Network Decomposition Alg' Scribe: Avi Cohen

Strong (c,d) ND: Given graph G = (V, E), a (c,d) ND is a partitioning into vertex disjoint subgraphs $G_1,...,G_c$ s.t. diam of every conn. comp. of G_i is at most d.

Porth may go outside of the vertices of X_{ij} Weak (c,d) ND: w-diam $(X_{ij}) = \max_{u,v \in V(X_{ij})} d_{\widehat{G}}(u,v)$ \hookrightarrow cluster of G_i

They do no have to induce connected comp.

Each G_i is a union of clusters $X_{i,1},...,X_{i,l}$, s.t. w-diam $(X_{ij}) \leq d$. non-neighboring

Note: In LOCAL model weak ND is good enough. In CONGEST we need strong ND.

Thm [AGL'89]: Every n-vertex graph G=(V,E) has (c,d)-ND with $c,d=O(\log n)$ [Tight !]

Goal: V'SV s.t.

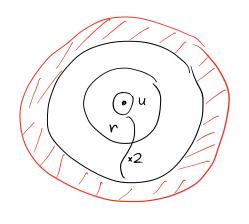
- \bigcirc V' is made of clusters of weak/strong diam $O(\log n)$.

Algorithm for computing one color class

while G' is non-empty:

* Pick $u \in G'$ and grow a ball around u in G'upto the min. r s.t.:

$$|B_{G}(u,r+1)| < 2|B_{G'}(u,r)|$$



Lemma 1: $|V'| \ge \frac{|V|}{2}$

Lemma 2: diam of each conn. comp. in G[V'] is at most O(logn).

How can we do this faster?

Thm [LS '93]: For every n-vertex graph G=(V,E), there is a randomized LOCAL alg. for computing weak (c,d) ND where c,d = O(logn) with O(logn) rounds w.h.p.

Algorithm for computing one color class

* Every vertex u picks $r_u \sim Geo(p=1/2) \sim Pr[r_u=y] = p \cdot (1-p)^{y-1}$

 \star Send (u,r_u) to all nodes in $B_{G}(u,r_{u})$

* Every v defines c(v) to be:

$$C(v) = \operatorname{argmin} \{ ID(u) \mid r_u \ge d_G(u, v) \}$$

 \star V becomes unclustered if $d_G(v, C(v)) = r_{c(v)}$. \sim makes the balls disjoint.

V'= collection of all clustered vertices.

Note that it is possible for v not to be in its own cluster even if the cluster is not empty. =) weak ND.

Lemma 1: Diam of each cluster is O(logn).

follows from properties of Geo distribution + Union Bound.

Lemma 2: $|V'| \ge \frac{|V|}{2}$

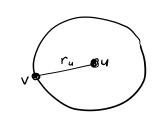
Pf: We will show: Pr [v is unclustered] = $p = \frac{1}{2}$.

$$Pr[v \text{ is unclustered}] = \sum_{u \in V} Pr[v \text{ unclustered} | C(v) = u] \cdot Pr[C(v) = u]$$

Define the following events. D_u : $r_u = d_G(u, v)$

Ex: ru > da(u,v)

Fu: Yu'<u, ru < da (u',v)



$$\frac{\Pr[v \text{ unclustered and } C(v)=u]}{\Pr[C(v)=u]} = \frac{\Pr[D_u \text{ and } F_u]}{\Pr[E_u \text{ and } F_u]} = \frac{\Pr[D_u]}{\Pr[E_u]} = \rho$$

Deterministic LOCAL ND

Thm [RG 20]: For every G = (V, E), there is a deterministic LOCAL algorithm for computing weak (c,d) ND with $c = O(\log n)$, $d = O(\log^3 n)$ within $O(\log^3 n)$ rounds.

This result was a breakthrough! Previous state of the art was 2 Togn rounds.

Algorithm for computing one color class

- * Assume every node has $b = O(\log n)$ -bit ID.
- * Node u has l(u). ~ label of u.
- * cluster: nodes with the same label.

set of "live" nodes after phase i
$$V' = V_b \subseteq \dots \subseteq V_2 \subseteq V_4 \subseteq V_0 = V$$

Invariant for the beginning of phase $i \in \{0, ..., b-1\}$

- 1) Conn. comp. of each G[Vi] agree on i-length suffix of their label.
- 2) Diam in G of <u>cluster</u> is at most i.R.
- 3) $|V_{i+1}| \ge (1 \frac{1}{2b}) |V_i|$
- => After b phases, every conn. comp. is a cluster of diam $O(\log^3 n)$. Additionally, $|V'| \ge (1 - \frac{1}{2b})^b |V|$.

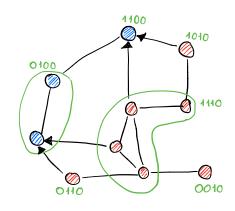
Phase i

Conn. Comp of $G[V_i]$, L(u) = [**** Y]

Red vertices [***1Y]

Blue vertices [***OY]

To get to the next phase suffices to separate red and blue verts. Blue verts will remain clustered, Red will convert to blue or die.



Step i of Phase i:

* Every red node sends req. to join one arbitrary neighboring blue cluster.

Repeat

R = 4b·logn Steps

* Every blue cluster A has two options:

1) $\# \text{ req} \ge \frac{|A|}{2b}$: accept all req. and the red req. nodes become blue and join cluster.

2) # req. $<\frac{|A|}{2b}$: omit all requests, red req. nodes <u>die</u> and stop <u>grow</u>.

Rounds: $\frac{\log n \times \log n \times \log^2 n \times \log^3 n}{\frac{\# \text{color}}{\text{classes}}}$ # phases $\frac{\# \text{steps}}{\text{in phase}}$ one step

Lemma 1: After 4b logn steps, all blue clusters stop growing.

 $\left(1+\frac{1}{2h}\right)^{4b \log n} > N$ Pf:

Lemma 2: Once a blue cluster <u>stops</u>, it has <u>no</u> red neighbors.

<u>Lemma</u> 3: Diam cluster ≤ (i+1)·R

Lemma 4: $|V_{i+1}| \ge (1 - \frac{1}{26}) |V_i|$