Anchored expansion in supercritical percolation on nonamenable graphs.

Abstract:

Let G be a transitive nonamenable graph, and consider supercritical Bernoulli bond percolation on G. We prove that the probability that the origin lies in a finite cluster of size n decays exponentially in n. We deduce that:

1. Every infinite cluster has anchored expansion almost surely. This answers positively a question of Benjamini, Lyons, and Schramm (1997).

2. Various observables, including the percolation probability and the truncated susceptibility are analytic functions of p throughout the entire supercritical phase.

Joint work with Tom Hutchcroft.