On a bizarre geometric property of a counterexample to the Jacobian conjecture

Abstract:

If \(f, g \) are two polynomials in \(\mathbb{C}[x,y] \) such that \(J(f,g)=1 \), but \(\mathbb{C}[f,g] \) does not coincide with \(\mathbb{C}[x,y] \), then the mapping \((x,y)\) maps to \((f(x,y), g(x,y))\) has a rather unexpected property which will be discussed in the talk.