
Question 8: Prove that any odd smooth map f : Sn → Sn has an odd degree.

Solution: By induction on the dimension n. Pick a regular value P ∈ Sn of the function f ,
which exists by Sard’s theorem. After a rotation we may assume that P is the north pole. The
preimage f−1(P ) is a finite set {P1, . . . , Pk} in Sn, and after rotation we may assume that this
finite set does not intersect the equator Sn−1. Since f is an odd map, also f−1(Q) ∩ Sn−1 = ∅
where Q = −P . Pick a sufficiently small neighborhood U of the north pole P ∈ Sn, say a small
cap. Then f−1(U) = U1∪ . . .∪Uk, where the open sets U1, . . . , Uk are disjoint and their closures
do not intersect the equator. The map f : Ui → U is a diffeomorphism with f(∂Ui) = ∂U and
deg(f |∂Ui

) = ±1. Thus,

deg(f) =
k∑

i=1

deg(f |∂Ui
) = k mod 2. (1)

Set V = −U and Vi = −Ui. A meridian in Sn is a great circle that passes through the north pole
P . By moving points along the meridian towards the equator, we see that the identity map Id on
Sn is smoothly homotopic to an odd map h : Sn → Sn with h(P ) = P, h|Sn−1 = Id and

h(Sn \ (U ∪ V )) ⊆ Sn−1. (2)

The map f is therefore smoothly homotopic to the odd map g := h ◦ f . Moreover, the degree of
f |∂Ui

is equal to the degree of g|∂Ui
for all i, since the two points f(x) ∈ ∂U and g(x) ∈ Sn−1

belong to the same meridian for all x ∈ ∂Ui. In fact, g|∂Ui
= R ◦ f |∂Ui

, where R : ∂U → Sn−1

is the meridian-projection to the equator, which is a diffeomorphism. Thus deg(g|∂Ui
) = ±1.

Write Sn
+ for the northern hemisphere, an open set. Denote

M = Sn
+ \

k⋃
i=1

[Ui ∪ Vi].

Then g = h ◦ f : M → Sn is actually a map into Sn−1 according to (2), since f(M) is contained
in Sn \ (U ∩ V ). As we saw in class, Stokes theorem implies that g : ∂M → Sn−1 is a map of
degree zero, since for any top form ω of non-zero integral on Sn−1,

deg(g|∂M) ·
∫
Sn−1

ω =

∫
∂M

g∗ω =

∫
M

d(g∗ω) =

∫
M

g∗(dω) = 0

as dω vanishes on Sn−1, being the differential of a top form. The boundary ∂M consists of
several connected components: The equator Sn−1, as well as all of the ∂Ui’s and ∂Vi’s that are
contained in Sn

+. Hence,

0 = deg(g|∂M) = deg(g|Sn−1) +
∑

i;Ui⊆Sn
+

deg(g|∂Ui
) +

∑
i;Vi⊆Sn

+

deg(g|∂Vi
). (3)

Note that for any i ∈ {1, . . . , k}, exactly one of the two sets Ui and Vi is contained in Sn
+. Recall

that deg(g|∂Vi
) = ±1 and deg(g|∂Ui

) = ±1 for all i. Then from (1) and (3),

0 = deg(g|Sn−1) + k = deg(g|Sn−1)− deg(f) mod 2.
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By the induction hypothesis, deg(g|Sn−1) is odd, since g : Sn−1 → Sn−1 is odd. Hence deg(f)
is odd, as promised. The base case of the induction can either be the case n = 1, or (better) a
trivial statement in n = 0, if interpreted correctly.

Question 9: Prove Wirtinger’s inequality in C2.

This question was solved correctly by several students, but I have a small comment, which
may or may not be useful. The tangent space of M at a point p is a real 2-dimensional subspace
of C2 ∼= R4, denoted by E. The real subspace E may or may not be a complex 1-dimensional
subspace of C2. The required inequality is equivalent to the assertion that for any R-linearly-
independent vectors u, v ∈ E ⊆ C2,

ω(u, v) ≤ Area(u, v) (4)

where Area(u, v) is the area of the parallelogram spanned by u, v ∈ C2, with equality iff the real
span of u and v is a 1-dimensional complex subspace. Here,

ω =
i(dz ∧ dz̄ + dw ∧ dw̄)

2
= dx ∧ dy + du ∧ dv

where z = x+ iy and w = u+ iv and x, y, u, v ∈ R are real coordinates in C2 ∼= R4. Verify that
for any u, v ∈ R4,

ω(u,−iv) = 〈u, v〉,

where 〈u, v〉 is the standard scalar product between u, v ∈ R4.

Neither the left-hand side nor the right-hand side of (4) are affected if we replace u by u+λv
for any λ ∈ R. We may apply such a replacement, and assume that u ⊥ v. This is the first step
of the Gram-Schmidt orthogonalization process. To summarize, it suffices to show that for any
orthogonal vectors u, v ∈ C2 ∼= R4,

〈u, iv〉 = ω(u, v) ≤ Area(u, v) = |u| · |v|.

This inequality follows from the Cauchy-Schwartz inequality. There is equality in the Cauchy-
Schwartz inequality if and only if iv is real-proportional to u. This happens if and only if the real
span of the orthogonal vectors u and v is a one-dimensional complex subspace.
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