimensional Lebesgue measure in the line x+ Rh.

15
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Figure

By Fubini’s theorem, V oln(SH(A)) = V oln(A). It may be verified directly that for any
Borel sets A,B ⊂ Rn,

SH(A+B) ⊇ SH(A) + SH(B). (2.3)

Intuitively, by applying consecutive Steiner symmetrizations to A, we may get closer and closer
to a Euclidean ball of the same volume as A. The Brunn-Minkowski inequality is in fact an
equality when both sets are Euclidean balls (why?). Therefore, the inclusion (2.3) seems to
indicate that for any r, s > 0, the infimum of

inf {V oln(A+B) ; V oln(A) = r, V oln(B) = s}

is attained when A and B are Euclidean balls. The actual formal proof involves compactness
and continuity with respect to the Hausdorff metric, quite similar to the argument presented in
the proof of Theorem 1.3.1 in the previous lecture.

Exercise 2.1.1 Fill in the missing details in the above heuristic argument for the Brunn-Minkowski
inequality. (e.g., consider a minimizing pair (A,B) with maximal intersections with the Eu-
clidean balls of the same volumes. Prove that both A and B must be invariant under all Steiner
symmetrizations, hence they are Euclidean balls).

The Brunn-Minkowski inequality has quite a few equivalent formulations and consequences.
For instance, it follows from (2.1) and the Arithmetic/Geometric means inequality that for any
Borel sets A,B ⊂ Rn and 0 < λ < 1,

V oln (λA+ (1− λ)B) ≥ V oln(A)λV oln(B)1−λ. (2.4)

The formulation (2.4) is usually referred to as the multiplicative form of the Brunn-Minkowski
inequality. One little advantage of (2.4) is that one does not need to assume anymore that A
and B are non-empty.Still, for the applications that we have in mind, it will be much more
convenient to have an inequality involving functions rather than sets. The following theorem
presents such a functional variant of the classical Brunn-Minkowski inequality.

Theorem 2.1.2 (the Prékopa-Leindler inequality) Suppose f, g, h : Rn → [0,∞) are inte-
grable functions and 0 < λ < 1. Assume that for any x, y ∈ Rn,

h (λx+ (1− λ)y) ≥ fλ(x)g1−λ(y). (2.5)

Then, ∫
Rn
h ≥

(∫
Rn
f

)λ(∫
Rn
g

)1−λ

. (2.6)

In some sense, the Prékopa-Leindler inequality is “opposite” to the Hölder inequality, which
states that for any integrable, non-negative functions f, g and 0 < λ < 1,∫

fλg1−λ ≤
(∫

f

)λ(∫
g

)1−λ

.

Observe that when we plug in f = 1A, g = 1B and h = 1λA+(1−λ)B in the Prékopa-Leindler
inequality, we recover the Brunn-Minkowski inequality in the form (2.4).
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2.2 Introduction to log-concave measures
We would like to introduce a convenient family of probability measures in Rn, which are the
logarithmically-concave measures. A non-negative function ρ : Rn → [0,∞) is log-concave if
it takes the form

ρ = exp(−H)

for a convex function H : Rn → R ∪ {+∞}. Here, of course, exp(−∞) = 0. Students who
still sometimes confuse between convex and concave should recall that a function H : Rn →
R ∪ {+∞} is convex when

H (λx+ (1− λ)y) ≤ λH(x) + (1− λ)H(y) for x, y ∈ Rn, λ ∈ (0, 1). (2.7)

Thus, for instance, the Euclidean norm is a convex function in Rn, as well as its square. Note
that convex functions here may attain the value +∞. Consequently, whenever K ⊂ Rn is a
convex set, the function

H(x) =

{
0 x ∈ K

+∞ x 6∈ K
is convex. A convex function H is necessarily continuous and locally-Lipschitz in the interior
of {x ∈ Rn;H(x) < +∞}. The Hessian matrix of a smooth, convex function is positive
semi-definite,

∇2H ≥ 0

in the sense of symmetric matrices.

Here are some examples of log-concave functions. The characteristic function 1K of a
convex set K ⊂ Rn, which equals one on the convex set and vanishes otherwise, is a log-
concave function. The Gaussian function t 7→ exp(−t2/2) is log-concave on the real line.
Whenever A is an n× n, positive-definite matrix, the probability density

Rn 3 x 7→
(

detA

2π

)n/2
· exp(−Ax · x/2)

is a log-concave function. This is the probability density of a multi-dimensional Gaussian
random vector, with mean zero and covariance matrix A−1.

Exercise 2.2.1 Suppose ρ is an integrable, log-concave function in Rn.

(i) Prove that the set K = {ρ > ε} is open, convex and bounded for any ε > 0.

(ii) In the case where ρ(0) > 0, prove that there exists R > 0 such that

ρ(x) ≤ ρ(0) exp(−|x|/R) for all |x| ≥ R.

(iii) Conclude that any integrable, log-concave function decays exponentially at infinity. That
is, there exists A,B > 0 such that

ρ(x) ≤ A exp(−B|x|) for all x ∈ Rn.

We say that a probability measure on Rn is log-concave if it is supported on some affine
subspace E ⊂ Rn (usually E = Rn), and it has a log-concave density in the affine subspace E.
The standard Gaussian measure in Rn, the uniform probability measure on a bounded convex
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set, and Dirac’s delta measure are all examples for log-concave probability measure. A random
vector X is said to be log-concave when it is distributed according to a log-concave measure.
The pointwise product of log-concave densities is certainly log-concave. The following propo-
sition shows that the class of log-concave random vectors is stable under more operations.

Proposition 2.2.2 Suppose X and Y are independent, log-concave random vectors. Then,

(a) For a subspace E ⊂ Rn, denote by ProjE : Rn → E the orthogonal projection operator
onto E in Rn. Then,

ProjE(X)

is log-concave.

(b) For any affine map T , the random vector T (X) is log-concave.

(c) The random vector X + Y is log-concave.

Proof: Property (a) is deduced from the Prékopa-Leindler inequality, as follows. We may
assume that the support of X is not contained in a hyperplane (why?). Denote by ρ : Rn →
[0,∞) the log-concave density of X and set

ρE(x) =

∫
E⊥

ρ(x+ y)dy (x ∈ E),

the density of ProjE(X). We need to show that fE is log-concave. Pick x1, x2 ∈ E and
0 < λ < 1 and denote x = λx1 + (1− λ)x2. We need to establish the inequality∫

E⊥
ρ(x+ y)dy ≥

(∫
E⊥

ρ(x1 + y)dy

)λ(∫
E⊥

ρ(x2 + y)dy

)1−λ

. (2.8)

However, the three functions f(y) = ρ(x1 + y), g(y) = ρ(x2 + y) and h(y) = ρ(x+ y) satisfy
the requirements of the Prékopa-Leindler inequality, thanks to the log-concavity of ρ. Hence
(2.8) follows, and (a) is proven.

We move on to the proof of (b). Whenever T : Rn → Rn is an invertible, affine map,
then the density of T (X) is proportional to the the functions x 7→ ρ(T (x)) where ρ is the log-
concave density ofX . Since x 7→ ρ(T (x)) is also log-concave, then we proved (b) in the case of
an invertible, affine map T . All that remains is to not that any affine map T is the composition
of invertible affine maps and an orthogonal projection operator. Thus (b) holds in view of (a).

Regarding (c), we need to note that the random vector (X, Y ) ∈ R2n is log-concave, since
the product of log-concave functions is log-concave. We use (b) with the linear map T (u, v) =
u+ v for u, v ∈ Rn, and deduce (c).

Now, we will prove a very useful lemma which refers to log-concavity of the moments.

Lemma 2.2.3 Let f : R+ 7→ [0,∞) be a log-concave integrable function. We define

Mf (p) =

∫∞
0
tpf(t) dt

Γ(p+ 1)
,

with p ≥ 0. Then Mf (p) is log-concave.
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Example: If we take f(t) = Ae−Bt, then Mf (p) = B−p−1A whence in some sense we have
equality. In other words, in our problem the exponential is extremal along log-concave func-
tions.
Proof of the Lemma: From the exercise 2.2.1 we deduce that f has all moments, so Mf (p) is
finite and continuous. Let p < q. We need to show that

Mf

(
p+ q

2

)
≥
√
Mf (p)Mf (q).

Now we find A,B > 0 such that

• Mf (p) = AB−p−1 = Mg(p),

• Mf (q) = AB−q−1 = Mg(q),

where g(t) = Ae−Bt. Then the following claim holds.

Claim 2.2.4 Functions f and g intersect at least twice.

Explanation: First from our choice of A,B we have that

1.
∫∞

0
tpg(t) dt =

∫∞
0
tpf(t) dt,

2.
∫∞

0
tq−p (tpg(t)) dt =

∫∞
0
tq−p (tpf(t)) .

From the above it is clear that it is impossible to have always f ≥ g or g ≥ f. So there is an
intersection of f and g and suppose that is the only one. Then from the first relation we have
that either ∫ ∞

x

tpg(t) dt >

∫ ∞
x

tpf(t) dt,

or ∫ ∞
x

tpg(t) dt <

∫ ∞
x

tpf(t) dt,

for x ∈ supp(f)◦. However, this contradicts the second relation since we write∫ ∞
0

tq−p (tpf(t)) dt =

∫ ∞
0

(q − p)xq−p−1

(∫ ∞
x

tpf(t) dt

)
dx.

♦

Claim 2.2.5 We can find a, b > 0 such that

• f(t) ≥ g(t) for all t ∈ [a, b] and

• f(t) ≤ g(t) for all t /∈ [a, b].

Explanation: This holds due to the log-concavity of the difference f − g.

♦
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Now we are able to finish the proof. Set r = q−p
2

and its easy to see that∫ ∞
0

(tr − ar)(tr − br)tp(g(t)− f(t)) dt ≥ 0

and after the manipulations we get∫ ∞
0

t2r+p(g(t)− f(t)) dt+ (ab)r
∫ ∞

0

tp(g(t)− f(t)) dt− 2(ab)r
∫ ∞

0

tr+p(g(t)− f(t)) dt ≥ 0

Note that the first two integrals are equal to zero due to (1) and (2). So finally we get∫ ∞
0

t
p+q

2 f(t) dt ≥
∫ ∞

0

t
p+q

2 g(t) dt

which gives

Mf

(
p+ q

2

)
≥Mg

(
p+ q

2

)
=
√
Mg(p)Mg(q) =

√
Mf (p)Mf (q),

which is the desired inequality.

�

The following exercise shows that in fact the above result can easily be extended.

Exercise 2.2.6 We set M−1(f) = f(0). Prove that we can extend the log-concavity of moments
to the range p ∈ [−1,∞).

To see an immediate example of using the lemma above, take X ≥ 0 to be a random variable
with log-concave density f. Then

Mf (2) ≥
√
Mf (0)Mf (4),

which, after some easy algebra gives

EX4 ≤ 6
(
EX2

)2
,

which is a reverse Hölder type inequality. Using such type inequalities we can find a first
connection between log-concavity and thin-shell. This is described by the following corollary.

Corollary 2.2.7 Let X be a random vector in Rn with density f,such that f is log-concave and
f is radial, which means f(x) = f(|x|). If we denote by σ2 = E|X|2, then

E
(
|X|
σ
− 1

)2

≤ c

n
.

Proof. For any θ ∈ Sn−1 we set g(r) = Voln−1(Sn−1)f(rθ). Integrating in polar coordinates
we get:

P(|X| ≤ t) =

∫
tBn

f =

∫
Sn−1

∫ t

0

f(rθ)rn−1 drdθ =

∫ t

0

rn−1g(r) dr.

Hence the density of |X| is the function rn−1g(r). So we write:

E|X|4 =

∫ ∞
0

r4 · rn−1g(r) dr = (n+ 3)! ·M(n+ 3)



2.2. INTRODUCTION TO LOG-CONCAVE MEASURES 21

and

E|X|2 =

∫ ∞
0

r2 · rn−1g(r) dr = (n+ 1)! ·M(n+ 1).

Finally note that
1 = E|X|0 = (n− 1)! ·M(n− 1).

The lemma of log-concavity of moments gives

M(n+ 1) ≥
√
M(n+ 3)M(n− 1).

Inserting the above results:

E|X|4 ≤ σ2 (n+ 3)(n+ 2)

n(n+ 1)
≤ σ2

(
1 +

c

n

)
.

This gives the desired result because

E
(
|X|
σ
− 1

)2

≤ E
(
|X|2

σ2
− 1

)2

=
E|X|4 − σ4

σ4
≤ c

n

Next we present a theorem which is due to Brascamp and Lieb.

Theorem 2.2.8 Let Ψ be a convex function on Rn which is C2 smooth and ∇2Ψ(x) > 0 for
all x ∈ Rn. Assume that µ is a finite measure such that dµ

dx
= e−Ψ. Then for each C1 smooth

f ∈ L2(µ) we have:

Varµ(f) ≤
∫
Rn

(
∇2Ψ

)−1∇f · ∇f dµ(x),

where Varµ(f) =
∫
Rn(f − E)2 dµ(x), with E =

∫
Rn f dµ

µ(Rn)
.

Proof. We will use ideas related to Ricci curvature, Bochner formula and computation of deriva-
tives. Denote by S the space of C∞ smooth compactly supported functions. We will find first
the adjoint representation of ∂i in L2(µ). For u ∈ S and v smooth we have:∫

Rn
(∂iu) ve−Ψ(x) dx = −

∫
Rn
u (∂iv − v∂iΨ) e−Ψ(x) dx.

For u ∈ S we define:
∂∗u = ∂iu− (∂iΨ)u.

We observe the identity:
∂j (∂∗i u) = ∂∗i (∂ju)− (∂ijΨ)u.

For every u ∈ S we define

Lu =
n∑
i=1

∂∗i ∂iu = ∆u−∇Ψ · ∇u.

Then for every smooth function f we have that∫
(Lu)f dµ =

n∑
i=1

∫
∂∗i (∂iu)f dµ = −

n∑
i=1

∫
∂iu ∂if dµ = −

∫
∇u · ∇f dµ
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and for each u ∈ S we get
∫
Lu dµ = 0. We also observe the identity

∂k(Lu) =
n∑
i=1

∂k∂
∗
i (∂iu) =

n∑
i=1

∂∗i ∂kiu−
n∑
i=1

∂ikΨ ∂iu

= L(∂ku)−
n∑
i=1

∂ikΨ ∂iu.

Now are now ready to prove Bochner’s formula.

Proposition 2.2.9 For each u ∈ S we have that∫
Rn

(Lu)2 dµ =

∫
Rn

(
∇2Ψ

)
∇u · ∇u dµ+

n∑
i=1

∫
Rn
|∇∂iu|2 dµ.

Proof. Integration by parts gives∫
Rn

(Lu)2 dµ = −
∫
Rn
∇(Lu) · ∇u dµ = −

n∑
i=1

∫
Rn
∂i(Lu)∂iu dµ

= −
n∑
i=1

∫
Rn
L(∂iu)∂iu dµ+

n∑
i,j=1

∫
Rn
∂ijΨ∂ju∂iu dµ

=
n∑
i=1

∫
Rn
|∇∂iu|2 dµ+

∫
Rn

(
∇2Ψ

)
∇u · ∇u dµ.

�

We will prove now a technical lemma.

Lemma 2.2.10 The image of S under the operator L is dense in

H =

{
f ∈ L2(µ) :

∫
f dµ = 0

}
⊂ L2(µ).

Proof. For each u ∈ S we set
Lu = ∆u−∇Ψ · ∇u.

Then suppose that f ∈ L2(µ) is such that for each u ∈ S we have that Lu⊥f. We will show
that f is constant.
Observe first that L is elliptic and symmetric of second order. From our assumption, we classi-
cally get that f is a C∞−smooth function and Lf = 0. This gives that for each θ ∈ S we have
that

L(f 2) = 2fLf + 2∇f · ∇f = 2|∇f |2.
Using this we make the following computation:∫

|∇(θf)|2 dµ =

∫ (
|∇θ|2f 2 + 2θf∇θ · ∇f + |∇f |2θ2

)
dµ

=

∫
|∇θ|2f 2 dµ+

1

2

∫
∇(θ2) · ∇(f 2) dµ+

∫
|∇f |2θ2 dµ

=

∫
|∇θ|2f 2 dµ− 1

2

∫
θ2L(f 2) dµ+

∫
|∇f |2θ2 dµ.
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Now take

θ(x) =

{
1 if |x| ≤ 0

0 if |x| ≥ 2.

This is a C∞ function with |∇θ(x)| ≤ M for each x. Setting ∂k(x) = ∂(x/k) we get that
|∇θk(x)| ≤ M

k
. In addition ∂kf −→ f pointwise and |∇(θkf)|2 −→ f pointwise. So by

Fatou’s lemma∫
|∇f |2 dµ ≤ lim inf

k→∞

∫
|∇(θkf)|2 dµ = lim inf

k→∞

∫
|∇θkf |2f 2 dµ

≤ lim inf
k→∞

∫
f 2M

k
= 0,

which means that
∫
|∇f |2 dµ = 0 and so∇f = 0 and f is constant.

�

We are now ready to give a proof of Theorem 2.2.8.

Proof. We take f ∈ L2(µ) which is C1−smooth and we assume that
∫
f dµ = 0.

Fix ε > 0. From lemma 2.2.10 we can find u ∈ S such that

‖Lu− f‖L2(µ) < ε.

We write

Varµ(f) = ‖f‖2
L2(µ) = ‖Lu− f‖2

L2(µ) + 2

∫
fLu dµ−

∫
(Lu)2 dµ

≤ ε2 − 2

∫
∇f · ∇u dµ−

∫
(∇2Ψ)∇u · ∇u dµ

≤ ε2 +

∫
(∇2Ψ)−1∇f · ∇f dµ,

where we used that ∫
(Lu)2 dµ ≥

∫
(∇2Ψ)∇u · ∇u dµ,

which follows from Bochner’s formula and

−2x · y − Ax · x ≤ A−1y · y ⇐⇒ |
√
Ax+

√
A−1y|2 ≥ 0.

If we take ε→ 0 we are done.

�

Now let u : Rn 7→ R ∪ {+∞} convex or not and define

u∗(x) = sup
y∈Rn

[x · y − u(y)] .

Then u∗ is convex. Define
I(u) = log

∫
e−u

∗
.

Exercise 2.2.11 Let u and u∗ be as above. Then we have that:
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(i) If u is smooth
u∗ (∇u(x)) = x · ∇u(x)− u(x).

(ii) If Ψ = u∗ is smooth,∇2Ψ(x) > 0 and f is a C1−smooth function then

∂2

∂t2
I(u+ tf) |t=0= Vare−Ψ(g)−

∫
Rn

(
∇2Ψ

)−1∇g · ∇g e−Ψ,

(iii) Applying Précopa’s inequality, prove directly that I is concave without smoothness and
strict convexity assumptions.

2.3 First application of Brascamp-Lieb to thin shell bounds
We begin with a proposition.

Proposition 2.3.1 Let µ be a probability measure on Rn with density e−Ψ. Suppose that for
each x ∈ Rn we have that

∇2Ψ(x) ≥ δ > 0.

Then for each f ∈ L2(µ) which is also C1−smooth we have that

Varµ(f) ≤ 1

δ

∫
|∇f |2 dµ.

Proof. From the assumption we easily get that (∇2Ψ)
−1 ≤ 1

δ
. Using this, it is immediate that

(
∇2Ψ

)−1∇f · ∇f ≤ 1

δ
|∇f |2.

Now the result comes from an application of Brascamp-Lieb inequality.

�

In order to use this for thin-shell bounds we take f(x) = |x|2
n

and µ isotropic. Then,

|∇f(x)|2 =
4x2

1 + · · ·+ 4x2
n

n2
=

4|x|2

n2
.

If ∇2Ψ(x) > δ >> 1
n

then

E
(
|X|√
n
− 1

)2

≤ Var

(
|X|2

n

)
≤ 1

δ

∫
4|X|2

n2
=

4

δn
<< 1.

2.4 Second application of Brascamp-Lieb to 1
2−convexity

Definition 2.4.1 Let 0 < p ≤ 1. A set K ⊂ Rn
+ is called p−convex if the set

{(xp1, · · · , xpn) : x ∈ K}

is convex.
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Note first that 1−convexity is the known convexity.
For simplicity we deal with the case p = 1

2
. As a first example in that case we observe that the

set

Bn
p =

{
x ∈ Rn

+ :
n∑
i=1

xpi ≤ 1

}
is 1

2
−convex if p ≥ 1

2
.

Definition 2.4.2 A set K ⊂ Rn
+ is monotone or oriented downwards, if

(x1, · · · , xn) ∈ K, gi ≤ xi =⇒ g ∈ K.

The following exercise shows that the definition of p−convexity is monotone in p only for
monotone sets.

Exercise 2.4.3 If K ⊂ Rn
+ is a p−convex and monotone set, then is q−convex for q < p.

(i) In particular if K ⊂ Rn
+ is a convex and monotone set, then is 1

2
−convex.

(ii) If K ⊂ Rn
+ is unconditional and convex then K ∩ Rn

+ is monotone and hence 1
2
−convex.

Definition 2.4.4 We say that a function Ψ : Rn
+ 7→ R ∪ {+∞} is 1

2
−convex when the function

x = (x1, · · · , xn) 7→ Ψ(x2
1, · · · , x2

n)

is convex.
Also for a 1

2
−convex function H, the function e−H is 1

2
−log concave.

The connection with the definition of 1
2
−convex sets is obvious now. For, ifK ⊂ Rn

+ is 1
2
−convex

if and only if 1 K is 1
2
−log concave.

We can state now the following proposition.

Proposition 2.4.5 Let µ be a 1
2
−log concave finite measure in Rn

+. Then for each function f
which is C1−smooth

Varµ(f) ≤ 4

∫
Rn

n∑
i=1

x2
i |∂if |2 dµ(x).

Proof. The main idea for the proof is to change variables first and then to use Brascamp-Lieb.
Denote dµ

dx
= e−Ψ. Then if

π(x1, · · · , xn) = (x2
1, · · · , x2

n),

the function Ψ(π(x)) is convex. Set

ϕ(x) = Ψ(π(x))−
n∑
i=1

log(2xi).

Then,

∇2ϕ(x) ≥ ∇2

(
−

n∑
i=1

log(2xi)

)
=


1
x2

1
0 · · · 0

0 1
x2

2
· · · 0

...
... . . . ...

0 0 · · · 1
x2
n

 > 0,
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and so we get that

(
∇2ϕ(x)

)−1 ≤


x2

1 0 · · · 0
0 x2

2 · · · 0
...

... . . . ...
0 0 · · · x2

n

 .

Set g(x) = f(π(x)). By the Brascamp-Lieb inequality we have that

Vare−ϕ(g) ≤
∫
Rn+

(
∇2f

)−1∇g · ∇ge−ϕ(x) dx ≤
∫
Rn+

n∑
i=1

x2
i |∂ig(x)|2e−ϕ(x) dx.

When y = π(x) = (x2
1, · · · , x2

n) then the Jacobian of π equals to

det
dy

dx
=

n∏
i=1

(2xi).

Also note that

e−ϕ(x) = e−Ψ(π(x))

n∏
i=1

(2xi).

From the last two relations we have that π pushes forward the one measure to another

e−ϕ(x)dx
π∗y e−Ψ(y)dy.

So
Vare−ϕ(g) = Vare−Ψ(f).

When y = π(x) = (x2
1, · · · , x2

n) we have

x2
i |∂ig(x)|2 = 4y2

i |∂if(y)|2,

so

Vare−Ψ(f) ≤
∫
Rn

n∑
i=1

x2
i |∂ig(x)|2e−ϕ(x)dx = 4

∫
Rn

n∑
i=1

y2
i |∂if(x)|2e−Ψ(x)dy.

�

Comment. When Y ∈ Rn
+ has a 1

2
−log concave density then (

√
Y1, · · · ,

√
Yn) is log-concave

but a bit more.

Now we ready to prove the main theorem.

Theorem 2.4.6 Let X be an isotropic random variable in Rn and assume that its density is
unconditional. Denote by Y the conditioning ofX to Rn

+ and assume that Y has 1
2
−log concave

density. Then

E
(
|X|√
n
− 1

)2

≤ c

n
.
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Proof. We apply Proposition 2.4.5 with f(x) = |x|2
n

and using unconditionality we have

E
(
|X|2

n
− 1

)2

= E
(
|Y |2

n
− 1

)2

= Varf(Y ) ≤ 4E
n∑
i=1

Y 2
i |∂if(Y )|2 =

16

n2

n∑
i=1

EY 4
i .

Now by Lemma 2.2.3 for the positive and log concave
√
Y1, · · · ,

√
Yn we have that(

E(
√
Yi)

8

8!
· 1

0!

) 1
2

≤ E(
√
Yi)

4

4!
.

Hence,

EY 4
i ≤

(
8

4

)(
EY 2

i

)2
=

(
8

4

)(
EX2

i

)2
=

(
8

4

)
.

Therefore,

Var

(
|X|2

n

)
≤ 16

n2

n∑
i=1

(
8

4

)
=

16 ·
(

8
4

)
n

.

�

Using the work of Sudakov, Diaconis, Freedman we get then following Corollary:

Corollary 2.4.7 Let X be a log-concave, isotropic and unconditional random variable in Rn.
Then for each θ = (θ1, · · · , θn) ∈ Sn−1 and for each t ∈ R,

|P (X · θ ≤ t)− P (Z ≤ t)| ≤ C
n∑
i=1

θ4
i ,

where Z v N(0, 1). In our case we can compute that with probability greater than 1 − e−
√
n

on Sn−1,
n∑
i=1

θ4
i ≤

c

n
.

In the general case, without unconditionality, we have the following theorem:

Theorem 2.4.8 Let X be an isotropic log-concave random vector in Rn. Then

E
(
|X|√
n
− 1

)2

≤ εn,

where εn → 0 as n→∞.

The best known result is due to Guédon and E.Milman. They showed that

εn ≤
c

n
1
3

and the famous conjecture states that
εn ≤

c

n
.

In a similar direction, there is a theorem due to Klartag and Eldan which compares the density
of a random projection with the density of the uniform distribution. More precisely we have the
following:
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Theorem 2.4.9 Let be a log-concave and isotropic random variable in Rn and l ≤ nα. Then,
there exists A ⊂ Gn,l with σn,l(A) ≥ 1− e−

√
n, such that for each E ∈ A∫

Rn
|fE(x)− gE(x)|dx ≤ c

nα

and ∣∣∣∣fE(x)

gE(x)
− 1

∣∣∣∣ ≤ c

nα

for each x ∈ E and |x| ≤ cnα. Here fE denotes the log-concave density of ProjE(x) and
gE(x) = (2π)−l/2 exp

(
−|x|2/2

)
and c, α are universal constants.

The common idea for all bounds for the thin-shell is to project X to a random subspace and
obtain a log-concave and approximately radial distribution. To see why it is enough to look at
the projections is more clear by the following lemma.

Lemma 2.4.10 Let X be a log-concave, isotropic random vector in Rn and E ∈ Gn,l be a
random subspace of X. Then

E
(
|X|√
n
− 1

)2

≤ EEEX
(
|ProjE(X)|√

l
− 1

)2

.

Proof. For each z ∈ Rn we have that

E|ProjEz|2 =
l

n
|z|2. (2.9)

We need to show that

E
|X|2

n
− 2

E|X|√
n

+ 1 ≤ EEEX
|ProjE(X)|2

l
− 2EEEX

|ProjE(X)|√
l

+ 1.

Using (2.9), it is enough to show that

EEEX |ProjE(X)| ≤
√
l

n
EX |X|.

The last one is true by Jensen’s inequality, since

EE|ProjEz| ≤
√
EE|ProjEz|2 =

√
l

n
|z|.

�

The above shows that it is enough to project X to a random subspace E and prove thin-shell
bound for ProjEX which is also log-concave and isotropic.
In order to do this, first use Sudakov type phenomenon. By concentration, for a typical E ∈
Gn,l, we have that ProjEX is approximately spherically symmetric. Also as we proved in
Theorem 2.4.6, if X is log-concave, isotropic and radial random vector in Rl, then

E
(
|X|
l
− 1

)2

≤ C

l
.

We will see why we care about the best exponent in the thin-shell bound.
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Definition 2.4.11 For a random vector X in Rn, define GX as the minimal number for which
for each function f

Varf(X) ≤ G2
XE|∇f(X)|2.

Also denote
Gn = sup

X∈Rn
GX

An equivalent description of GX is given by the next theorem which is due to Buser, Ledoux
and E.Milman.

Theorem 2.4.12 GX is equivalent, up to a universal constant, to the minimal R > 0 such that,

P (X ∈ A) =
1

2
=⇒ P (X ∈ A1) =

1

2
+

1

R
,

for each A ⊂ Rn, where

A1 = {x ∈ Rn : ∃y ∈ A, |x− y| ≤ 1}.

Finally, this parameter Gn is connected, by a theorem of Eldan, to the thin-shell bound.

Theorem 2.4.13 Denote
σ2
n = sup

X∈Rn
Var(|X|),

where the supremum is taken over all isotropic and log-concave random vectorsX in Rn. Then,

Gn ≤ C
√

log n

√√√√ n∑
k=1

G2
k

k
.

Since σn ≤ cn1/3 it follows that Gn ≤ cn1/3
√

log n.
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Chapter 3

The isotropic constant and the
Bourgain-Milman inequality

Definition 3.0.14 Suppose that X is a log-concave vector in Rn with density f. Set

LX = Lf = (det Cov(X))
1

2n · f(EX)
1
n ,

the isotropic constant of X.

It’s easy to see that if T : Rn 7→ Rn is affine invertible then LX = LT (X). In order to see some
equivalent definitions of the isotropic constant, we need first a lemma.

Lemma 3.0.15 Let X be a a log-concave vector in Rn with density f and set x0 = EX. Then

e−n sup f ≤ f(x0) ≤ sup f

and
log

1

f(x0)
≤ −

∫
Rn
f(x) log f(x) dx ≤ log

1

f(x0)
+ n

Proof. Set f(x) = e−Ψ(x) for all x, where Ψ is a convex function. Note also that

−
∫
Rn
f(x) log f(x) dx = Ent(X).

We will prove that

Ψ(x0) ≤ −
∫
Rn
f(x) log f(x) dx ≤ Ψ(0) + n.

For the left hand side inequality we use Jensen’s inequality:

Ψ(EX) ≤ EΨ(X) = −
∫
Rn
f(x) log f(x) dx.

For the right hand side inequality note first that for all x ∈ {Ψ < +∞} in which Ψ is differen-
tiable

Ψ(0) ≥ Ψ(X) +∇Ψ(X) · (0− x).

Since Ψ is differentiable almost everywhere we have

Ent(X) =

∫
Rn

Ψ(x)e−Ψ(x) dx ≤
∫
Rn

(Ψ(0) +∇Ψ(x) · x) e−Ψ(x) dx

= Ψ(0)−
n∑
i=1

∫
Rn
xi∂i

(
e−Ψ(x)

)
dx

= Ψ(0) + n.

31
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�

From the above lemma we can give the following equivalent versions of the isotropic constant.
Up to a universal constant the following is true:

LX ∼ [det Cov(X)]
1

2n (sup f)
1
n ∼ [det Cov(X)]

1
2n exp

(
−Ent(X)

n

)
.

Also, it could be interesting to define

n logLX =
1

2
log det Cov(X)− Ent(X).

Notice that Ent(X) is related to the volume in Rn that X occupies and det Cov(X) is related
to the volume of the inertia ellipsoid of X.
To see one more equivalent definition we need the second lemma in the proof of Paouris theo-
rem. Namely, for given f : Rn 7→ [0,∞) which is log concave, set

Kf =

{
x ∈ Rn : f(x) ≥ (sup f)

1

25n

}
.

Then we have that
P (X ∈ Kf ) ≥ 1− e−cn

and the following lemma:

Lemma 3.0.16 Let X be a log-concave vector in Rn with density e−Ψ. Then for each a ≥ 2,

P (Ψ(X) ≥ inf Ψ + an) ≤ e−can.

From the above lemma, we have the following equivalent version of the isotropic constant. Up
to a universal constant the following is true:

LX ∼ [det Cov(X)]
1

2n

∫
Rn
f 1+ 1

n ∼ [det Cov(X)]
1
n

(∫
Rn
f 2

) 1
n

.

The next lemma shows that the isotropic constant is greater than a universal constant.

Lemma 3.0.17 There exists a universal constant c, such that LX > c for all log-concave X ∈
Rn.

Proof. Applying an affine transformation, assume that EX = 0,Cov(X) is scalar and f(0) = 1.
Then,

L2
X = [det Cov(X)]

1
n =

Tr(Cov(X))

n
=

E|X|2

n
.

Also,

P
(
X ∈

√
n

100
Bn

)
=

∫
√
n

100
Bn
f ≤ (sup f)Vol

(√
n

100
Bn

)
≤ en · e

−n

2
=

1

2
.

Using this we obtain that:
E|X|2 ≥ E|X|2 · 1|X|≥

√
n

100

≥ cn

2
.

�
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The hyperplane conjecture or the slicing problem asks whether LX is bounded also above by a
universal constant.
If we define

Ln = sup
X∈Rn

LX

The currently best upper bound is due to Klartag and is

Ln ≤ cn
1
4 .

Also Klartag and Eldan found a relation to the thin shell, which is

Ln ≤ cσn.

To give an explanation of the name of the slicing problem, we have the following proposition:

Proposition 3.0.18 Let K be a convex body on Rn and let X ∼ Unif(K) with EX = 0 and
Cov(X) to be scalar. Then for each two hyperplanes H1, H2 ⊂ Rn through zero,

Voln−1(K ∩H1)

Voln−1(K ∩H2)
≤ C ≤

√
6.

This one follows from the following lemma:

Lemma 3.0.19 Let K be a convex body on Rn and let X ∼ Unif(K) with EX = 0. Then for
each θ ∈ Sn−1

c1Voln(K) ≤ Voln−1(K ∩ θ⊥)
√

E(X · θ)2 ≤ c2Voln(K).

Proof. Denote by f the density of X · θ. Then,

f(t) =
Voln−1 (K ∩ {x ∈ Rn : X · θ = t})

Voln(K)
.

It is easy to see that f is a log-concave probability density and∫ +∞

−∞
tf(t) dt = 0.

Now, what we want to prove is equivalent to

c1 ≤ f(0)

√∫ +∞

−∞
t2f(t) dt ≤ c2. (3.1)

To prove the right-hand side of (3.1) we use Lemma 2.2.3 for p = −1, 0, 2 to get

M3
f (0) ≥Mf (2)1Mf (−1)2.

This is equivalent to

f 2(0)

∫ ∞
0

t2f(t) dt ≤ 2

(∫ ∞
0

f(t) dt

)3

≤ 2

∫ ∞
0

f(t) dt.
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Repeating the argument for (−∞, 0) and then adding the inequalities

f 2(0)

∫ +∞

−∞
t2f(t) dt ≤≤ 2

∫ +∞

−∞
f(t) dt = 2.

Now to prove the left hand side inequality, use first Lemma 3.0.15

sup f ≤ ef(0)

Then choose a half line with measure greater or equal to 1
2
, say

P (X · θ ≥ 0) ≥ 1

2
.

Since

P
(

0 ≤ X · θ ≤ 1

4 sup f

)
=

∫ 1
4 sup f

0

f(t) dt ≤ 1

4
,

we obtain

P
(
X · θ ≥ 1

4 sup f

)
≥ 1

2
− 1

4
=

1

4

Using this, we have

E(X · θ)2 ≥ 1

4

(
1

4 sup f

)2

≥ c

f 2(0)
.

�

The following is an immediate consequence.

Corollary 3.0.20 Let K be a convex body on Rn with Voln(K) = 1. Let also X ∼ Unif(K),
with EX = 0 and Cov(X) to be a scalar matrix. Then for each H ⊂ Rn hyperplane through 0,

c1

LK
≤ voln−1(K ∩H) ≤ c2

LK
.

Exercise 3.0.21 Let K be a convex body on Rn with Voln(K) = 1. Then we have that:

(i)
LK ≤ c

√
n.

A hint for this one, is to observe that in some direction the width is ≤ c
√
n.

(ii)

Ln ≤ c sup
1

sup Voln−1(K ∩H)
,

where the first supremum is taken over all K convex body on Rn with Voln(K) = 1 and
the second supremum is taken over all hyperplanes H ⊂ Rn.

(iii) When X ∼ Unif(K) is isotropic and the covariance matrix is the identity, then

K ⊂ cnBn
2 .

We continue with a lemma.
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Lemma 3.0.22 Let X be a log-concave random vector in Rn with EX = 0 and Cov(X) to be
scalar. If f is the density of X, then for any subspace E ⊂ Rn,(∫

E

f

) 1
codim(E)

≥ c
f(0)

1
n

LX
.

Proof. Denote
Y = ProjEX.

Then Y is also log-concave and EY = 0. Also notice that

Cov(Y ) =
L2
X

f(0)
2
n

Id.

So,

c ≤ LY =
LX

f(0)
1
n

(∫
E

f

) 1
codim(E)

,

since
∫
E
f is the density of Y at 0.

�

In what follows, for an l−dimensional convex body K, denote

v.rad(K) =

(
voll(K)

voll(Bl)

) 1
l

We can now formulate the following theorem.

Theorem 3.0.23 Let K be a convex body on Rn and 1 ≤ l ≤ n with l = λn. Choose E ∈ Gn,l

randomly. Then with probability grater than 1− e−n

diam(K ∩ E)1−λv.rad(K ∩ E)λ ≤ cv.rad(K).

In order to prove the above theorem, we need a lemma first.

Lemma 3.0.24 Let K be a convex body on Rl and n ≥ l. Then

Voll(K)diam(K)n−l ≤ cl
∫
K

|x|n−l dx.

Proof. Take x0 ∈ K with
|x0| = sup

x∈K
|x|.

Then it is clear that diam(K) ≤ 2|x0|. Due to convexity of K we have that

3

4
x0 +

1

4
K ⊂ K.

Notice that for every x ∈ 3

4
x0 +

1

4
K,

|x| ≥ 3

4
|x| − 1

4
sup
x∈K
|x| = 1

2
|x0|.

This is the key point for the proof since∫
K

|x|n−l dx ≥
∫

3
4
x0+ 1

4
K

|x|n−l dx ≥
(

1

2
|x0|
)n−l

· Voll

(
3

4
x0 +

1

4
K

)
≥ cndiam(K)n−lVoll(K).
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�

Now we are ready to prove the theorem.
Proof of Theorem 3.0.23. Integration in polar coordinates and using Lemma 3.0.24,

Voln(K) =

∫
Sn−1

∫ ∞
0

1K(rθ)rn−1 drdθ = Voln−1(Sn−1)

∫
Sn−1

∫ ∞
0

1K(rθ)rn−1 drdσn−1(θ)

= Voln−1(Sn−1)

∫
Gn,l

∫
Sn−1∩E

∫ ∞
0

1K(rθ)rn−1 dσn,ldrdσE(θ)

=
Voln−1(Sn−1)

Voll−1(Sl−1)

∫
Gn,l

[∫
E

1K(x)|x|n−l dx
]
dσn,l(E)

=
nVoln(Bn)

lVoll(Bl)

∫
Gn,l

∫
K∩E

1K(x)|x|n−l dx dσn,l(E)

≥ cn
nVoln(Bn)

lVoll(Bl)

∫
Gn,l

Voll(K ∩ E)diam(K ∩ E)n−l dσn,l(E).

After some algebra we arrive at

v.rad(K) ≥ c

(∫
Gn,l

v.rad(K ∩ E)λndiam(K ∩ E)(1−λ)n dσn,l(E)

) 1
n

.

By Markov-Chebychev with probability ≥ 1− e−n,

diam(K ∩ E)1−λv.rad(K ∩ E)λ ≤ cv.rad(K).

�

The following theorem is due to Kashin.

Theorem 3.0.25 Let

Bn
1 =

{
x ∈ Rn :

n∑
i=1

|xi| ≤ 1

}
.

Select a random subspace E ∈ Gn,n/2. Then with probability ≥ 1− e−n,
1√
n

(Bn ∩ E) ⊂ K ∩ E ⊂ c√
n

(Bn ∩ E).

Note that if x ∈ 1√
n
Bn

2 then by Cauchy-Schwarz inequality we have that

n∑
i=1

|xi| ≤
√
n

√√√√ n∑
i=1

x2
i ≤ 1.

So
1√
n
Bn

2 ⊂ Bn
1 . Also

Voln(Bn
1 ) =

2n

n!
=

(
2e+ o(1)

n

)n
so  Voln(Bn

1 )

Voln

(
1√
n
Bn

2

)
 1

n

≤ C.

The following theorem shows that, in a sense, we can obtain the reverse result.
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Theorem 3.0.26 Let K be a convex body on Rn. Suppose that R > 0 is such that

Bn ⊂ K

and (
Voln(K)

Voln(Bn)

) 1
n

≤ R.

Then for E ∈ Gn,n/2 with probability > 1− e−n

Bn ∩ E ⊂ K ∩ E ⊂ c(R) Bn ∩ E.

Proof. Since Bn ⊂ K we have that for any subspace E ∈ Gn,n/2

v.rad(K ∩ E) ≥ 1.

Now from Theorem 3.0.23 we have that with probability > 1− e−n

v.rad(K ∩ E)
1
2 diam(K ∩ E)

1
2 ≤ v.rad(K) ≤ R,

so
diam(K ∩ E) ≤ CR2.

We begin first with the definition of the polar body and some easy properties.
Let K ⊆ Rn convex with K =−K. Then we define

K◦ = {x ∈ Rn : ∀ y ∈ K x · y ≤ 1}

We will need two basic properties.

K ⊆ R ·Bn ⇒ K◦ ⊇ 1

R
Bn

and
(K ∩ F )◦ = ProjEK

◦.

Santalo ’ s inequality :
Let K ⊆ Rn be a convex body with K = −K. Then

|K| · |K◦| ≤ |Bn|2

with equality if and only if K is an ellipsoid. Define

s(K) = v.rad(K) · v.rad(K◦)

Then we can rewrite Santalo’s inequality as

v.rad(K) · v.rad(K◦) ≤ 1

We have also a reserve inequality of that type due to Bourgain and Milman.

Theorem 3.0.27 There exists a universal constant c > 0 such that for every K ⊆ Rn convex
with K = −K,

s(K) ≥ c
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Lemma 3.0.28 Let K ⊆ Rn be convex with K = −K. Assume that f : K → [0,+∞) is a
probability log-concave density, such that

∀ x ∈ K e2n ≤ f(x) ≤ e2n.

Let X be distributed according to f , and that cov(X) is a scalar matrix. Let E ∈ Gn,l be
random with λ = l

n
. Then, with probability ≥ 1− e−n

• v.rad(K ∩ E) ≥ cλ
√
nLf

• diam(K ∩ E) ≥ cλ
√
nLf

• s(K ∩ E) ≥ cλ
(Lf )1/2

Proof. Denote x0 = EX. From the Lemma 3.0.22, with prob 1− e−n(∫
E+x0

f

) 1
n−l

≥ c
f(x0)1/n

LX
≥ c̃

Lx

So we have that
|K ∩ (E + x0)| ≥ e−2n

∫
E+x0

f ≥ cn · 1

Ln−1
X

which means that

v.rad(K ∩ (E + x0)) ≥ c
n
l

√
l

L
n−l
l

X

≥ c
1
λ

√
1

λ

√
n

L
1
λ
−1

X

.

But
K ∩ (E + x0) +K ∩ (E − x0)

2
⊆ K ∩ E

This gives the proof for the first, since

v.rad(K ∩ E) ≥
√

v.rad(K ∩ (E + x0)2) = v.rad(K ∩ (E + x0))

For the second use Theorem 3.0.23 to get that with probability 1− e−n

diam(K ∩ E)1−λv.rad(K ∩ E)λ ≤ c ·
√
n|K|

1
n ≤ c

√
n

(
e2n

∫
K

f

) 1
n

≤ c̃
√
n

So,

diam(K ∩ E) ≤ cλ
√
n

1
1−λ (v.rad(K ∩ E))−

λ
1+λ ≤ cλ

√
n

1
1−λ
(√

n L
1− 1

λ
X

)− λ
1+λ

= cλ
√
nLX

For the third one we use the first two use the first two to get that with high probability,

(K ∩ E)◦ ⊇ c√
nLX

Bn ∩ E.

This gives that

v.rad((K ∩ E)◦) · v.rad(K ∩ E) ≥ c√
nLX

· c
√
nL

1− 1
λ

X =
c

L
1
λ
X

.
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Corollary 3.0.29 Let K ⊆ Rn be a convex body and f : K → [0,∞) a log-concave integrable
function with

sup f

inf f
≤ e4n.

Then, for all l there exists E ∈ Gn,l with

s(K ∩ E) ≥ cλ

L
1
λ
f

,

where λ = l
n
.

Corollary shows that we need a log concave density f not too far from uniform measure on K,
with control on Lf . To do this, we introduce the log-Laplace transformation. Suppose X is a
log-concave random vector in Rn. Set

ΛX(ξ) = logEeX·ξ,

the log-Laplace transform. It is easy to see that ΛX is C∞-smooth in the open set {ΛX < +∞}.
Also, given ξ ∈ Rn, set fξ(x) to be the probability density proportional to x→ eξ·xf(x) where
f is the density of X. Finally, the random vector Xξ, with density fξ is log-concave when
ξ ∈ {Λx < +∞}.

Lemma 3.0.30 For any ξ with Λ(ξ) < +∞,

∇Λ(ξ) = EXξ, ∇2Λ(ξ) = Cov(Xξ) > 0.

In particular, Λξ is strictly convex.

Proof. Computing the partial derivatives we find,

∂iΛ(ξ) =

∫
Rn
xie

ξ·xf(x) dx∫
Rn
eξ·xf(x) dx

= E (Xξ · ei)

and
∂ijΛ(ξ) = E(Xξ · ei)(Xξ · ei)− E(Xξ · ei) · E(Xξ · ej).

�

Corollary 3.0.31 Let X be a random vector with X ∼ Unif(K), where K is convex with
K = −K. Then, ∫

Rn
det Cov(Xξ) ≤ Voln(K).

Proof. Since Λ is strictly-convex, the function x → ∇Λ(x) is 1-1. So we can change variables
to have

Voln(K) =

∫
K

1 dx ≥
∫
∇Λ(Rn)

1 dx =

∫
Rn

det∇2Λ(y) dy =

∫
Rn

det Cov(Xξ)dξ
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�

Proposition 3.0.32 Let K ⊆ Rn be convex with K = −K. Let ε > 0. Then, there exists
ξ ∈ εnK◦ with

LXξ ≤
c√

ε · s(K)

where X ∼ Unif(K).

Proof. Using Corollary 3.0.31 we have,∫
εnK◦

det Cov(Xξ) dξ ≤
∫
Rn

det Cov(Xξ) dξ ≤ |K|,

so
1

|εnK◦|

∫
εnK◦

det Cov(Xξ) dξ ≤
|K|
|εnK◦|

Hence there exists ξ ∈ εnK◦ with

det Cov(Xξ) ≤
|K|

εn · |nK◦|

Now we compute,

LXξ ≤ det Cov(Xξ)
1

2n · (sup fξ)
1
n ≤

(
|K|

εn|nK◦|

) 1
2n

·
(

sup
x∈K

eξ·x/|K|
eΛ(ξ)

) 1
n

≤ 1√
ε
· |K|

1
2n

|nK◦| 1
2n

· eξ

|K| 1n

≤ c√
ε
· 1
√
n|K◦| 1

2n · |K| 1
2n

=
c√
εs(K)

where we used that since Λ is convex even and Λ(0) = 0 we have that Λ ≥ 0.

�

So if we take ε = 1
2
, given K ⊆ Rn convex with K = −K, we found a log-concave random

vector Y = Xξ supported in K, such that for the density of Y, denoted by f, we have

supK f

infK f
≤ e

n
2

e
−n
2

= en

and
Ly ≤

c√
s(K)

.

This fits with Corollary 3.0.29. Then, for all l there exists E ∈ Gn,l with

s(K ∩ E) ≥ cλ

s(K)
1

2λ

,

where λ = l
n
. As a main lemma for the proof of Bourgain-Milman inequality, we use a result

of Giannopoulos,Vritsiou,Paouris.
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Lemma 3.0.33 Let K ⊆ Rn be convex body with K = −K. Then, there exists E ∈ Gn,l with

l = b3
4
nc such that

s(K ∩ E)λ ≥ c
√
s(K).

From the proof, we need a classical result, the Rogers-Shephard’s inequality.

Lemma 3.0.34 Let K ⊆ Rn be convex body with 0 ∈ K and let E ∈ Gn,l. Then,

|K ∩ E| · |ProjE⊥K| ≤ 4n|K|.

Proof. First, observe that

Voln(K) =

∫
Proj

E⊥ (K)

V oll(K ∩ (E + x)) dx

Also:
Claim: If x ∈ 1

2
ProjE⊥(x), then K ∩ (E + x) contains a translation of K∩E

2
.

Explanation:Take x ∈ 1
2
ProjE⊥K. Then, there exists y ∈ K such that 2x = ProjE⊥y. Thus,

y + (K ∩ E)

2
⊆ K ∩

(
E + y

2

)
= K ∩ (E + x).

♦

Now the proof is immediate since

Voln(K) ≥
∫

1
2

Proj
E⊥K

|K ∩ (E + x)| dx ≥ 1

2n
· 1

2n
|ProjE⊥K| · |K ∩ E|

�

Proof of 3.0.33: Assume first that 4|n, then λ =
l

n
=

3

4
. By Rogers-Shephard’s inequality,

|K| ≥ 4−n|K ∩ E| · |ProjE⊥K|

and also
|K◦| ≥ 4−n|K◦ ∩ E⊥| · |ProjEK

◦|.

Multiplying we have that:

|K| · |K◦| ≥ |K ∩ E| · |ProjE⊥K| · |K◦ ∩ Eperp| · |ProjEK
◦| · 16−n

so
|Bn|2(s(K))n ≥ |Bl|2s(K ∩ E)l|Bn−l|2 · s(K◦ ∩ E⊥) · 16−n

But |Bn|
1√
n ∼ 1√

n
, |Bl|

1
l ∼ 1

l
∼ 1√

n
and |Bn−l|

1
n−l ∼ 1√

n
. and so

s(K) ≥ s(K ∩ E)λ · s(K◦ ∩ E⊥)1−λ.

�
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We left as an exercise to eliminate the assumptions that 4|n. Define

sN = inf{s(T ) : T ⊆ Rn convex, 1 ≤ n ≤ N, T = −T}

This infimum is attained and sN > 0.
Using Lemma 3.0.33

s(K) ≥ c ·
√
sN ,

so
sN ≥ c ·

√
sN ⇒ sN ≥ c,

which proves Bourgain-Milman’s inequality.

�

As a consequence of Bourgain-Milman’s inequality and 3.0.32 we have the following theorem.

Theorem 3.0.35 LetK ⊆ Rn be convex withK = −K. Let ε > 0. Then, there exists ξ ∈ εnK◦
with

LXξ ≤
c√
ε

where X ∼ Unif(K).

We left as an exercise to remove the assumption K = −K by the assumption that K has its
barycenter at 0. The first consequence of this theorem is the following corollary.

Corollary 3.0.36 Let K ⊆ Rn be a convex body and 0 < ε < 1. Then there exists a convex
body T ⊆ Rn with the following properties:

(1− ε) · T ⊆ K ⊆ T.

and
LT ∼ LXξ ≤

c√
ε
.

One more consequence of the theorem is the following Milman’s ellipsoid theorem.

Theorem 3.0.37 Let K ⊆ Rn be a convex body such that K = −K. Then there exists a
centrally symmetric ellipsoid E such that:

(1)Voln(E) = Voln(K)

(2)Voln(K) ≤ Cn · Voln(E ∩K),

where C > 0 is a universal constant. The ellipsoid E is a Milman ellipsoid with constant C
associated with K.

Comment: The hyperplane conjecture for K is equivalent to the statement that the inertia
ellipsoid of K is proportional to a Milman ellipsoid. Proof of Theorem 3.0.37: Use Theorem
3.0.35 with ε = 1

2
. There exists a random vector Y supported in K such that,

LY < c

and the log-concave density of Y, which is g, satisfies,

e−cn ≤ g(x) ≤ ecn.
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Writing the relation for the isotropic constant of Y,

1 ∼ LY = det Cov(Y )
1

2n · (supg)
1
n

so
det Cov(Y )

1
2n ∼ 1.

Let T be an affine map from Rn to Rn such that T (Y ) is isotropic. Then,

det Cov(T (Y ))
1
n = det(T )

2
n · det Cov(Y )

1
n

so
det(T )

1
n ∼ 1.

Using Markov’s inequality,

E|T (Y )|2 = n⇒ P
(
|T (Y )| ≥ 2

√
n
)
≤ 1

4
.

Hence,

Voln
(
T (K) ∩ 2

√
nBn

)
≥ 1

sup gT (Y )

·
∫
T (K)∩2

√
nBn

gT (Y )(x) dx.

But
gT (Y )(x) = det(T )−1 · g(T−1x)

so
Voln(T (K) ∩ 2

√
nBn) ≥ cn · P

(
|T (Y )| ≤ 2

√
n
)
≥ cn · 3

4
∼ c̃n

Let E ⊆ Rn be an ellipsoid, not necessarily symmetric, with

T (E) = 2
√
nBn.

To summarize what we have till now:

(1) Voln(T (K) ∩ T (E)) ≥ cn

(2) Voln(T (E)) ≤ cnVoln
(
2
√
nBn

)
≤ c̃n.

Hence,

(1) Voln(K ∩ E) ≥ c̃n,

(2) Voln(E) ≤ cn.

To finish the proof we need two steps.

Step 1: Rescale E1 =
|K| 1n
|E| 1n

E . Since |E|
1
n ∼ 1, then E1 ⊇ cE and

|K ∩ E1| ≥ |K ∩ cE| ≥ |cK ∩ cE| = cn · |K ∩ E| ≥ c̃n.

Step 2:
We have that 1 = |K| = |E1|, and |K ∩E1| ≥ cn. Let E2 = E1− x0 where x0 is the center of E1.
By Brunn-Minkowski, since

K ∩ E2 ⊇
K ∩ (E2 − x0) +K ∩ (E2 + x0)

2
,

we have that
|K ∩ E2| ≥ |K ∩ (E2 − x0)| ≥ c̃n.

So, E2 is the desired ellipsoid.
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Exercise 3.0.38 Use that (∫
E

f

) 1
codim(E)

≥ f(0)
1
n

LX

and conclude that the ellipsoid E2 that we constructed satisfies that for allE ∈ Gn,l, and λ = l
n
,

v.rad(E ∩K) ≥ cλ · v.rad(E ∩ E).

Now we will prove one other form of Rogers-Shepherd inequality.

Proposition 3.0.39 Let K,T ⊆ Rn be convex, centrally symmetric. Then,

|K + T | · |K ∩ T | ≤ 4n · |K| · |T |. (3.2)

Sketch of the proof. Set A = K × T and define

E = {(x, x) : x ∈ Rn} ⊆ R2n

and
A ∩ E = (x, x) : x ∈ K ∩ T .

Thus,

ProjE⊥A = {(x,−x) : x ∈ K + T

2
}

Now result follows from Lemma 3.0.34.

�

Corollary 3.0.40 When E is the Milman ellipsoid of K ⊆ Rn with a universal constant, then

|K + E|
1
n ≤ c|K|

1
n = c|E|

1
n . (3.3)

Proof. From the above proposition,

|K + E|
1
n · |K ∩ E|

1
n ≤ c · |K|

1
n · |E|

1
n .

Therefore, if E is Milman ellipsoid of K, then E◦ is Milman ellipsoid of K◦.
Explanation: From Bourgain-Milman inequality,

v.rad(E◦) ∼ v.rad(K)

Thus,

|E◦ ∩K◦|
1
n = |conv(K, E)◦|

1
n ∼ |(K + E)◦|

1
n ≥ 1

n · |K + E| 1n
≥ c

n · |K| 1n
≥ c · |K◦|

1
n .

We conclude with one more corollary.

Corollary 3.0.41 Let K ⊆ Rn, be a convex body and assume that Bn
2 is a Milman ellipsoid for

K with a universal constant. Let E ∈ Gn,n
2

be random. Then with probability ≥ 1− e−n :

(1) diam(K ∩ E) ≤ c

(2) ProjEK ⊇ cBn

(3) E ∩Bn is a Milman ellipsoid for K ∩ E,ProjEK,with another universal constant.
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Proof. For the first one,

diam(K ∩ E)
1
2 · v.rad(K ∩ E)

1
2 ≤ c,

hence,
diam(K ∩ E) ≤ c.

For the second, just dualize the first: Bn is a Milman ellipsoid for K◦ and use it for K◦. We left
the final one as an exercise.


