Question 8: Prove that any odd smooth map $f: S^{n} \rightarrow S^{n}$ has an odd degree.
Solution: By induction on the dimension n. Pick a regular value $P \in S^{n}$ of the function f, which exists by Sard's theorem. After a rotation we may assume that P is the north pole. The preimage $f^{-1}(P)$ is a finite set $\left\{P_{1}, \ldots, P_{k}\right\}$ in S^{n}, and after rotation we may assume that this finite set does not intersect the equator S^{n-1}. Since f is an odd map, also $f^{-1}(Q) \cap S^{n-1}=\emptyset$ where $Q=-P$. Pick a sufficiently small neighborhood U of the north pole $P \in S^{n}$, say a small cap. Then $f^{-1}(U)=U_{1} \cup \ldots \cup U_{k}$, where the open sets U_{1}, \ldots, U_{k} are disjoint and their closures do not intersect the equator. The map $f: U_{i} \rightarrow U$ is a diffeomorphism with $f\left(\partial U_{i}\right)=\partial U$ and $\operatorname{deg}\left(\left.f\right|_{\partial U_{i}}\right)= \pm 1$. Thus,

$$
\begin{equation*}
\operatorname{deg}(f)=\sum_{i=1}^{k} \operatorname{deg}\left(\left.f\right|_{\partial U_{i}}\right)=k \quad \bmod 2 \tag{1}
\end{equation*}
$$

Set $V=-U$ and $V_{i}=-U_{i}$. A meridian in S^{n} is a great circle that passes through the north pole P. By moving points along the meridian towards the equator, we see that the identity map Id on S^{n} is smoothly homotopic to an odd map $h: S^{n} \rightarrow S^{n}$ with $h(P)=P,\left.h\right|_{S^{n-1}}=\mathrm{Id}$ and

$$
\begin{equation*}
h\left(S^{n} \backslash(U \cup V)\right) \subseteq S^{n-1} \tag{2}
\end{equation*}
$$

The map f is therefore smoothly homotopic to the odd map $g:=h \circ f$. Moreover, the degree of $\left.f\right|_{\partial U_{i}}$ is equal to the degree of $\left.g\right|_{\partial U_{i}}$ for all i, since the two points $f(x) \in \partial U$ and $g(x) \in S^{n-1}$ belong to the same meridian for all $x \in \partial U_{i}$. In fact, $\left.g\right|_{\partial U_{i}}=\left.R \circ f\right|_{\partial U_{i}}$, where $R: \partial U \rightarrow S^{n-1}$ is the meridian-projection to the equator, which is a diffeomorphism. Thus $\operatorname{deg}\left(\left.g\right|_{\partial U_{i}}\right)= \pm 1$.

Write S_{+}^{n} for the northern hemisphere, an open set. Denote

$$
M=S_{+}^{n} \backslash \bigcup_{i=1}^{k}\left[U_{i} \cup V_{i}\right]
$$

Then $g=h \circ f: M \rightarrow S^{n}$ is actually a map into S^{n-1} according to (2), since $f(M)$ is contained in $S^{n} \backslash(U \cap V)$. As we saw in class, Stokes theorem implies that $g: \partial M \rightarrow S^{n-1}$ is a map of degree zero, since for any top form ω of non-zero integral on S^{n-1},

$$
\operatorname{deg}\left(\left.g\right|_{\partial M}\right) \cdot \int_{S^{n-1}} \omega=\int_{\partial M} g^{*} \omega=\int_{M} d\left(g^{*} \omega\right)=\int_{M} g^{*}(d \omega)=0
$$

as $d \omega$ vanishes on S^{n-1}, being the differential of a top form. The boundary ∂M consists of several connected components: The equator S^{n-1}, as well as all of the ∂U_{i} 's and ∂V_{i} 's that are contained in S_{+}^{n}. Hence,

$$
\begin{equation*}
0=\operatorname{deg}\left(\left.g\right|_{\partial M}\right)=\operatorname{deg}\left(\left.g\right|_{S^{n-1}}\right)+\sum_{i ; U_{i} \subseteq S_{+}^{n}} \operatorname{deg}\left(\left.g\right|_{\partial U_{i}}\right)+\sum_{i ; V_{i} \subseteq S_{+}^{n}} \operatorname{deg}\left(\left.g\right|_{\partial V_{i}}\right) . \tag{3}
\end{equation*}
$$

Note that for any $i \in\{1, \ldots, k\}$, exactly one of the two sets U_{i} and V_{i} is contained in S_{+}^{n}. Recall that $\operatorname{deg}\left(\left.g\right|_{\partial V_{i}}\right)= \pm 1$ and $\operatorname{deg}\left(\left.g\right|_{\partial U_{i}}\right)= \pm 1$ for all i. Then from (1) and (3),

$$
0=\operatorname{deg}\left(\left.g\right|_{S^{n-1}}\right)+k=\operatorname{deg}\left(\left.g\right|_{S^{n-1}}\right)-\operatorname{deg}(f) \quad \bmod 2
$$

By the induction hypothesis, $\operatorname{deg}\left(\left.g\right|_{S^{n-1}}\right)$ is odd, since $g: S^{n-1} \rightarrow S^{n-1}$ is odd. Hence $\operatorname{deg}(f)$ is odd, as promised. The base case of the induction can either be the case $n=1$, or (better) a trivial statement in $n=0$, if interpreted correctly.

Question 9: Prove Wirtinger's inequality in \mathbb{C}^{2}.

This question was solved correctly by several students, but I have a small comment, which may or may not be useful. The tangent space of M at a point p is a real 2-dimensional subspace of $\mathbb{C}^{2} \cong \mathbb{R}^{4}$, denoted by E. The real subspace E may or may not be a complex 1-dimensional subspace of \mathbb{C}^{2}. The required inequality is equivalent to the assertion that for any \mathbb{R}-linearlyindependent vectors $u, v \in E \subseteq \mathbb{C}^{2}$,

$$
\begin{equation*}
\omega(u, v) \leq \operatorname{Area}(u, v) \tag{4}
\end{equation*}
$$

where $\operatorname{Area}(u, v)$ is the area of the parallelogram spanned by $u, v \in \mathbb{C}^{2}$, with equality iff the real span of u and v is a 1 -dimensional complex subspace. Here,

$$
\omega=\frac{i(d z \wedge d \bar{z}+d w \wedge d \bar{w})}{2}=d x \wedge d y+d u \wedge d v
$$

where $z=x+i y$ and $w=u+i v$ and $x, y, u, v \in \mathbb{R}$ are real coordinates in $\mathbb{C}^{2} \cong \mathbb{R}^{4}$. Verify that for any $u, v \in \mathbb{R}^{4}$,

$$
\omega(u,-i v)=\langle u, v\rangle,
$$

where $\langle u, v\rangle$ is the standard scalar product between $u, v \in \mathbb{R}^{4}$.
Neither the left-hand side nor the right-hand side of (4) are affected if we replace u by $u+\lambda v$ for any $\lambda \in \mathbb{R}$. We may apply such a replacement, and assume that $u \perp v$. This is the first step of the Gram-Schmidt orthogonalization process. To summarize, it suffices to show that for any orthogonal vectors $u, v \in \mathbb{C}^{2} \cong \mathbb{R}^{4}$,

$$
\langle u, i v\rangle=\omega(u, v) \leq \operatorname{Area}(u, v)=|u| \cdot|v| .
$$

This inequality follows from the Cauchy-Schwartz inequality. There is equality in the CauchySchwartz inequality if and only if $i v$ is real-proportional to u. This happens if and only if the real span of the orthogonal vectors u and v is a one-dimensional complex subspace.

