C-single crossing Interdependent valuations

Abstract:

We consider the goal of social welfare maximization where a single item is to be assigned to one of to \(n \) potential agents with interdependent values.

That is, each agent has her own private signal, and the valuation of each agent is a known function of all \(n \) private signals. This captures settings such as valuations for artwork, oil drilling rights, broadcast rights, and many more. In the interdependent value setting, all previous work has assumed a so-called single-crossing condition. Single-crossing means that the impact of agent \(i \)'s private signal, \(s_i \), on her own valuation is greater than the impact of \(s_{ii} \) on the valuation of any other agent. It is known that without the single-crossing condition an efficient outcome cannot be obtained. We study welfare maximization for interdependent valuations through the lens of approximation.

We show that, in general, without the single-crossing condition, one cannot hope to approximate the optimal social welfare any better than the approximation given by assigning the item to a random bidder. Consequently, we introduce a relaxed version of single-crossing, \(c \)-single-crossing, parameterized by \(c \geq 1 \), which means that the impact of \(s_i \) on the valuation of agent \(i \) is at least \(1/c \) times the impact of \(s_i \) on the valuation of any other agent (\(c = 1 \) is single-crossing). Using this parameterized notion, we obtain a host of positive results. We also consider interdependent settings when valuations are concave and give improved results.

Joint work with Alon Eden, Michal Feldman, and Kira Goldner.