7/7/2021 <u>Lecture 13</u>

Scribe: Avi Cohen

Byzantine <u>node</u> taken over by some bad <u>adversary</u>

- drop messages.
- random messages
- as bad as one can imagine.

A node that is not Byzantine is called correct.

f - number of Byzantine nodes.

# [LPS, Dolev '80]:

Computation is possible only if:  $f < min \left\{ \frac{\text{vertex-conn. of graph}}{2}, \frac{n}{3} \right\}$ 

Graph G has vertex-conn. X if  $\forall u, v \in G$  are connected by  $\geqslant X$  vertex-disjoint paths.

## Byzantine Agreement

- -n-vertex complete graph.
- $f < \frac{n}{3}$  Byzantine nodes.
- Every  $u_i$  has initial value  $x_i \in \{0,1\}$

Agreement: all correct nodes should output the same bit.

<u>Validity</u>: If all correct nodes have the same  $x_i$  values then this should be the output.

For node  $u_i$  Let x be the original value of  $u_i$ .

For  $\rho=1$  to f+1 do:

 $R_{4}$  Broadcast val(x) to all nodes.

R2

-If received val(y) from  $\geqslant$  n-f nodes Broadcast propose(y).

- If received propose(w) from  $\geqslant f+1$  nodes  $\chi \leftarrow w$ .

 $U_p$  is the king of the phase.

Case  $u_i = u_p$ : broadcast current value w to everyone.

Case  $u_i \neq u_p$ : If propose(x) was received from  $\leq n-f-1$  nodes:  $x \in \text{King's value }(\omega)$ .

<u>Lemma 1</u>: validity holds.

Pf: Say all correct nodes have  $x_i = 0$ .

Then get val(o) from ≥ n-f nodes

propose " " "

The value is kept since if-cond of  $R_3$  does not hold.

Lemma 2: all correct nodes that propose in  $R_2$ , propose the same value.

 $\underline{Pf:}$  u,v correct nodes, u propose(x) and v sends propose(y). Assume  $x \neq y$ .

- u received  $x \ge n-1$  nodes  $\ge n-2$  f correct nodes.

- V 11 y 11 11 11 11 11 11 ,

# correct nodes  $\ge n-2f+n-2f = 2n-4f$ 

 $\# nodeS \ge 2n-3f > n$ , contradiction.

Cor: If Ju receiving propose(x) from > f-1 nodes & u y νE U =  $\chi = \mu$ . Proof: I correct node w sending propose(x). I correct node w' sending propose(y). By Lemma 2, x = y. Lemma 3: Let p be a phase of a correct king, then at the end of the phase, all nodes get the king's value and maintain this value. Proof: Case 1: If-cond of  $R_3$  holds.  $\sqrt{\phantom{a}}$ Case 2: Ju for which the If-cond. does not hold. Let x be the current value of u. u received propose  $(x) \ge n-f$  nodes

≥ n-2f correct nodes.

=> king got propose (x)  $\geq$  n-2f  $\geq$  f+1 nodes.

=) king value = x.

Complexity: O(f) rounds.

What can we do if the graph is not a clique?

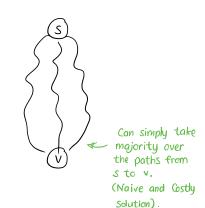
## Byzantine Broadcast for General Graphs

- Byzantine edges. (Single Byzantine edge e')

### Adversarial Congest Model:

- -3 edge connected graph.
- In every round exchange O(log n)-bit with neighbors.
- Messages through e' = (x,y) are corrupted.
- The adversary knows everything.

Goal: Given source S holding message m., all nodes should output m.



 $\frac{\mathsf{Today}}{\mathsf{O}}: \widetilde{\mathsf{O}}(\mathsf{D}^3)$ -round alg.

 $\star$  for simplicity assume all nodes know D (or O(1)-approximation).

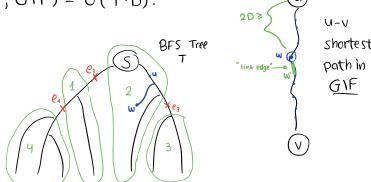
Obs: For every (f+1)-edge connected graph G with diam D, it holds that Diam  $(G \setminus F) = O(f \cdot D)$  for every  $F \subseteq E$ ,  $|F| \le f$ .

<u>Proof:</u>  $u, v, F \subseteq E, |F| \le f, \text{ show } d(u, v, G \setminus F) = O(f \cdot D).$ 

# comp in  $T \setminus F \leq |f| + 1$ .



=> O(fD) length.



The observation implies that there is always a path of "reasonable" length ignoring the Byzantine edge e'. So there is hope!

Covering family of a D-diameter graph G is an ordered set

$$G = \{G_1, \ldots, G_\ell\}$$

where  $G_i \subseteq G$  and  $l = \widetilde{O}(D^2)$ .

For every edge  $e \in G$ , and  $\forall path P \subseteq G \setminus e$  of length at most  $C \cdot D$ ,

there exists  $G_i \in \mathcal{G}$  s.t.:

- 1)  $P \subseteq G_i$
- 2)  $e \notin G_i$

#### Example: (Randomized Construction)

$$G_{i} = G[\rho] \qquad \rho = 1 - \frac{1}{cD}$$

$$Pr(G_{i} \text{ covers} P \cdot e) = \underbrace{(1 - \frac{1}{cD})^{|P|}}_{\text{Taking all edges}} \cdot \underbrace{\frac{1}{cD}}_{\text{Not taking}} \Rightarrow (1 - \frac{1}{cD})^{cD} \underbrace{\frac{1}{cD}}_{\text{cD}} \approx \underbrace{\frac{1}{e} \cdot \frac{1}{cD}}_{\text{the edge e}}$$

A covering family G is locally known if given index i, and (u,v), v knows if  $(u,v) \in G_i$ .

### Byzantine Broadcast with Single Byzantine Edge

Phase 1: Flood (m,i) messages on every subgraph  $G_i \in \mathcal{G}$  for O(D) rounds.

## Phase 2: s sends accept (mo) to neighbors

#### For O(D) rounds do:

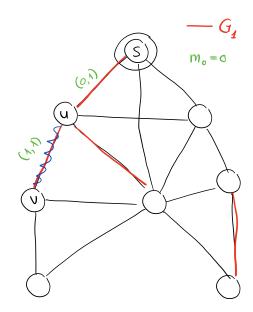
Node u upon receiving accept(m) from v:

will accept m only if:

(m,i) - received (m,i) s.t. (u,v) ∉ G<sub>i</sub>

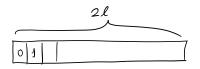
- Send accept(m) to neighbors

(G is locally known)



Phase 1 can be implemented in  $\widetilde{\mathcal{O}}(\mathbb{D}^3)$  rounds.

- Run in steps of  $2l = \tilde{O}(D^2)$  rounds

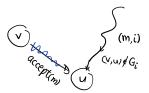


Or even better: just work subgraph by subgraph for O(D) rounds.

Lemma 1: No node accepts the wrong message.

Let u be the first node accepting wrong message (by round number)

=) (m,i) is received for  $G_i$  s.t.  $(v,u) \notin G_i$  =) contradiction.



Obs: s-u path  $P \subseteq G \setminus e'$  of length  $\leq c \cdot D$  and let  $G_i$  be s.t.  $P \subseteq G_i$ , then u receives  $(m_o, i)$ .



Lemma: all nodes accept.

 $\underline{Pf}$ : By induction on the distance from s in  $G' \setminus e'$ 

Claim: by round r, all nodes at distance < r from s in G'e' accept.

consider a node v at distance r+1.

-since the graph is 3-edge connected, there is an s-v path P in  $G \setminus \{(u,v),e\}$  and |P| = O(D).

- By covering property,  $\exists G_i$  s.t.  $P \subseteq G_i$ ,  $(u,v) \notin G_i$
- By the obs, v received the message (mo,i)

