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Abstracts

Isotropic constants and Mahler volumes
Bo’Az KLARTAG

Below is an edited version of informal notes prepared for my lecture at Oberwol-
fach. Please refer to [10] for a rigorous mathematical discussion and for precise
references related to these notes.

The following question is known as Bourgain’s slicing problem [3, 4]: Let K C
R"™ be convex with Vol,(K) = 1. Does there always exist a hyperplane H C R"
with )

Vol, 1(KNH)>—7"
Ol )= 100
Perhaps with some other universal constant ¢ > 0 in place of 1/1007

This is not merely a curious riddle. In fact it shows up in the study of almost
any question pertaining to volume distribution in high dimension under convexity
assumptions. We know that it suffices to look at hyperplane sections through the
barycenter, according to Makai and Martini [13]. We may furthermore reduce
matters to the centrally-symmetric case [6].

Hensley [5] proved the following theorem: Let K C R"™ be a convex body of
volume one. Assume that K = —K (it suffices to require that the barycenter of
K lie at the origin). Then for any unit vector § € R,

c<Vol,—1(KnN HL) . / (x,0)%2dx < C,
K

where ¢,C > 0 are universal constants and §+ = {z € R"; (,0) = 0} is the
hyperplane orthogonal to 6.

It follows from Hensley’s theorem that the slicing problem may be reformulated
as a question on the relation between the covariance matriz and the volume (or
entropy) of convex sets. This entropic point of view was emphasized by K. Ball.
The covariance matrix Cov(K) = (Cov;;)i j=1,... n is given by

c / dz / dz / dx
= TR T TR TR

where |K| = Vol,(K). In Bourgain’s notation, the isotropic constant is defined as

I — det 7 Cov(K)
K

The isotropic constant is affinely-invariant. The slicing problem is equivalent to
the question of whether Lx < C for some universal constant C' > 0, for any
convex body K in any dimension. It is known that Lx > Lpn > ¢, where B"™ is
the Euclidean unit ball centered at the origin in R™.
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Are there any relations between isotropic constants and duality? The polar
body to K C R" is

K°={zeR";VyeK, (x.y) <1}.
Note that
L - Lo = [det Cov(K) - det Cov(K°)]7 - (| K| - |K°|)~ /™.
According to the Bourgain-Milman and Santalé inequalities,
e <n(|K||K°)"" < C

whenever the barycenter of K or of K° lies at the origin. We thus learn that
Bourgain’s slicing problem is equivalent to the question of whether the following
inequality holds:

C 2n
(1) det (Cov(K)Cov(K?)) < <—) .

n
An idea which appears in the unpublished Ph.D. dissertations by Ball 86 and by
Giannopoulos ’93 is to consider the trace of the matrix in (1). Perhaps the trace
is easier to analyze than the determinant. Given a convex body K C R"™ with
barycenter at zero we set

¢(K) = Tr[Cov(K)Cov(K°)].
According to the arithmetic/geometric means inequality,
L3 L. < Cng(K).

The quantity ¢(K) has the following probabilistic interpretation: Let X be a
random vector, distributed uniformly in K. Let Y be an independent random
vector, distributed uniformly in K°. Then ¢(K) = E(X,Y)2. We thus sce that
0<¢(K)<1when K =—-K.

In the case where K C R"™ has the symmetries of the cube (i.e., it is the unit
ball of a “l-symmetric norm”), we know quite a lot about the distribution of the
random variable (X,Y) in high dimensions. In this case, the random variable
(X,Y) is approximately a Gaussian random variable of mean zero and variance
bounded by C/n. This follows from the results of [9)].

The central limit theorem for convex sets [7, 8] states that for any convex
body K C R", there exists 0 # 6 € R™ such that (X,0) is approximately a
standard Gaussian, in the sense that the total variation distance to the Gaussian
distribution does not exceed C'/n® where C,« > 0 are universal constants. With
X and Y as above, one may wonder whether (X,Y") is approximately Gaussian in
high dimensions. This would imply that ¢(K) is much smaller than one.

An amusing fact is that ¢(K) attains the same value n/(n + 2)? when K is
either a Euclidean ball B™ or a simplex A", see [1]. Here A™ stands for any n-
dimensional simplex whose barycenter lies at the origin. It was conjectured by
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Kuperberg [11], following earlier unpublished work by Ball and by Giannopoulos,
that for any centrally-symmetric, convex body K C R"”,

B(K) < S

for a universal constant C' > 0. In fact, it was conjectured more precisely that
H(K) <n/(n+2)°

Supporting evidence for this conjecture includes the fact, proven by Kuperberg,
that the Euclidean ball is a local maximizer of ¢(K) among C%-smooth perturba-
tions, and also the result by Alonso—Gutiérrez [1] which verifies the conjecture in
the particular case where K = By = {z € R™; }_, [2;|” < 1} for some p > 1.

Balls and simplices are extremals for a few well-known functionals in convexity.
Nevertheless, we find that there exists a counter-example to Kuperberg’s conjec-
ture. Namely, we exhibit a centrally-symmetric convex set K C R™ with

#(K) >c

where ¢ > 0 is a universal constant. In fact, our convex set is unconditional, i.e.,
for any (x1,...,2,) € R,

(1,...,2n) € K = (le1l, -y |zn]) € K.

Thus there are convex bodies in high dimension for which the random variable
(X,Y) is far from Gaussian. Our counter-example is essentially a one-dimensional
perturbation of the cross-polytope. Its construction exploits the instability of
volume under duality in high dimensions. Specifically, we use the fact that for
K, = BN +/3/nBY and Ky = B}, we have K1 C Ky CR™ and

1
(1) [Ky| > 5 - [K2|
1
(2) |IKiNn(1+co)K35| > E|(1 + ¢)K3| for a universal constant ¢ > 0.

Let us now explain the “coincidence” mentioned earlier, that ¢(K) attains the
same value n/(n + 2)? when K is a Euclidean ball and when K is a simplex. The
reason behind this phenomenon is that both the Euclidean ball and the simplex
are hyperplane sections of homogeneous cones.

An open, convex cone V C R""! with apex at 0 is homogeneous if for any two
points x,y € V there exists a linear map A : R**! — R**! with A(V) =V and
Az = y. Examples for homogeneous cones include the positive orthant R}, the
Lorentz cone and the cone of positive-definite symmetric n X n matrices.

We shall consider certain canonical constructions in convex cones. Such con-
structions necessarily respect the symmetries of the cone, when such symmetries
exist. Roughly speaking, the quantity ¢(K) — n/(n + 2)? is something like the
“Laplacian” of a function s : V' — R which has the symmetries of V. The function
s is constant when the cone is homogeneous, and hence ¢(K) = n/(n + 2)? for all
of the hyperplane sections of a homogeneous cone. These canonical constructions
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are described in detail in [10], and they involve the Mahler volume of a convex
body K C R™, defined as

S(K) = |K]- (K —z)°].

inf |
zeK
The Mahler conjecture [12] from 1939 suggests that 5(K) > (n + 1)"T1/(n!)? for
any convex body K C R", with equality for the simplex A™.

We prove that any local minimizer K C R" of the functional K +— 5(K) satisfies
1
2 Ly - Lo - 5(K)Y/™ > :
(2) K Lico S(K)" 2 o
There is equality in (2) in the case where K is a ball or a simplex. It follows that
any global minimizer K of the Mahler volume satisfies Lxg > Lan or Lo > Lan.

The strong slicing conjecture suggests that L < Lan for any convex body K C
R”™. We conclude that the strong slicing conjecture implies Mahler’s conjecture.
We remark that it was shown by Rademacher [14] that the simplex is the only
local maximizer of the isotropic constant Ly in the class of simplicial polytopes.

It is known that the isotropic constant may become bounded after a small
perturbation. Our last theorem in this lecture states that the perturbation can be
always made projective. That is, for any convex body K C R" with barycenter at
the origin and 0 < € < 1, there exists a convex set T' C R" with three properties:

(1) 1-g)KCTC(1+¢)K.
(2) T° = K° — y for some point y in the interior of K°.
(3) Lt < C/+/e where C > 0 is a universal constant.
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The Alexandrov-Fenchel inequality via the Bochner method
YAIR SHENFELD

(joint work with Ramon van Handel)

One of the deepest theorems in the theory of Convex Bodies is the Alexandrov-
Fenchel Inequality [1] which states that the coefficients of the volume polynomial
satisfy hyperbolic inequalities. If K1, ..., K,, C R™ are convex bodies (m being a
positive integer), then it is a result of Minkowski [5] that the function

(t1y ..o tm) = VOl(t Ky + - 4+t K)

is a homogeneous polynomial of degree n. The coeflicients of this polynomial
V(K;,,...,K;,) are called mized volumes and they carry important geometric
information about the bodies K, ..., K,, and the relations between them. The
Alexandrov-Fenchel inequality reads

(1) V(K17K27K37 L 7Kn)2 2 V(K17K17K37 .. 7K’n)V(K27K27K37 .. ~7Kn)

for any convex bodies K, ..., K, C R™. In this talk we provide a new proof [6]
of (1) which is considerably simpler than all other known proofs of the inequality,
and in addition sheds a new light on related inequalities. Our method is spectral in
nature (an approach which goes back to Hilbert [4]) and it starts with an integral
representation formula for mixed volumes of smooth convex bodies [2], p. 64:
(2) V(Ki,...,K,) = 1 / hiD(D?hsy, ..., D?*h,)dH" .

gn—1

n

Here, h; : R™ — R is the support function of Kj;:

hi(u) = sup (u,z)
zeK;

and D?h; is the restriction of the Hessian of h; to the tangent spaces of the unit
sphere S"~!. The term D(D?ha, ..., D?h,,) is called mized discriminant and these
quantities arise as the coefficients of the homogencous polynomial

(t1, ... tm) — det(t, My + -+t M,,)

for (n—1) x (n—1) matrices My, ..., M,, (e.g. D*h;). Tt is a result due to Alexan-
drov [1] (and also a consequence of our method) that under some assumptions on



