On a bizarre geometric property of a counterexample to the Jacobian conjecture

Abstract:

If f, g are two polynomials in \(C[x,y]\) such that \(J(f,g)=1\), but \(C[f,g]\) does not coincide with \(C[x,y]\), then the mapping given by these polynomials (\((x,y)\) maps to \((f(x,y), g(x,y))\)) has a rather unexpected property which will be discussed in the talk.