Needle decompositions in Riemannian geometry

Bo'az Klartag

Weizmann Institute of Science

Mathematics colloquium at Tel Aviv Univesity,

December 2020.

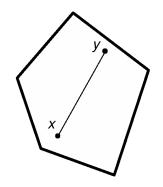
The Poincaré inequality

Theorem (Poincaré, 1890 and 1894)

Let $K \subseteq \mathbb{R}^3$ be <u>convex</u> and open. Let $f: K \to \mathbb{R}$ be C^1 -smooth, with $\int_K f = 0$. Then,

$$\lambda_K \int_K f^2 \le \int_K |\nabla f|^2$$

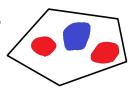
where $\lambda_K \geq (16/9) \cdot Diam^{-2}(K)$.



- In 2D, Poincaré got a better constant, 24/7.
- Related to Wirtinger's inequality on periodic functions in one dimension (sharp constant, roughly a decade later).
- The largest possible λ_K is the **Poincaré constant** of K.
- Proof: Estimate $\int_{K \times K} |f(x) f(y)|^2 dx dy$ via segments.

Motivation: The heat equation

- Suppose $K \subseteq \mathbb{R}^3$ with ∂K an 'insulator', i.e., heat is not escaping/entering K.
- Write $u_t(x)$ for the temperature at the point $x \in K$ at time $t \ge 0$.



Heat equation (Neumann boundary conditions)

$$\left\{ \begin{array}{ll} \dot{u}_t = \Delta u_t & \text{in } K \\ \frac{\partial u_t}{\partial n} = 0 & \text{on } \partial K \end{array} \right.$$

Fourier's law: Heat flux is proportional to the temp. gradient.

Rate of convergence to equilibrium

$$\frac{1}{|K|} \int_{K} u_0 = 1 \quad \Longrightarrow \quad \|u_t - 1\|_{L^2(K)} \le e^{-t\lambda_K} \|u_0 - 1\|_{L^2(K)}$$

Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960)

Let $K \subseteq \mathbb{R}^n$ be convex and open, let μ be the Lebesgue measure on K. If $f: K \to \mathbb{R}$ is C^1 -smooth with $\int_K f d\mu = 0$, then,

$$\frac{\pi^2}{\textit{Diam}^2(K)} \int_K f^2 d\mu \le \int_K |\nabla f|^2 d\mu.$$

• The constant π^2 is best possible in every dimension n. E.g.,

$$K = (-\pi/2, \pi/2), \quad f(x) = \sin(x).$$

- In contrast, Poincaré's proof would lead to an exponential dependence on the dimension.
- Not only the Lebesgue measure on K, we may consider any log-concave measure.

Higher dimensions

The Poincaré inequality was generalized to all dimensions:

Theorem (Payne-Weinberger, 1960)

Let $K \subseteq \mathbb{R}^n$ be convex and open, let μ be any **log-concave** measure on K. If $f: K \to \mathbb{R}$ is C^1 -smooth with $\int_K f d\mu = 0$, then,

$$\frac{\pi^2}{\textit{Diam}^2(K)} \int_K f^2 d\mu \le \int_K |\nabla f|^2 d\mu.$$

• The constant π^2 is best possible in every dimension n. E.g.,

$$K = (-\pi/2, \pi/2), \quad f(x) = \sin(x).$$

- In contrast, Poincaré's proof would lead to an exponential dependence on the dimension.
- A **log-concave** measure μ on K is a measure with density of the form e^{-H} , where the function H is **convex**.

The role of convexity / log-concavity

• For $\Omega \subseteq \mathbb{R}^n$, the Poincaré coefficient λ_{Ω} measures the connectivity or conductance of Ω .

Convexity is a strong form of connectedness

Without convexity/log-concavity assumptions:



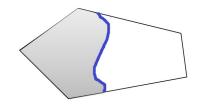
long time to reach equilibrium, regardless of the diameter

Many other ways to measure connectivity

The isoperimetric constant

For an open set $K \subset \mathbb{R}^n$ define

$$h_K = \inf_{A \subset K} \frac{|\partial A \cap K|}{\min\{|A|, |K \setminus A|\}}$$



• If K is strictly-convex with smooth boundary, the infimum is attained when |A| = |K|/2 (Sternberg-Zumbrun, 1999).

Theorem (Cheeger '70, Buser '82, Ledoux '04)

For any open, convex set $K \subseteq \mathbb{R}^n$,

$$\frac{h_K^2}{4} \leq \lambda_K \leq 9h_K^2.$$

 Mixing time of Markov chains, algorithms for estimating volumes of convex bodies (Dyer-Freeze-Kannan '89, ...)

How to prove dimension-free bounds for convex sets?

- Payne-Weinberger approach: Hyperplane bisections.
 (developed by Gromov-Milman '87, Lovász-Simonovits '93)
- Need to prove, for $K \subset \mathbb{R}^n$, $f: K \to \mathbb{R}$ and μ log-concave:

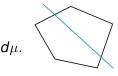
$$\int_{K} f d\mu = 0 \quad \Longrightarrow \quad \int_{K} f^{2} d\mu \leq \frac{\textit{Diam}^{2}(K)}{\pi^{2}} \int_{K} |\nabla f|^{2} d\mu.$$

Find a hyperplane $H \subset \mathbb{R}^n$ through barycenter of K such that

$$\int_{K \cap H^+} f d\mu = \int_{K \cap H^-} f d\mu = 0,$$

where H^- , H^+ are the two half-spaces determined by H.

• It suffices to prove, given $\int_{K\cap H^\pm} f d\mu = 0$, that $\int_{K\cap H^\pm} f^2 d\mu \leq \frac{\textit{Diam}^2(K\cap H^\pm)}{\pi^2} \int_{K\cap H^\pm} |\nabla f|^2 d\mu.$



Bisecting again and again

• Repeat bisecting recursively. After ℓ steps, obtain a partition of K into 2^{ℓ} convex bodies $K_1, \ldots, K_{2^{\ell}}$ with

$$\int_{K_i} f d\mu = 0 \qquad \text{for } i = 1, \dots, 2^{\ell}.$$

The limit object (after induction on dimension):

- **①** A partition $\{K_{\omega}\}_{{\omega}\in\Omega}$ of K into segments (a.k.a "needles").
- ② A disintegration of measure: prob. measures $\{\mu_{\omega}\}_{{\omega}\in\Omega}$ on K, and ν on Ω , with

$$\mu = \int_{\Omega} \mu_{\omega} d\nu(\omega)$$

- **3** ν -Each μ_{ω} is supported on K_{ω} with $\int_{\kappa} f d\mu_{\omega} = 0$.
- ν -Each μ_{ω} is log-concave, by Brunn-Minkowski!

Examples

1 Take $K = [0, 1]^2 \subseteq \mathbb{R}^2$ and f(x, y) = f(x). Assume $\int_K f = 0$.

Here the needles μ_{ω} are just Lebesgue measures,

$$d\mu_{\omega}(x) = dx.$$

② Take $K = B(0,1) \subseteq \mathbb{R}^2$ and $f(x,y) = f(\sqrt{x^2 + y^2})$ with $\int_K f = 0$. Here the needles μ_ω satisfy

$$d\mu_{\omega}(r) = 2rdr.$$

(which is log-concave)



Reduction to one dimension

The Payne-Weinberger inequality is reduced to a 1D statement:

$$\int_{\mathcal{K}_{\omega}} \textit{fd} \mu_{\omega} = 0 \quad \Longrightarrow \quad \int_{\mathcal{K}_{\omega}} \textit{f}^2 \textit{d} \mu_{\omega} \, \leq \, \frac{\textit{Diam}^2(\textit{K}_{\omega})}{\pi^2} \int_{\mathcal{K}_{\omega}} |\nabla \textit{f}|^2 \textit{d} \mu_{\omega}.$$

This is because

$$\bullet \ \mu = \int_{\Omega} \mu_{\omega} d\nu(\omega),$$

2 All
$$\mu_{\omega}$$
 are log-concave with $\int_{\nu} f d\mu_{\omega} = 0$.

All that remains is to prove:

Lemma (Payne-Weinberger, '60)

Let μ be a log-concave measure, $Supp(\mu) \subseteq [-D, D]$. Then,

$$\int_{-D}^{D} f d\mu = 0 \quad \Longrightarrow \quad \int_{-D}^{D} f^2 d\mu \leq \frac{4D^2}{\pi^2} \int_{-D}^{D} |f'|^2 d\mu.$$

The Kannan-Lovász-Simonovits "localization method"

These needle decompositions have a few applications, such as:

Theorem ("reverse Hölder inequality", Bourgain '91, Bobkov '00, Nazarov-Sodin-Volberg '03, ...)

Let $K \subseteq \mathbb{R}^n$ be convex, μ a log-concave prob. measure on K. Let p be any polynomial of degree d in n variables. Then,

$$\|p\|_{L^2(\mu)} \le C_d \|p\|_{L^1(\mu)}$$

where $C_d > 0$ depends only on d (and not the dimension).

Theorem ("waist of the sphere", Gromov '03, also Almgren '60s)

Let $f: S^n \to \mathbb{R}^k$ be continuous, $k \le n$. Then for some $x \in \mathbb{R}^k$,

$$|f^{-1}(x) + \varepsilon| > |S^{n-k} + \varepsilon|$$
 for all $\varepsilon > 0$,

where $A + \varepsilon = \{x \in S^n ; d(x, A) < \varepsilon\}$ and $S^{n-k} \subseteq S^n$.

Bisections work only in symmetric spaces...

What is the analog of the needle decompositions in an abstract **Riemannian manifold** \mathcal{M} ?

- Bisections are no longer possible.
- Are there other ways to construct partitions into segments?

Monge, 1781

A transportation problem induces a partition into segments.

Let μ and ν be smooth prob. measures in \mathbb{R}^n , disjoint supports. A **transportation** is a map $T : \mathbb{R}^n \to \mathbb{R}^n$ with

$$T_*\mu=\nu$$
.

• There is a transportation such that the segments $\{(x, T(x))\}_{x \in Supp(\mu)}$ do not intersect (unless overlap).

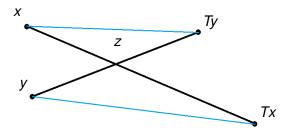
Monge's heuristics

Let μ and ν be smooth measures in \mathbb{R}^n , same total mass. Consider a transportation $\mathcal{T}: \mathbb{R}^n \to \mathbb{R}^n$ that minimizes the cost

$$\int_{\mathbb{R}^n} |Tx - x| d\mu(x) = \inf_{S_*(\mu) = \nu} \int_{\mathbb{R}^n} |Sx - x| d\mu(x).$$

Use the triangle inequality: Assume by contradiction that

$$(x, Tx) \cap (y, Ty) = \{z\}.$$



The Monge-Kantorovich transportation problem

- Suppose that \mathcal{M} is an *n*-dimensional Riemannian manifold. Either complete, or at least **geodesically convex**.
- ② A measure μ on \mathcal{M} with a smooth density. (maybe the Riemannian volume measure.)
- **3** A measurable function $f: \mathcal{M} \to \mathbb{R}$ with $\int_{\mathcal{M}} f d\mu = 0$ (and some mild integrability assumption).

Consider the transportation problem between the two measures

$$d\nu_1 = f^+ d\mu$$
 and $d\nu_2 = f^- d\mu$.

We study a transportation $T_*\nu_1=\nu_2$ of minimal cost

$$c(T) = \int_{\mathcal{M}} d(x, Tx) d\nu_1(x).$$

Structure of the optimal transportation

• Recall that $\int_{\mathcal{M}} f d\mu = 0$. Then an optimal transportation T exists and it induces the following structure:

Theorem ("Resolution of the Monge-Kantorovich problem")

There exists a partition $\{\mathcal{I}_{\omega}\}_{\omega\in\Omega}$ of \mathcal{M} into **minimizing** geodesics and measures ν on Ω , and $\{\mu_{\omega}\}_{\omega\in\Omega}$ on \mathcal{M} with

$$\mu = \int_{\Omega} \mu_{\omega} d\nu(\omega)$$
 (disintegration of measure),

and for ν -any $\omega \in \Omega$, the measure μ_{ω} is supported on \mathcal{I}_{ω} with $\int_{\mathcal{I}_{\omega}} \textit{fd} \mu_{\omega} = 0$.

- A result of Evans and Gangbo '99, Trudinger and Wang '01, Caffarelli, Feldman and McCann '02, Ambrosio '03, Feldman and McCann '03.
- Like localization, but where is the log-concavity of needles?

Example - the sphere S^n

In this example:

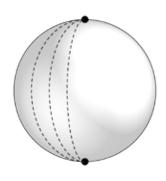
- $\mathcal{M} = S^n$
- The measure μ is the Riemannian volume on $S^n \subseteq \mathbb{R}^{n+1}$.
- $f(x_0,\ldots,x_n)=x_n$, clearly $\int_{S^n}fd\mu=0$.

- We obtain a partition of S^n into needles which are **meridians**.
- The density on each needle is proportional to

$$\rho(t) = \sin^{n-1} t \qquad t \in (0, \pi)$$

in arclength parametrization ("spherical polar coordinates").

3 Note that $\left(\rho^{\frac{1}{n-1}}\right)'' + \rho^{\frac{1}{n-1}} = 0$.



Ricci curvature appears

Assume μ is the Riemannian volume on \mathcal{M} , and $\int f d\mu = 0$.

Theorem ("Riemannian needle decomposition", K. '17)

There is a partition $\{\mathcal{I}_{\omega}\}_{\omega\in\Omega}$ of \mathcal{M} and measures ν on Ω , and $\{\mu_{\omega}\}_{\omega\in\Omega}$ on \mathcal{M} with $\mu=\int_{\Omega}\mu_{\omega}d\nu(\omega)$ such that for any $\omega\in\Omega$,

 $oldsymbol{0}$ The measure μ_{ω} is supported on the minimizing geodesic

$$\mathcal{I}_{\omega} = \{\gamma_{\omega}(t)\}_{t \in (a_{\omega}, b_{\omega})}$$
 (arclength parametrization)

with C^{∞} -smooth, positive density $\rho=\rho_{\omega}:(a_{\omega},b_{\omega}) o\mathbb{R}.$

- **3** Set $\kappa(t) = Ricci(\dot{\gamma}(t), \dot{\gamma}(t)), n = \dim(\mathcal{M})$. Then we have

$$\left(\rho^{\frac{1}{n-1}}\right)'' + \frac{\kappa}{n-1} \cdot \rho^{\frac{1}{n-1}} \le 0.$$

Remarks on the theorem

• If μ is not the Riemannian measure, replace the dimension n by $N \in (-\infty, 1] \cup [n, +\infty]$ and use the generalized Ricci tensor (Bakry-Émery, '85):

$$extit{Ricci}_{\mu, extit{N}} = extit{Ricci}_{\mathcal{M}} + ext{Hess}\Psi - rac{
abla\Psi \otimes
abla\Psi}{ extit{N} - extit{n}}$$

where $d\mu/d\lambda_{\mathcal{M}}=\exp(-\Psi)$. Also set $\mathit{Ricci}_{\mu}=\mathit{Ricci}_{\mu,\infty}.$

When $Ricci_{\mathcal{M}} \geq 0$, the needle density ρ satisfies

$$\left(\rho^{\frac{1}{n-1}}\right)'' \leq \left(\rho^{\frac{1}{n-1}}\right)'' + \frac{\kappa}{n-1} \cdot \rho^{\frac{1}{n-1}} \leq 0.$$

Thus $\rho^{1/(n-1)}$ is concave and in particular ρ is **log-concave**.

- This recovers the case of \mathbb{R}^n , without use of bisections.
- Already generalized to measure-metric spaces (Cavalletti and Mondino) and to Finsler manifolds (Ohta).

An application: Lévy-Gromov isoperimetric inequality

ullet Suppose ${\mathcal M}$ is n-dimensional, geodesically-convex, and

$$Ricci_{\mathcal{M}} \geq n-1 \ (= Ricci_{S^n}).$$

• For a subset $A \subseteq \mathcal{M}$ denote

$$A + \varepsilon = \{x \in \mathcal{M} ; d(x, A) < \varepsilon\},$$

the ε -neighborhood of A.

• Let μ and σ be Riemannian measures on \mathcal{M} and S^n , respectively, normalized to be prob. measures.

Theorem ("Lévy-Gromov isoperimetric inequality")

For any $A \subseteq \mathcal{M}$ and a geodesic ball $B \subseteq \mathcal{S}^n$,

$$\mu(A) = \sigma(B)$$
 \Longrightarrow $\forall \varepsilon > 0, \ \mu(A + \varepsilon) \ge \sigma(B + \varepsilon).$

Proof of Lévy-Gromov's isoperimetric inequality

• Given measurable $A \subseteq \mathcal{M}$ with $\mu(A) = \lambda \in (0, 1)$, define

$$f(x) = (1 - \lambda) \cdot 1_A(x) - \lambda \cdot 1_{\mathcal{M} \setminus A}(x).$$

• Apply needle decomposition for f to obtain $\mu = \int_{\Omega} \mu_{\omega} d\nu(\omega)$, where ν and $\{\mu_{\omega}\}$ are prob. measures.

Properties of the needle decomposition

• Set $A_{\omega} = A \cap \mathcal{I}_{\omega}$, where $\mathcal{I}_{\Omega} = Supp(\mu_{\omega})$ is a minimizing geodesic. Then,

$$\mu_{\omega}(\mathbf{A}_{\omega}) = \lambda \qquad \forall \omega \in \Omega.$$

 $\textbf{2} \ \text{ For any } \varepsilon > \textbf{0},$

$$\mu(\mathbf{A} + \varepsilon) = \int_{\Omega} \mu_{\omega}(\mathbf{A} + \varepsilon) d\nu(\omega) \ge \int_{\Omega} \mu_{\omega}(\mathbf{A}_{\omega} + \varepsilon) d\nu(\omega)$$

with equality when $\mathcal{M} = S^n$ and A = B is a cap in S^n .

Proof of Lévy-Gromov's isoperimetric inequality

• Our needle density ρ is "more concave" than polar spherical coordinates, i.e., needles with density $\sin^{n-1} t$.

One-dimensional lemma

Let $\rho:(a,b)\to\mathbb{R}$ be smooth and positive with

$$\left(\rho^{\frac{1}{n-1}}\right)'' + \rho^{\frac{1}{n-1}} \le 0.$$
 (1)

Let $A \subseteq (a, b)$ and $B = [0, t_0] \subseteq [0, \pi]$. Then for any $\varepsilon > 0$,

$$\frac{\int_{A} \rho}{\int_{a}^{b} \rho} = \frac{\int_{B} \sin^{n-1} t dt}{\int_{0}^{\pi} \sin^{n-1} t dt} \implies \frac{\int_{A+\varepsilon} \rho}{\int_{a}^{b} \rho} \ge \frac{\int_{B+\varepsilon} \sin^{n-1} t dt}{\int_{0}^{\pi} \sin^{n-1} t dt}.$$

• In fact, from (1) the isoperimetric profile I of $(\mathbb{R},|\cdot|,\rho)$ satisfies

$$\left(I^{\frac{n}{n-1}}\right)'' + n \cdot I^{\frac{1}{n-1}-1} \le 0.$$

More applications of needle decompositions

Assume that $\mathcal M$ is geodesically-convex with non-negative Ricci. Using Needle decompositions we can obtain:

Poincaré constant (Li-Yau '80, Yang-Zhong '84):

$$\lambda_{\mathcal{M}} \geq \pi^2 / Diam^2(\mathcal{M})$$

② Brunn-Minkowski type inequality: For any measurable $A, B \subseteq \mathcal{M}$ and $0 < \lambda < 1$,

$$Vol(\lambda A + (1 - \lambda)B) \ge Vol(A)^{\lambda} Vol(B)^{1-\lambda}$$

where $\lambda A + (1 - \lambda)B$ consists of all points $\gamma(\lambda)$ where γ is a geodesic with $\gamma(1) \in A, \gamma(0) \in B$. (Cordero-Erausquin, McCann, Schmuckenschlaeger '01).

3 Log-Sobolev inequalities (Wang '97), reverse Cheeger inequality $\lambda_{\mathcal{M}} \leq c \cdot h_{\mathcal{M}}^2$ (Buser '84), spectral gap and Lipschitz functions (E. Milman '09).

Another application: The 4 functions theorem

Assume \mathcal{M} is geodesically-convex, μ a measure, $Ricci_{\mu} \geq 0$.

The four functions theorem (Riemannian version of KLS '95)

Let $\alpha, \beta > 0$. Let $f_1, f_2, f_3, f_4 : \mathcal{M} \to [0, +\infty)$ be measurable functions. Assume that for any probability measure η on \mathcal{M} which is a log-concave needle,

$$\left(\int_{\mathcal{M}}f_1d\eta\right)^{\alpha}\left(\int_{\mathcal{M}}f_2d\eta\right)^{\beta}\leq \left(\int_{\mathcal{M}}f_3d\eta\right)^{\alpha}\left(\int_{\mathcal{M}}f_4d\eta\right)^{\beta}$$

whenever f_1 , f_2 , f_3 , f_4 are η -integrable. Then,

$$\left(\int_{\mathcal{M}}f_1d\mu\right)^{\alpha}\left(\int_{\mathcal{M}}f_2d\mu\right)^{\beta}\leq \left(\int_{\mathcal{M}}f_3d\mu\right)^{\alpha}\left(\int_{\mathcal{M}}f_4d\mu\right)^{\beta}.$$

 Recall: A log-concave needle is a measure, supported on a minimizing geodesic, with a log-concave density in arclength parameterization.

One last application: Dilation inequalities

Definition (Nazarov, Sodin, Volberg '03, Bobkov and Nazarov '08, Fradelizi '09)

For $A\subseteq\mathcal{M}$ and $0<\varepsilon<1$, the set $\mathcal{N}_{\varepsilon}(A)$ contains all $x\in\mathcal{M}$ for which \exists a minimizing geodesic $\gamma:[a,b]\to\mathcal{M}$ with $\gamma(a)=x$ and

$$\lambda_1 (\{t \in [a,b]; \gamma(t) \in A\}) \geq (1-\varepsilon) \cdot (b-a),$$

where λ_1 is the Lebesgue measure in the interval $[a, b] \subseteq \mathbb{R}$.

• Thus $\mathcal{N}_{\varepsilon}(A)$ is a kind of an ε -dilation of the set A.

Theorem (Riemannian version of Bobkov-Nazarov '08)

Assume \mathcal{M} is *n*-dimensional, geodesically-convex, μ is prob., $Ricci_{\mu} \geq 0$. Let $A \subseteq \mathcal{M}$ be measurable with $\mu(A) > 0$. Then,

$$\mu(\mathcal{M} \setminus A)^{1/n} \ge (1 - \varepsilon) \cdot \mu(\mathcal{M} \setminus \mathcal{N}_{\varepsilon}(A))^{1/n} + \varepsilon.$$

Comparison with the quadratic cost

• Given probability measures ν_1, ν_2 on \mathcal{M} , consider all transportations $T_*\nu_1 = \nu_2$ with the **quadratic cost**

$$c(T) = \int_{\mathcal{M}} d^2(x, Tx) d\nu_1(x).$$

Theorem (Brenier '87, McCann '95)

When $\mathcal{M} = \mathbb{R}^n$, the map T of minimal quadratic cost has the form

$$T = \nabla \Phi$$

where Φ is a convex function on \mathbb{R}^n . (and vice versa)

- Generalization to Riemannian manifolds by McCann '01: The optimal map T has the form $T(x) = \exp_x(\nabla \Phi)$, where $-\Phi$ is a $d^2/2$ -concave function.
- This yields some of the aforementioned applications.

Proof of Riemannian needle decomposition theorem

Kantorovich duality (1940s): Let $f \in L^1(\mu)$ with $\int f d\mu = 0$, set $d\nu_1 = f^+ d\mu$ and $d\nu_2 = f^- d\nu$. Then,

$$\inf_{\mathcal{S}_*(\nu_1)=\nu_2} \int_{\mathcal{M}} d(\mathcal{S}x,x) d\nu_1(x) = \sup_{\|u\|_{Lip} \leq 1} \left[\int_{\mathcal{M}} u f d\mu \right].$$

Moreover, let S and u be optimizers. Then,

$$S(x) = y \implies |u(x) - u(y)| = d(x, y).$$

Definition

A point $y \in \mathcal{M}$ is a **strain point** of u if $\exists x, z \in \mathcal{M}$ with

- 0 d(x,z) = d(x,y) + d(y,z).
- ② u(y) u(x) = d(x, y) > 0, u(z) u(y) = d(y, z) > 0.

Strain points of a 1-Lipschitz function $u: \mathcal{M} \to \mathbb{R}$

Write $Strain[u] \subseteq \mathcal{M}$ for the collection of all strain points of u.

Proposition

- $\mu(Supp(f) \setminus Strain[u]) = 0.$
- 2 The following is an equivalence relation on *Strain*[*u*]:

$$x \sim y \iff |u(x) - u(y)| = d(x, y).$$

• The equivalence classes are minimizing geodesics, the **transport rays** from Evans-Gangbo '99. The optimal transport map *S* acts along transport rays.

Write $T^{\circ}[u]$ for the collection of all such transport rays.

- ① Disintegration of measure: $\mu|_{Strain[u]} = \int_{\mathcal{T}^{\circ}[u]} \mu_{\mathcal{I}} d\nu(\mathcal{I}).$
- **2** Feldman-McCann '03: $\int_{\mathcal{I}} f d\mu_{\mathcal{I}} = 0$ for ν -almost any \mathcal{I} .

Higher regularity: In Strain[u], it's almost $C^{1,1}$

Definition

 $Strain_{\varepsilon}[u]$ consists of points $y \in \mathcal{M}$ for which $\exists x, z \in \mathcal{M}$ with

- 0 d(x,z) = d(x,y) + d(y,z).
- $2 u(y) u(x) = d(x,y) \ge \varepsilon, \quad u(z) u(y) = d(y,z) \ge \varepsilon.$
 - Clearly, $Strain[u] = \bigcup_{\varepsilon>0} Strain_{\varepsilon}[u]$.

Theorem (" $C^{1,1}$ -regularity")

Let \mathcal{M} be a geodesically-convex Riemannian manifold.

Let $\varepsilon > 0$ and let $u : \mathcal{M} \to \mathbb{R}$ satisfy $||u||_{Lip} \le 1$.

Then there exists a $C^{1,1}$ -function $\tilde{u}:\mathcal{M}\to\mathbb{R}$ with

$$\forall x \in Strain_{\varepsilon}[u], \quad \tilde{u}(x) = u(x), \quad \nabla \tilde{u}(x) = \nabla u(x).$$

Proof: Whitney's extension theorem and a geometric lemma of Feldman and McCann.

Geodesics orthogonal to level sets of u

Thanks to $C^{1,1}$ -regularity:

At almost any point $p \in Strain[u]$ there is a symmetric **second** fundamental form II_p for the hypersurface

$$\{x \in \mathcal{M}; u(x) = u(p)\},\$$

which is the Hessian of u, restricted to the tangent space.

 The transport rays are geodesics orthogonal to a level set of u. This resembles a standard measure disintegration in Riemannian geometry (going back to Paul Levy, 1919).

Theorem ("Normal decomposition of Riemannian volume")

Write ρ for the density of μ_T with respect to arclength. Then:

$$\frac{d}{dt}\log\rho(t) = Tr[II], \ \frac{d^2}{dt^2}\log\rho(t) = -Tr[(II)^2] - Ric(\nabla u, \nabla u).$$

Uniqueness of maximizer

- Concavity of the needle density follows from $Tr[(II)^2] \ge 0$.
- Works nicely with a non-Riemannian volume measure μ , as long as its density satisfies Bakry-Émery concavity.

Corollary

Assume Supp(f) has a full μ -measure. Let $u_1, u_2 : \mathcal{M} \to \mathbb{R}$ be 1-Lip. functions, maximizers of the Kantorovich problem. Then

$$u_1 - u_2 \equiv Const.$$

Proof: Also $(u_1 + u_2)/2$ is a maximizer. Thus $Strain[u_i]$ has full measure, as well as $Strain[(u_1 + u_2)/2]$. Hence for a.e. $x \in \mathcal{M}$,

$$|\nabla u_1(x)| = |\nabla u_2(x)| = \left|\frac{\nabla u_1(x) + \nabla u_2(x)}{2}\right| = 1.$$

Therefore $\nabla u_1 = \nabla u_2$ almost everywhere in \mathcal{M} .

A comment on curved needles and nodal sets

• Suppose that \mathcal{M} is a Riemannian manifold, say compact. Let $f: \mathcal{M} \to \mathbb{R}$ be a (non-constant) Laplace eigenfunction,

$$\Delta f = -\lambda f, \qquad (\lambda > 0).$$

• Consider the vector field $V = \nabla f$ and view its integral curves as **curved needles**, with natural parametrization.

Disintegration of the Riemannian measure μ w.r.t the partition

Decompose $\mu = \int_{\Omega} \mu_{\omega} d\nu(\omega)$ where μ_{ω} is supported on an integral curve \mathcal{I}_{ω} with density ρ_{ω} .

Theorem

For ν -a.e. $\omega \in \Omega$, the density $\rho = \rho_{\omega}$ is **log-concave**. Moreover, its maximum is on the nodal set $\{f = 0\}$, if reached by needle.

• Trivial to prove once stated, no curvature assumptions.

Thank you!