On a bizarre geometric property of a counterexample to the Jacobian conjecture

Abstract:

If f, g are two polynomials in \( \mathbb{C}[x,y] \) such that \( \text{J}(f,g)=1 \), but \( \mathbb{C}[f,g] \) does not coincide with \( \mathbb{C}[x,y] \), then the mapping given by these polynomials ( \((x,y) \) maps to \((f(x,y), g(x,y))\) ) has a rather unexpected property which will be discussed in the talk.