On a bizarre geometric property of a counterexample to the Jacobian conjecture

Abstract:

If f, g are two polynomials in $\mathbb{C}[x,y]$ such that $J(f,g)=1$, but $\mathbb{C}[f,g]$ does not coincide with $\mathbb{C}[x,y]$, then the mapping given by these polynomials ($ (x,y) \text{ maps to } (f(x,y), g(x,y))$) has a rather unexpected property which will be discussed in the talk.