Abstract:

Consider independent continuous-time random walks on the integers to the right of a front $R(t)$. Starting at $R(0)=0$, whenever a particle attempts to jump into the front, the latter instantaneously advances k steps to the right, absorbing all particles along its path. Sly (2016) resolves the question of Kesten and Sidoravicius (2008), by showing that for $k=1$ the front $R(t)$ advances linearly once the particle density exceeds 1, but little is known about the large t asymptotic of $R(t)$ at critical density 1. In a joint work with L-C Tsai, for the variant model with k taken as the minimal random integer such that exactly k particles are absorbed by the move of $R(t)$, we obtain both scaling exponent and the random scaling limit for the front at the critical density 1. Our result unveils a rarely seen phenomenon where the macroscopic scaling exponent is sensitive to the initial local fluctuations (with the scaling limit oscillating between instantaneous super and sub-critical phases).