1 Solution one

Suppose that $A \subset S^{n-1}$ is a Borel set. Define

$$
d(x, A)=\inf _{y \in A} d(x, y)
$$

where $\cos d(x, y)=x \cdot y$ for $x, y \in S^{n-1}$. We write σ for the standard surface area measure on S^{n-1}, normalized to be a probability measure.
Lemma 1.1. For any $t>0$, the set

$$
L=\left\{x \in S^{n-1} ; d(x, A)=t\right\}
$$

has zero σ-measure.
Proof. Let $x_{0} \in L$ and fix $0<r<t$. We claim that

$$
\begin{equation*}
\min _{y ; d\left(y, x_{0}\right)=r} d(x, A)=t-r . \tag{1}
\end{equation*}
$$

Indeed, the function $x \mapsto d(x, A)$ is 1-Lipschitz, hence the minimum on the left-hand side of (1) is attained. By the 1-Lipschitzness,

$$
\inf _{y ; d\left(y, x_{0}\right)=r} d(x, A) \geq d\left(x_{0}, A\right)-r=t-r .
$$

Now, for any $\varepsilon>0$ there is $z \in A$ with $d\left(x_{0}, z\right)<t+\varepsilon$. The geodesic from z to x_{0} must intersect the sphere $\left\{y \in S^{n-1} ; d\left(y, x_{0}\right)=r\right\}$, and at the point of the intersection, the distance to A is at most $t-r+\varepsilon$. Therefore $\inf _{y ; d\left(y, x_{0}\right)=r} d(x, A) \leq t-r$, and (1) is proven.

From (1) we learn the following: For any $x_{0} \in L, 0<r<t$ there exists x with $d\left(x, x_{0}\right)=r$ such that $d(x, A)=t-r$ and hence

$$
B(x, r) \cap L=\emptyset
$$

where $B\left(x_{0}, r\right)=\left\{x \in S^{n-1} ;\left|x-x_{0}\right|<r\right\}$. This implies that there is a ball of radius $r / 2$ in $B\left(x_{0}, r\right)$ which is disjoint from L. Therefore, for any $x_{0} \in L, 0<r<t$,

$$
\begin{equation*}
\sigma\left(L \cap B\left(x_{0}, r\right)\right) \leq\left(1-c_{n}\right) \sigma\left(B\left(x_{0}, r\right)\right) \tag{2}
\end{equation*}
$$

where $c_{n}>0$ is a number depending only on the dimension (in fact, $c_{n}=2^{-(n-1)}$ works).
However, suppose that $\sigma(L)>0$. By the Lebesgue density theorem, there is a density point $x_{0} \in L$. That is,

$$
\lim _{\varepsilon \rightarrow 0^{+}} \frac{\sigma\left(L \cap B\left(x_{0}, \varepsilon\right)\right)}{\sigma\left(B\left(x_{0}, \varepsilon\right)\right)}=1
$$

in contradiction to (2).
Note that $d(x, y)=t$ if and only if $|x-y|=\sqrt{2-2 \cos t}$. Therefore also the set

$$
L=\left\{x \in S^{n-1} ; \inf _{y \in A}|x-y|=t\right\}=\left\{x \in S^{n-1} ; d(x, A)=\arccos \left(1-t^{2} / 2\right)\right\}
$$

is of zero σ-measure.

2 Solution two - An easy way out

We could have defined

$$
A_{\varepsilon}=\left\{x \in S^{n-1} ; d(x, A)<\varepsilon\right\} .
$$

Then we proved that the function $A \mapsto \sigma\left(A_{\varepsilon}\right)$ is lower semi-continuous with respect to the Hausdorff metric, that is,

$$
A_{m} \longrightarrow A \quad \Longrightarrow \quad \liminf _{m \rightarrow \infty} \sigma\left(A_{m}\right) \leq \sigma(A)
$$

A lower-semi continuous function admits a minimum on a compact set, and since

$$
\mathcal{F}=\left\{A \in \operatorname{Closed}\left(S^{n-1}\right) ; \sigma(A) \geq 1 / 2\right\}
$$

is compact, then $\min _{A \in \mathcal{F}} \sigma\left(A_{\varepsilon}\right)$ is attained, and the set of minimizers is compact.

