1 Solution one

Suppose that $A \subset S^{n-1}$ is a Borel set. Define

$$d(x,A) = \inf_{y \in A} d(x,y)$$

where $\cos d(x, y) = x \cdot y$ for $x, y \in S^{n-1}$. We write σ for the standard surface area measure on S^{n-1} , normalized to be a probability measure.

Lemma 1.1. For any t > 0, the set

$$L = \{ x \in S^{n-1} ; d(x, A) = t \}$$

has zero σ -measure.

Proof. Let $x_0 \in L$ and fix 0 < r < t. We claim that

$$\min_{y;d(y,x_0)=r} d(x,A) = t - r.$$
 (1)

Indeed, the function $x \mapsto d(x, A)$ is 1-Lipschitz, hence the minimum on the left-hand side of (1) is attained. By the 1-Lipschitzness,

$$\inf_{y:d(y,x_0)=r} d(x,A) \ge d(x_0,A) - r = t - r.$$

Now, for any $\varepsilon > 0$ there is $z \in A$ with $d(x_0, z) < t + \varepsilon$. The geodesic from z to x_0 must intersect the sphere $\{y \in S^{n-1}; d(y, x_0) = r\}$, and at the point of the intersection, the distance to A is at most $t - r + \varepsilon$. Therefore $\inf_{y;d(y,x_0)=r} d(x, A) \leq t - r$, and (1) is proven.

From (1) we learn the following: For any $x_0 \in L, 0 < r < t$ there exists x with $d(x, x_0) = r$ such that d(x, A) = t - r and hence

$$B(x,r) \cap L = \emptyset$$

where $B(x_0, r) = \{x \in S^{n-1}; |x - x_0| < r\}$. This implies that there is a ball of radius r/2 in $B(x_0, r)$ which is disjoint from L. Therefore, for any $x_0 \in L, 0 < r < t$,

$$\sigma(L \cap B(x_0, r)) \le (1 - c_n)\sigma(B(x_0, r)) \tag{2}$$

where $c_n > 0$ is a number depending only on the dimension (in fact, $c_n = 2^{-(n-1)}$ works).

However, suppose that $\sigma(L) > 0$. By the Lebesgue density theorem, there is a density point $x_0 \in L$. That is,

$$\lim_{\varepsilon \to 0^+} \frac{\sigma(L \cap B(x_0, \varepsilon))}{\sigma(B(x_0, \varepsilon))} = 1,$$

in contradiction to (2).

Note that d(x, y) = t if and only if $|x - y| = \sqrt{2 - 2\cos t}$. Therefore also the set $L = \{x \in S^{n-1}; \inf_{y \in A} |x - y| = t\} = \{x \in S^{n-1}; d(x, A) = \arccos(1 - t^2/2)\}$

is of zero σ -measure.

2 Solution two – An easy way out

We could have defined

$$A_{\varepsilon} = \{ x \in S^{n-1} \, ; \, d(x, A) < \varepsilon \}$$

Then we proved that the function $A \mapsto \sigma(A_{\varepsilon})$ is lower semi-continuous with respect to the Hausdorff metric, that is,

$$A_m \longrightarrow A \implies \liminf_{m \to \infty} \sigma(A_m) \le \sigma(A).$$

A lower-semi continuous function admits a minimum on a compact set, and since

$$\mathcal{F} = \{A \in Closed(S^{n-1}); \, \sigma(A) \ge 1/2\}$$

is compact, then $\min_{A \in \mathcal{F}} \sigma(A_{\varepsilon})$ is attained, and the set of minimizers is compact.